Queueing Syst
DOI 10.1007/s11134-011-9214-5

Dynamic pricing and scheduling in a multi-class
single-server queueing system

Eren Basar Cil - Fikri Karaesmen -
E. Lerzan Ormeci

Received: 3 April 2009 / Revised: 21 January 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper investigates an optimal sequencing and dynamic pricing prob-
lem for a two-class queueing system. Using a Markov Decision Process based model,
we obtain structural characterizations of optimal policies. In particular, it is shown
that the optimal pricing policy depends on the entire queue length vector but some
monotonicity results prevail as the composition of this vector changes. A numerical
study finds that static pricing policies may have significant suboptimality but simple
dynamic pricing policies perform well in most situations.

Keywords Dynamic control of queues - Multi-class system - Dynamic pricing -
Markov Decision Processes

Mathematics Subject Classification (2000) 491.20 - 93E20 - 60K25

1 Introduction

Dynamic pricing opportunities for production and service systems have attracted sig-
nificant attention recently. In particular, there is a rapidly growing literature on dy-
namic pricing problems for queueing-based models of such systems. Most of this

E.B. Cil

Decision Sciences Department, Lundquist College of Business, University of Oregon, Eugene, OR,
USA

e-mail: erencil@uoregon.edu

F. Karaesmen (<) - E.L. Ormeci
Department of Industrial Engineering, Ko¢ University, Istanbul, Turkey
e-mail: fkaraesmen @ku.edu.tr

E.L. Ormeci
e-mail: lormeci @ku.edu.tr

Published online: 10 March 2011 4\ Springer

mailto:erencil@uoregon.edu
mailto:fkaraesmen@ku.edu.tr
mailto:lormeci@ku.edu.tr

Queueing Syst

literature focuses on single-class queues consisting of customers from a single seg-
ment. This paper focuses on the dynamic pricing problem for a single-server queue
that serves two distinct classes of customers. These segments are assumed to differ in
their price sensitivity as well as their waiting costs. The resulting problem involves
offering different prices to these customer segments upon their arrival and sequencing
the server in order to maximize the long-run profits. The multi-dimensional aspect of
the problem brings new challenges for establishing the structure of optimal pricing
and sequencing policies.

The analysis of the pricing problem in a queueing context goes back to Naor [17]
who considers a static pricing problem for controlling the arrival rate in a finite-
buffer queueing system. A rich literature on the static pricing problem has evolved
since then. Our main interest in this paper is dynamic pricing where different prices
can be charged at different times. Low [14] is the first to focus on the dynamic pric-
ing problem of a multi-server queue with finite waiting room capacity. In particular,
Low proves the monotonicity of the optimal prices in the queue length. These results
are then extended to a multiserver queue with infinite waiting room capacity in [15].
Paschalidis and Tsitsiklis [18] consider the pricing problem of a service provider,
which provides access to communication network, by modeling the problem as a dy-
namic pricing problem of multiserver loss system with N different customer classes.
They establish the monotonicity of the optimal prices in the number of customers
in the system. Chen and Frank [6] consider a queuing system where a monopo-
list charges an entrance fee depending on the number of customers in the system.
They establish the existence of monotone optimal prices for this problem. Yoon and
Lewis [22] obtain some monotonicity results for a queueing system with periodically
varying parameters. Ziya, Ayhan and Foley [23, 24] investigate the related static pric-
ing problem for a finite-buffer queue and obtain some structural results. Son [20] con-
siders a pricing problem for discrete-time queue with the additional option to serve a
second class of customers that are always available. Finally, similar monotonicity re-
sults are also obtained for the make-to-stock queue model of a production/inventory
system in Li [13], Gayon et al. [8].

A related recent stream of work investigates the effect of problem parameters,
such as arrival rates, service rates, and number of servers on optimal dynamic pricing
policies. Gans and Savin [7] consider a joint admission control and dynamic pricing
problem of a multi-server loss system. They not only establish the structure of the
optimal policies maximizing the expected long-run average reward, but also investi-
gate the effects of the parameters on these policies. Cil, Karaesmen and Ormeci [4]
and Aktaran-Kalayci and Ayhan [1] study the multi-server finite-buffer queueing sys-
tem and investigate the monotonicity of the optimal pricing policy as a function of
problem parameters. Cil, Ormeci and Karaesmen [5] propose a framework that ad-
dresses a class of queueing/inventory problems with dynamic pricing from a parame-
ter monotonicity perspective.

Most of the above papers consider either a single segment of customers or a queue
without waiting space or identical holding costs which makes the state space of the
problem single-dimensional. The most closely related paper to ours is [16], which
investigates a multi-class single-server queue with different holding costs for each
class. Recognizing the difficulty of the underlying control problem, Maglaras [16]

@ Springer

Queueing Syst

proposes a fluid approximation and analyzes its solution to construct plausible poli-
cies. It is shown through numerical examples that this approximate solution is ex-
tremely effective for the original problem. In this paper, using a Markov Decision
Process (MDP) framework, we obtain results on the structure of the optimal sequenc-
ing and pricing policy for this problem. In particular, we show that the optimal se-
quencing policy is a strict priority policy and establish a number of monotonicity
results for the optimal prices in terms of the queue lengths.

The organization of the paper is as follows. Section 2 introduces the assump-
tions and the model. Section 3 presents the structural results on the optimal policy.
The numerical results are presented in Sect. 4 and the conclusions can be found in
Sect. 5. Finally, the proofs and the detailed numerical results are deferred to the Ap-
pendices A-H.

2 The model

We consider a single-server queue with infinite waiting room capacity and two classes
of customers. Arrivals occur according to independent Poisson processes with rate
Aj, j=1,2. Whenever a class-j customer arrives, he either enters the system if his
reservation price, R, is higher than the announced price or leaves the system without
bringing any reward. It is assumed that R;’s are random variables with a cumulative
distribution function of F;(.). We denote the probability density function by f;(.),
and let F i(p) =1— F;(p). The service times of all customers are independent and
exponentially distributed with mean 1/u regardless of the customer class. Moreover,
the queue owner incurs a holding cost per customer per unit time, 4 ;, and without loss
of generality it is assumed that &1 > hy. The objective is to obtain dynamic pricing
and sequencing policies that maximize the total expected discounted profit with a
continuous discount rate B8 over an infinite horizon as well as the long-run average
profit.

At any time, the decision maker has to decide which class of customer is served
and to choose a price from a compact set [pmin, Pmax]- For technical reasons, which
will be apparent in the text, it is assumed that F;(.) has a strictly increasing gen-
eralized failure rate, i.e., i/(.)/(pfj(.)) is strictly decreasing, and M F1(pmax) +
A F>(pmax) < p. Under any given feasible scheduling and pricing policy 7w, the
system evolves as a continuous-time Markov chain with state (X(z), X2(¢)), where
X j (1) is the number of class-j customers in the system at time ¢. Due to the Markov-
ian property, it is clear that the optimal policy depends only on the current state re-
gardless of ¢, and thus we simply denote the current state of the system by (x1, x2),
where (x1,x2) € N2 with N={0, 1,...}.

In order to find the optimal policy 7* that maximizes the total expected discounted
profit, we construct a discrete-time equivalent of the original system by using the
standard tools of uniformization and normalization. To this end, we assume that the
time between two consecutive transitions is exponentially distributed with rate y =
W+ A1+ X2 + B, and assume without loss of generality that y = 1.

To obtain the structural properties of a system which operates over an infinite
horizon, we first prove these structural properties with the objective of maximizing

@ Springer

Queueing Syst

the expected total B-discounted reward for a finite number of transitions, n. The finite
horizon problems allow us to use the induction to prove the structural properties
for all finite n. To start the induction, we set vg(xq, x2) = O for all states (x1, x2).
Furthermore, v, (x1, x2) is the maximum expected total S-discounted reward of the
system starting in state (x1,x2) with n transitions remaining in the future and the
optimality equation of the finite horizon problem is:

Un+1(x1, x2) = uTsEQUa (X1, X2) + Z AjTerC; Vn (X1, X2) — hix) — hoxa,
j=12

where

max{v(x1 —1,x),v(x1,x2 — 1)} ifx;>0,x>0

max{v(xl—l,O),v(xl,O)} ifx;>0,x=0
Tsgqu(xy, x2) =)

max{v(O,xz—l),v(O,xz)} ifx;=0,x>0

v(0, 0) ifx1=0,x, =0,

Terc, v(x1, X2) = mgx{ Fi(p)[v(x1 + 1,x2) + p] + Fi(p)v(x1, x2)},
Terc, v (X1, X2) = mgx{ F(p)[vxi,xo+ D+ p] + Fa(p)v(xr, x2)}.

As we assume an increasing generalized failure rate for the reservation price dis-
tribution, the maximization problem in the pricing operator has a unique solution for
any given state (x1,x2). A brief discussion on this point can be found in Appen-
dix A. It should be noted that most monotonicity results extend to the case where
the monotone generalized failure rate assumption does not hold and there may be
multiple optima. But this requires defining more complicated set-based orders.

Using well-established standard arguments (see Chap. 6 of Puterman [19] for ex-
ample), there exists an optimal stationary policy for the infinite horizon problem and
v(x1, x2) = lim,— 0 v, (x1, Xx2) Whenever § > 0 where v(x1, x») is the value function
of the infinite horizon problem. Therefore, structural results obtained for v, (x1, x2)
hold for v(xy, x2). In order to address the long-run average profit criterion (i.e., no
discounting with 8 = 0), we use another well-known result in queueing control (We-
ber and Stidham [21]) which establishes that the value function of the average reward
problem can be obtained as the limit of the value function in the discounted problem
under certain conditions. It can easily be verified that all the conditions of Weber and
Stidham [21] hold for our problem. The most challenging of these conditions requires
the existence of a policy with a finite average reward. In our case, this can be seen as
follows: consider the policy that always charges pmax, the maximum price allowable.
Due to the assumption that A Fi (Pmax) + A2 P (Pmax) < W, the resulting system is a
stable two-class queueing system, which generates finite average queue-lengths and
finite average rewards. Therefore, the value function of the average profit criterion
can be obtained as the limit of the value function of the discounted cost problem as
the discount factor goes to zero. In addition, as shown in [21], this limit preserves all
structural properties of the discounted value function, and the average reward prob-
lem possesses the identical structural properties as the discounted cost problem. In

@ Springer

Queueing Syst

other words, all structural properties are true for the relative value function of the
long-run average reward problem, which we denote by v'(x1, x3).

3 Structure of the optimal sequencing and pricing policy

In order to explore the structure of the optimal policies, it is necessary to investi-
gate the properties of the value function v(x1, x2). In addition to basic directional
monotonicity (the property of being decreasing) (denoted by Decl, Dec2), we also es-
tablish other properties such as diagonal dominance (Dec21), submodularity (SubM),
and subconcavity (SubC) and concavity. For the sake of completeness, the definitions
of all these properties are presented in Appendix B.

In order to establish that the value function preserves the above properties, we first
show that all operators preserve these properties. Assume that a function f(xp, x2)
has a certain property A. An operator T preserves property A if T f (x1, x3) also has
this property. The results are summarized in Table 1. The ticks in Table 1 represent
that the corresponding operators preserve the desired properties (Decl, Dec2, Dec21,
SubM, SubC) for the function f. Table 1 should be read as follows: consider, for
example, operator Tsgq and property Decl: If a function f has properties Dec2 and
Dec21 in addition to Decl, then Tsgq f is decreasing in x; so that Tsgg preserves
property Decl. The proofs of these results can be found in Appendices C-E.

Table 1 Properties preserved
by the operators when the

function f(x) has the Properties TseqQ TPRC/- Condition(s)
corresponding property

Preserved Operators Additional

Decl N v * f: Dec2, Dec21
Dec2 S J T f: Decl, Dec21
Dec21 Nl v ¢ f: Decl, Dec2
SubM \/’ Va ¢ f: Decl, Dec2, Dec21, SubC
SubC Na NG * f: Decl, Dec2, Dec21
A f: SubM

Remark Koole [12] presents weaker conditions for the propagation of SubM and
SubC for the Tsgq operator. For this operator, we present a simpler proof in the
appendix using other properties here for completeness. On the other hand, to the best
of our knowledge, the multi-dimensional properties of TPRC/., have not been studied
before.

3.1 Structure of the optimal sequencing policy
In a number of queueing control problems involving processor sequencing/scheduling
between multiple customer classes, the ¢ rule is known to be optimal. This rule gives

higher priority to those classes that have higher weighted service rates (weighted by
the unit holding cost). This result is especially well-established for single-server

@ Springer

Queueing Syst

queues with state-independent arrivals (Baras, Ma, and Makowski [2], Buyukkoc,
Varaiya and Walrand [3]). In our setting, if the pricing policy is static (i.e. does not
depend on queue lengths), the arrival processes do not depend on the queue lengths.
By the former results, this implies that giving strict preemptive priority to class 1
whose holding cost is higher is optimal.

On the other hand, when the arrival process depends on the queue lengths, as
is the case with dynamic pricing, the situation is known to be more complicated.
Hordijk and Koole [10] appears to present the most comprehensive analysis for op-
timal scheduling in the case of general state-dependent arrival processes. They con-
sider systems in which arrivals are generated by Markov Decision Arrival Processes
(MDAPs), where MDAPs subsume several important state-dependent arrival process
models. For the queue-length dependent arrival process, they show that there are
counterexamples to the optimality of the cu rule and establish that the generic opti-
mality of this rule is not guaranteed.

Given that the optimality of the cu priority rule is not guaranteed by the existing
results when the arrival process is queue-length dependent (as in dynamic pricing),
we present a concise proof of optimality in Appendix F. The main result can be
summarized in the following theorem:

Theorem 1 The optimal sequencing policy is a preemptive-priority policy which
serves class 1 first whenever there is a class-1 customer in the queue in a non-idling
manner.

In addition, using Lemma 2 (from Appendix F) we can further characterize opti-
mal pricing policies when the two customer classes are only differentiated by their
holding costs:

Corollary 1 When reservation price distributions Fy and F satisfy the following
two conditions:

(1) F>(p) — F1(p) is weakly decreasing in p: Fo(p +¢) — Fi(p+¢) < Fa(p) —
F1(p) forany ¢ > 0.

(2) F2(p)p— Fi(p)p is weakly increasing in p: F>(p)p— Fi(p)p < Fa(p+e)(p+
e)—Fi(p+¢e)(p+e)forany e > 0.

Then the optimal price to charge class 1, pY(x1, x2), is greater than or equal to the
optimal price to charge class 2, p5(x1, x2), for all (x1, x2).

Remark Using the corresponding results from [12], Theorem 1 can be extended to
class-dependent service rates w1 and uy such that iy > houo. It appears, however,
that the other properties in the rest of the paper cannot be easily extended to that case.

Theorem 1 and Corollary 1 establish two properties uncovered by Maglaras [16]
using the fluid approximation: the optimality of a strict priority policy for the class
with higher holding cost along with preferred pricing for the class with lower hold-
ing cost. The service provider thus seems to be encouraging a higher percentage of
arrivals from the lower holding cost class but is obliged to give priority to the class
with higher holding costs that join the queue.

@ Springer

Queueing Syst

We now examine when the conditions of Corollary 1 are satisfied. Both conditions
hold when F; and F, are identical. When they are not identical, condition (1) is
very restrictive. This condition can be satisfied only when F; has a mass at the lower
bound of its domain, i.e., F2(pmin) > 0. This is true because if F>(pmin) = 0, we have
F(pmin) = F1(Pmin) =0, F2(Pmax) = F1(pmax) = 1 and F> — Fj is continuous. In
addition, the previous argument can be extended to the case when ppin and pmax are
class-specific. Finally, we note that neither of the conditions seems to have a direct
relation with any of the well-known stochastic orders.

3.2 Structure of the optimal pricing policy

The optimal sequencing policy is obtained to be a priority policy. However, we still
need to determine the optimal pricing policy. To this end, we focus on submodularity
and subconcavity properties of the value function.

We only present the proof of submodularity in detail, since the arguments used to
establish submodularity and subconcavity are similar. We define submodularity as:

Submodularity(SubM): Agrv(xg, x2) < Agrv(xg, xp + 1),

where
Ag1v(x1, x2) =v(x1,x2) —v(x1 + 1, x2).

We denote the opportunity cost of having an additional class-1 customer in state
(x1, x2) by Agjv(xy, x2). Hence, submodularity implies that the opportunity cost of
a class-1 customer is increasing in x3.

We prove the submodularity of v, (x1, x2) for all finite n by induction. The initial
condition is trivially true. Then, we assume the submodularity of v, (x1, x2). We can
write the submodularity inequality for v,41(x1, x2) as:

A0 TsEQUA (X1, X2) + Y AjAoi Tore; Vn (X1, X2)
j=12

< AN TseQua(x1, X2+ 1)+ Y AjAoiTere;vn(x1, X2+ 1. (1)
j=12

We know that v, (x1, x3) has properties Decl, Dec2 and Dec21 by Lemma 2.
Moreover, the induction hypothesis implies that v,(x1,x2) is submodular. Thus,
inequality (1) is true due to Table 1, so that v,41(x1,x2) is submodular, i.e.,
Ao1vn(x1, x2) < Ag1ve(x1,x2 + 1), for all finite n. Then, v(xy, x2) and v'(xq, x2)
are also submodular as v, (x1, x2) converges to v(xy, x2). Similarly, v(x, x2) and
v'(x1, x2) have the subconcavity property. Furthermore, combining submodularity
and subconcavity properties implies the concavity of v(xq, x2) in both x; and x;.
Lemma 1 summarizes the structure of the value functions.

Lemma 1 The value functions v(xy, xp) and v'(x1, x2) satisfy submodularity and
subconcavity conditions, and they are concave in both x| and x;.

@ Springer

Queueing Syst

pi(x1,x2) P5(x1,X2)

T+ Yoo A T2+ el b
\
8 \\ Increasing 8 ~ Increasing
= : \\ on the diagonal = : \\ on the diagonal
A N

g ~ g N
@ : \ £ : N
& H N z 1 A
g <o
] =] ~
I 2 N

O T R CL I R -

Increasing in x : Increasing in z :
1 x1+1 1 T x1+1 1

Fig. 1 Structure of the optimal prices in the 2-dimensional model

As in the one-dimensional models of dynamic pricing problems, such as Low [14],
Cil et al. [4] or Gayon et al. [8], monotone opportunity costs lead to monotone optimal
prices in this model and we present the implied structure of the optimal prices in the
following theorem (see Appendix G for its proof).

Theorem 2 For all (x;, x), we have:

(i) For j=1,2, pi(x1,x2) < pj(x1 +1,x2) and p(x1,x2) < pj(x1,x2+ 1).
(i) py(x1,x2+1) < pi(x1 + 1, x2).
(i) p3(x1+1,x2) < p5(x1, x2+1).

Figure 1 illustrates the conclusions of Theorem 2. It is worth discussing the im-
plications of Lemma 1 and Theorem 2. Due to submodularity, the optimal prices
for both classes are increasing as the number of customers from the other class in-
creases. The pricing policy therefore must take into account the total queue length
(i.e. workload) in the system as in the fluid approximation of Maglaras [16]. The
implications of Theorem 2 are more intriguing however. Keeping the overall total
length constant, increasing the number of class-2 customers results in lower optimal
prices for class 1. This is understandable since class-1 customers have higher priority:
their wait is not affected by class-2 customers but only by class-1 customers ahead
of themselves. Thus, the effective queue length ahead of them is reduced. On the
other hand, keeping the total queue length constant, increasing the number of class-2
customers results in higher optimal prices for class 2 customers. The intuition here
seems more subtle, class-2 customers have to wait for the total queue length in front
of them at their arrival plus the future arrivals from class-1 customers. But by the
previous property, class-1 customers are charged lower prices when there are more
class-2 customers, which increases their expected future arrival rate. Therefore, the
potential queue length ahead of class-2 customers is increased, and they need to be
charged higher prices.

@ Springer

Queueing Syst

The above results suggest that the optimal pricing policy is affected not only by
the total queue length in the system but also by the class composition of the queue in
a subtle manner.

4 Numerical examples

The structural properties established in the previous section characterize the optimal
scheduling and pricing policies. However, specifying a pricing policy is a challeng-
ing problem. In this section, we investigate the performance of the optimal dynamic
pricing policy and compare it with two alternative benchmark policies. The first alter-
native is a simple static pricing policy which charges a unique price to each customer
class regardless of the queue length. Appendix H presents the computational details
for this policy. The second alternative is a simpler dynamic policy where the optimal
prices depend on the total queue length x; + x, rather than (x1, x2). This type of pol-
icy is suggested by the fluid analysis in Maglaras [16]. The implementation details
for this policy can be found in Appendix H.

In this section, we use the long-run average profit criterion (so the discount rate 8
is 0), and denote the optimal average profit by g*. The optimal policy is computed
numerically by truncating the state space and using the value iteration algorithm. The
computation yields the optimal prices p7(x1, x2) and the expected optimal profit g*
which will be reported below.

4.1 Example 1: symmetric arrival rates and prices, low holding costs

We begin with an example in a regime that is similar to the numerical examples in
Maglaras [16]. Let Ay = A =8 and u =4, h1 = 0.4 and hy = 0.1. The reservation
prices R and R; are independently uniformly distributed in the interval (0, 8).

Under the optimal policy, the utilization of the server turns out to be 98% in this
case (the detailed results can be found in Table 5 of Appendix H). The static pricing
policy has a suboptimality greater than 4%. On the other hand, the theoretical results
in Maglaras imply that considering the total queue length (referred to as the workload
approximation in that paper) should perform well in this regime. Indeed, the subop-
timality reported in Maglaras for this example is 0.2%. Our implementation of the
workload approximation yields a suboptimality of 0.16%.

The optimal prices for this example are reported in Table 2. The implications of
Theorem 2 can be observed in this table. Optimal prices are increasing in xj and x»
for both customer classes, and the optimal price for class 1 is higher than that of
class 2 in any given state. The optimal static prices are 6.22 and 6.10 for classes 1
and 2 respectively (see Table 5 in Appendix H). It can be observed that the state-
dependent prices can deviate significantly from these values. More interestingly, as
a consequence of subconcavity, the optimal prices were established to be monotone
on the total queue length line. This is clearly manifested in Table 2 for class 1. For
instance, py(0,5) < pj(1,4) <--- < py(5,0). The reverse is also true for class 2 in a
weaker sense. For instance, p3(0,5) = p5(1,4) =--- > p3(5,0) (it should be noted
that we only report results up to a two-digit accuracy). The latter observation partially

@ Springer

Queueing Syst

Table 2 Optimal prices with A = Ay =8 and u =4, h;y =0.4 and hp, =0.1

pi(x1, x2) p3(x1,%2)
x»\x 0 1 2 3 4 5 0 1 2 3 4 5

472 512 552 576 592 608 464 496 528 544 560 5.68
512 544 568 592 608 624 504 528 544 560 576 584
536 560 584 6.00 616 632 528 544 560 576 584 592
552 576 592 6.08 624 640 544 560 576 584 592 6.00
568 592 608 6.16 632 648 560 576 584 592 6.00 6.08
584 6.00 6.16 624 6.4 648 576 584 592 6.00 6.08 6.16

“n A WD = O

Table 3 Optimal prices withAj =iy =8 and u=4,hy =4and hr =1

pi(x1,x2) p5(x1,%2)
o\x; 0 1 2 3 4 5 0 1 2 3 4 5

536 632 7.12 7.68 800 800 480 536 568 600 624 640
592 672 736 792 800 800 536 576 6.00 624 648 6.64
624 696 760 800 800 800 576 608 632 656 672 688
656 720 776 800 800 800 6.08 632 656 672 688 7.04
680 744 800 800 800 800 640 656 680 696 7.12 728
7.04 760 800 800 800 800 6.64 680 696 712 728 744

w A WD = O

explains the excellent performance of the total queue length heuristic. For class 2, the
optimal prices are sensitive to the total queue length but not extremely sensitive to
individual queue lengths. The heuristic should therefore retrieve the right prices for
class 2. For class 1, the situation is different in that the optimal prices differ for the
same total queue length depending on the composition. It appears, however, that the
optimal profit is not very sensitive to these differences.

Table 5 (in Appendix H) presents additional detailed results as the service
rate and the price parameters are varied. At low effective utilization rates, sta-
tic pricing appears to be very effective but its performance degrades as the ef-
fective utilization rates increase. It should be noted that the optimal static prices
do not differ significantly between classes. On the other hand, the total queue
length heuristic uniformly performs extremely well for this range of parame-
ters.

4.2 Example 2: symmetric arrival rates and prices, high holding costs

Next, we present the same example as in Sect. 4.1 where we take hy =4 and hy =1
which generates a stronger trade-off between utilization and holding costs. The re-
sulting optimal policy has a utilization of 88%. As can be observed in Table 3, all
consequences of Theorem 2 appear in a sharper manner in this case. In particular,
there seems to be a stronger dependence on individual prices for any given total queue
length. Table 6 in Appendix H, which presents the detailed results for this example,

@ Springer

Queueing Syst

shows that the static pricing policy has a suboptimality higher than 10% in this case.
With respect to Example 1, the optimal static prices differ more significantly between
classes. The total queue length heuristic continues to perform remarkably in this case
resulting in a suboptimality of only 0.72%. In addition, varying the service rates, and
thus the effective utilization does not have a negative effect on the suboptimality of
the total queue length heuristic.

4.3 Asymmetrical cases

We tested several cases with asymmetric arrival rates and reservation price distri-
butions and observed the strong performance of the total queue length heuristic in
general, whereas the performance of the static pricing policy varies. On the other
hand, it appears that there are some particular situations which are difficult to capture
by either the static or the total queue length heuristic. In particular, a challenging case
is when one of the classes can afford higher prices (i.e. has stochastically larger reser-
vation prices) but also incurs relatively high holding costs. Under such a condition,
the customers from this class should be admitted relatively rarely and at the right time
to enhance the expected profit.

Next, we discuss such a case in detail. In this example A} =2, A, = 0.5, u = 1.5,
h1 =2 and hy =0.1. The reservation prices R and R; are independently uniformly
distributed in the interval (0, 2) and (0, 0.5) respectively.

Table 4 reports the optimal prices for this example. The detailed summary results
can be found in Table 7 in Appendix H. The static pricing heuristic has a very sig-
nificant suboptimality (over 25%). Moreover, the total queue length heuristic also
results in a significant suboptimality of 17%. To see why this occurs, we note, from
Table 4, that class-1 customers are only accepted whenever x; = 0. This makes the
optimal prices for class 2 significantly different for small levels of total queue length
(i.e., x1 +x2 =1, 2, or 3). But neither the static pricing policy nor the total queue
length heuristic can take this dependence into account. The optimal static prices are
1.84 and 0.31 for classes 1 and 2 respectively. But the dynamic pricing policy com-
pletely rejects arrivals of class 1 in certain states. In Table 7, we continue the same
experimentation by varying the service rate between 1 and 2, and the suboptimal-
ity is consistently around 15 and 25% for the total queue length and static pricing
heuristics, respectively. It appears that this regime is troublesome for both of the
heuristics.

5 Conclusion

We investigated the structure of optimal dynamic pricing and sequencing policies in
a two-class queueing system. As in most similar cases, the sequencing problem turns
out to be easy and the optimal sequencing policy gives priority to the customer with
the higher holding cost. We were also able to obtain monotone characterizations of
the optimal prices as the queue lengths and their compositions vary. On the other
hand, despite the characterization results, developing an approximate pricing policy
remains a difficult problem. Our numerical results indicate that static pricing policies

@ Springer

Queueing Syst

Table 4 Optimal prices with A =2, 2 =0.5, u =15, hy =2 and hp =0.1

pi(x1, x2) p3(x1,%2)
x»\x 0 1 2 3 4 5 0 1 2 3 4 5

170 2.00 200 200 200 200 030 034 037 041 044 048
174 200 200 200 200 200 034 038 041 045 048 050
178 200 200 200 200 200 038 042 045 048 050 050
1.80 2.00 200 200 200 200 042 045 049 050 050 050
1.84 200 200 200 200 200 046 049 050 050 050 050
188 200 200 200 200 200 049 050 050 050 050 050

“n A WD = O

do not perform well especially when there are strong asymmetries between the cus-
tomer types. This is in contrast with the results in [24] where static pricing is very
effective in a similar situation but with FIFO sequencing. The holding cost asymme-
try and the resulting priority sequencing policy seems to work against static pricing
policies.

It appears, however, that simple dynamic pricing policies may be effective. In par-
ticular, the numerical evidence supports that the total queue length based approach
proposed by Maglaras [16] performs remarkably well in general. Yet there are cer-
tain situations where the individual queue lengths matter significantly in terms of
the pricing policy, and dynamic pricing policies should take this information into
account. Such cases require a special attention and an approximate solution of the
multi-dimensional MDP seems worthwhile when the customer mix includes lucra-
tive but expensive to hold customers.

Acknowledgements This research was partially supported by TUBITAK and the TUBA-GEBIP pro-
gramme. F. Karaesmen is grateful to the Dept. of Ind. Eng. and Man. Sci. of Northwestern University
where part of this research was done.

Appendix A: Uniqueness of the optimal prices

In our pricing operator for class 1, we have the following maximization problem:
m;lx{Fl (p)[vx1 + 1 x2+ p)]+ Fi(p)v(xi, x2)}.

When we rearrange the first-order optimality condition of the above problem, we
have:

b Fi(p)
f1(p)

In order to ensure that there is a unique p solving (2), it is sufficient that the right-
hand side of (2) is increasing in p. This is, indeed, a conservative condition because
(2) may have a unique solution even though p — F i (p)/fj(p) is not monotone. For
notational convenience, let g(p) = p — Fi (p)/f1(p). Below, we show that g(p) is

=v(x1,x2) —v(x1 + 1, x2).)

@ Springer

Queueing Syst

increasing in p when F has the Increasing Generalized Failure Rate (IGFR) property,
i.e., F1(p)/pfi(p) is decreasing in p.

Fi(p)
pfi(p)

Fi(p)
pfi(p)

is decreasing in p = |:1 - :| is increasing in p

F
= p|:1 — 1(p) :| is increasing in p
pfi(p)

= g(p) isincreasing in p.

The same argument naturally also applies to the pricing operator for class 2.

Appendix B: Definitions of properties

We start by the basic monotonicity properties of the value function v(xy, x2). We
note that the words “increasing,” “decreasing” and “positive” mean “non-decreasing,”
“non-increasing” and ‘“non-negative,” respectively, in the whole paper. These proper-
ties are defined as follows:

Decreasing in x1(Decl): v(xy, x) >v(x) + 1, x2), (1)
Decreasing in x> (Dec2): v(xg, x2) > v(xg, x2+ 1), 2)
Decreasing on the diagonal (Dec21): v(x, xo+ 1) >vlx+1,x). (3)

Inequality (1) implies that when a new class-1 customer enters the system, the ex-
pected discounted profit decreases. In other words, an additional class-1 customer
incurs a positive opportunity cost. Similarly, inequality (2) implies a positive oppor-
tunity cost of an additional class-2 customer. Inequality (3), on the other hand, implies
that the value function decreases when a class-2 customer is exchanged by a class-1
customer. We introduce the following notation:

Aprv(xy, x2) = v(x1, x2) —v(x1 + 1, x2),
Appv(x1, x2) = v(x1, x2) — v(x1, X2 + 1),

Aziv(x1, x2) = v(xy, x2 + 1) —v(x; + 1, x2),

where Agjv(xy, x2) represents the opportunity cost of having an additional class-j
customer in state (x1, x2), and Asjv(xy, x2) the opportunity cost of having an addi-
tional class-1 customer rather than an additional class-2 customer in state (xp, x2).

Now we focus on the concavity properties of the value function. Concavity rep-
resents the monotonicity of the opportunity costs, which directly affects the opti-
mal policy structure. Concavity of v(x1, x2) in x; and x» is given by inequalities (4)
and (5), respectively:

Aog1v(xy, x2) < Agrv(xy + 1, x2), @
Apv(xy, x2) < Appv(xg, x2 + 1). (5)

@ Springer

Queueing Syst

Concavity of the value function in x; implies that the opportunity cost of a class-j
customer is increasing in x ;. Although concavity properties are quite intuitive, it is
difficult to prove these inequalities directly. Therefore, we employ the supporting
properties submodularity and subconcavity (see [11]) in order to prove concavity.
These two properties are of interest in themselves and when combined they imply
concavity. Submodularity implies that the opportunity cost of a class-1 (class-2) cus-
tomer is increasing in xp (x1):

Submodularity (SubM): Ap1v(xy, x2) < Agrv(xy, x2 + 1), or equivalently
Apv(xr, x2) < Agav(xy + 1, x2).

Subconcavity, on the other hand, is the monotonicity of the opportunity cost on the
diagonal. Since we have two classes of customers, subconcavity consists of two con-
ditions: The first condition states that the opportunity cost of changing a class-2 cus-
tomer to a class-1 is decreasing in the number of class-2 customers, xp, whereas the
second condition states that it is increasing in the number of class-1 customers, x1:

Subconcavity (SubC): Aojv(xy, x2 + 1) < Agpu(xy, x2) < Agjv(xg + 1, x).

As aresult, when we add the inequality of submodularity and the second inequality
of subconcavity, we obtain the concavity of v(x1, x2) in x1, and similarly adding the
submodularity inequality and the first inequality of the subconcavity property yields
to the concavity of v(xy, x2) in x;. Lemma 1 summarizes the structure of the value
functions.

Appendix C: Proof: monotonicity of the operators

We show that the operators that we consider, Tsgq, Tprc, and Tprc,, preserve the
monotonicity properties (1), (2) and (3) of the function v(x, x2) to which they are
applied.

C.1 Monotonicity of Tsgq

In the proof of the monotonicity of Tsgqu(x1, x2), we assume without loss of gen-
erality that v(xy, x2 + 1) > v(x1 + 1, x2) and this property implies that serving the
expensive customer is more valuable than serving a cheap customer. Therefore, we
can redefine this operator as:

vix; —1,x) ifx;>0,x>0
Tspqu(xi, x2) = Jv(0,x2 — 1) ifx;=0,x>0 (6)
v(0, 0) if x; =0, x, =0.

Then, we investigate whether the departure operator preserves all of the three
monotonicity properties. Since the operator is partially defined, we consider all pos-
sible cases, i.e., (x] > 0, x > 0), (x; =0, x2 > 0) and (x; =0, x, = 0), separately
for each property.

@ Springer

Queueing Syst

C.1.1 Monotonicity in x1

We can write the first monotonicity inequality for Tsgq as follows:

Cases TspqQu(x1, x2) = TsgqQu(xy + 1, x2)
(x1 >0,x >0) v(xp — L, x0) > v(xy, x2)

(x1 =0, x3 > 0) v(0,x2 — 1) 2 v(0, x2)
(x1=0,x,=0) v(0,0) > v(0,0)

It is obvious that all three cases are true: the first case is true by the monotonicity
of v(x1,x2) in x1, the second case is true by the monotonicity of v(xy, x2) in x2,
and the left-hand side and the right-hand side are equal in the third case. Thus, the
departure operator preserves the first monotonicity property of v(xy, x2).

The proof for the second monotonicity property is similar and is omitted.

C.1.2 Monotonicity on the diagonal

The third monotonicity inequality for Tsgq is as follows:

Cases TSEQv(xl,xz +1)> TSEQv(xl +1,x9)
(x1>0,x>0) vixp — L+ 1) =2 v(xg, x2)
(x1=0,x>0) v(0, x2) > v(0, x2)

(x1=0,x=0) v(0,0) > v(0, 0)

In this monotonicity property, all of the three cases are also true: the first one is true
by the monotonicity of v(xy, x2) on the diagonal and the remaining ones are trivially
true. Hence, the departure operator also preserves the third monotonicity property of
v(x1, x2), and it preserves all of the monotonicity properties of v(xy, x2).

C.2 Monotonicity of Tprc;,
C.2.1 Monotonicity in x1
Let p} and pj be the optimal prices for the states (x, x2) and (x; + 1, x2), respec-

tively. Then we show that Tprc, preserves the monotonicity of v(x1, x2) in x;. In-
equality (1) for this operator can be written as:

F(py)[p1 +v@x1 + 1,x)] + F(pnv(x1, x2)
> F(p2)[p2 +v(x1 +2,x2)] + F(p2)v(x; + 1, x2). (7

@ Springer

Queueing Syst

Since p}‘ is the optimal price for the state (x1, x2), we have that:
F(p)[p1 +v(x1 +1,x)] + F(pr)v(xi, x2)
> F(p)[p2 +v(x1 +1,x)] + F(p2)v(x1, x2), ®)
and by the monotonicity of v(xy, x3) in x,
F(p)[p2 +v(x1 +1,x)] + F(p2)v(x1, x2)
> F(p2)[p2 +v(x1 +2,x2)] + F(p2)v(xi + 1, x2). ©9)

When we combine inequalities (8) and (9), it is obvious that inequality (7) is true
and thus Tprc, preserves the monotonicity of v(xy, x2) in xj.
The proof for the second monotonicity property are similar and is omitted.

C.2.2 Monotonicity on the diagonal

Similarly to the previous monotonicity proofs of the pricing operator, we let p} and
p; be the optimal prices for the states (x1, x> + 1) and (x1 + 1, x2), respectively, and
write inequality (3) for the pricing operator as:

F(p)[p1+ v+ Lxa+ D]+ F(p)vxi, x + 1)

> F(p2)[p2 + v(x1 +2,x2)] + F(p)v(x1 + 1, x2). (10)
Since pT is the optimal price for the state (x1, x> + 1), we have that
F(p[p1 +v(x1+ 1,00+ D]+ F(ppv@i, xo + 1)
> F(p)[p2+ v+ Lxa+ D]+ F(p2)v(xr, x2+ 1), (11)
and by the monotonicity of v(xy, x2) on the diagonal,

F(p2)[p2 +v(x1 + 1,02+ D]+ F(p)v@x, x2 + 1)

> F(p2)[p2 + v(x1 +2,x2)] + F(p2)v(x1 + 1, x2). (12)

When we combine inequalities (11) and (12), it is obvious that inequality (10) is
true and thus Tprc, preserves the monotonicity of v(xy, x2) on the diagonal.
The monotonicity proofs for Tprc, are similar to this proof.

Appendix D: Proof: submodularity of the operators

Here we prove that Tsgq, Tprc, and Tprc, preserve the submodularity of a function
on which they are applied v(x1, x2):

Ao1Tv(xy, x2) < AgiTv(xy, x2 + 1). (13)

@ Springer

Queueing Syst

D.1 Submodularity of Tsgg

While considering the departure operator, we assume that v(xy, x2) is decreasing
in x1, xo and on the diagonal, and it satisfies the submodularity and subconcavity
inequalities, i.e., v(x1, x3) is concave in x| and x». Since we assume the monotonicity
of v(x1, x2), serving an expensive customer is more valuable than serving a cheap
customer. Thus, we can again use the redefined version of the departure operator,
which is introduced in (6). With the help of this modification, we need to examine
the submodularity inequality for only these three possible cases: (x; > 0, x3 > 0),
(x1 =0, x2 > 0) and (x; =0, xo = 0), separately. Inequality (13) can be written as
follows for each case:

Cases Aoy TsgQu(xy, x2) < Ag1 TsgqQu(xy, x2 + 1)

(x1>0,x2 >0) v(xp — 1, xp) —v(xp, x2) Svlxp — Lixpg + 1) —vlxg,xp + 1)
(x1=0,x>0) v(0,x2 = 1) —v(0,x3) <v(0,x2) —v(0,x2 + 1)

(x1 =0,x=0) v(0,0) — v(0,0) <v(0,0) —v(0, 1)

The first case is true by the submodularity of v(xy, x2), the second case is true
by the concavity of v(xq, x2) in x2, and the last case holds by the monotonicity of
v(x1,x2) in x2. Hence, Tsgq preserves the submodularity of v(xy, x2) under given
assumptions.

D.2 Submodularity of Tprc,

We let the optimal prices for the states (x,x2), (x1 + 1,x2), (x1,x2 + 1) and
(x1 +1,x2 + 1) as follows:

P*C,) x2 x2+1
X P11 P12
xp+1 P2.1 P22

Then, we write the submodularity inequality for the pricing operator as:
F(p1,)[pi1+ v+ 1Lx2)] + F(pi)v(x, x2)
— F(p2,)[p21 4+ v(x1 +2,x2)] = F(pa,)v(x1 + 1, x2)
<F(pi2)[pi2+ v+ Lxa+ D]+ F(pr2vlx, x2+ 1)
—F(p22)[p22+v(1 +2. 02+ D] = F(p22)v(r + Lz +1). (14)

Using the optimality of p; > at the state (x; + 1, x2 + 1) and after some algebra,
we have that:

@ Springer

Queueing Syst

F(p1,0[pi1+ v+ 1L,x2)] + F(pi,)v(x1, x2)
— F(p2.1)[p21 4 v(x1 +2,x2)] = F(p2,1)v(x) + 1, x2)
< F(p1,0)p1.1— F(p21)p22+ F(p1)[v(xi, x2) — v(xy + 1, x2)]
+ F(p22)[v(xr + 1, x2) — v(x1 4+ 2, x2)]. (15)

Similarly, since pj > is the optimal price for the state (x1, x2 + 1),

F(p12)[p12+v(x + Loxa+ D]+ F(pr2)v(xy, x2 + 1)
— F(p22)[p22+ v +2,x0+ D] = F(pao)v(x + 1, x2+ 1)
> F(pr)pii— F(p2)p2a+ F(prp[var o+ 1) —v(x + 1, x2+ 1]
+ F(p2o)[vexr + Lo+ 1) —v(x +2,x2+ D] (16)

Finally, using the fact that v(x1, x2) satisfies submodularity, and inequalities (15)
and (16), inequality (14) holds and Tprc, preserves the submodularity of v(xy, x2).
The proof for Tprc, is similar.

Appendix E: Proof: subconcavity of the operators
Below, we prove that Tsgq, Tprc, and Tprc, preserve both of the subconcavity con-

ditions of v(x1, x2). In other words, we show that the conditions below hold for Tsgq,
Tprc, and Tprc, under the assumptions mentioned in the lemma.

AoiTv(xy, x2+1) < AgiTv(xg + 1, x2), o))
AnTv(x; +1,x2) < AppTv(xy, x2 +1). (18)

E.1 Subconcavity of Tsgq

We can express the first condition of subconcavity for each of the cases as follows:

Cases Ao TspQu(xy, x2 + 1) < Agy Tsgqu(xg + 1, x2)

(x1 >0,x>0) v(x; — Lixp+1) —vlxp, x4+ 1) <v(xg,xp) —vlxy +1,x0)
(x; =0,x2 >0) v(0,x2) = v(0,x2 +1) <v(0,x2) —v(1,x2)

(x1 =0,x=0) v(0,0) —v(0,1) <v(0,0) —v(1,0)

The first case is true by the first condition of subconcavity and the last two
cases are true by the monotonicity of v(xy, x2) on the diagonal, i.e., v(x1,x2 + 1) >
v(x1 + 1, x2). Therefore, Tsgq preserves the first condition of subconcavity.

Similarly to the first condition, we can write the second condition of subconcavity
as:

@ Springer

Queueing Syst

Cases

A TspqQu(xy + 1,x3) < Aga Tsgqu(xy, x2 + 1)

(x1>0,x >0)
(x1 =0,x2 >0)
(x1 =0,x=0)

v(xy,x) —v(xy, x4+ 1) <v@x; —Lxp+1) —vx; — 1, xp +2)
v(0,x2) —v(0,x2 +1) <v(0,x2) —v(0,x2 + 1)
v(0,0) —v(0,1) =v(0,0) — v(0, 1)

The last two cases are obviously true and the first case is true by the second con-
dition of subconcavity. Hence, Tsgq also preserves the second condition of subcon-
cavity.

E.2 Subconcavity of Tprc;,
In order to prove both of the subconcavity conditions, we let the optimal prices for

the states (x1,xp + 1), (x1,x2+2), (x1 +1,x2), (x;1 +1,x2+ 1) and (x; + 2, xp) as
follows:

p*(,.) X2 xp+1 X2 +2
Xy P12 P13
xp+1 P2,1 P22

X1 +2 P3,1

and then focus on the subconcavity conditions.
E.2.1 1stcondition: Arjv(xy,x2) < Arjv(xy + 1, x7)

The proof of the first condition is similar to the proof of the submodularity of the
pricing operator: We first derive two inequalities by using the optimality of py > and
p2.1, and we combine these inequalities with the fact that v(xp, x2) satisfies the first
condition of subconcavity. Therefore, the proof is omitted.

E.2.2 2nd condition: Arjv(xy,x2+ 1) < Axjv(xy, x2)

The proof of the second condition is not as trivial as the first condition because the
second condition is related to the opportunity costs of class-2 customers and the pric-
ing operator is defined for class-1 customers. Therefore, we distinguish two cases:
(p2.1 = p13) and (p2.1 < p1.3). The idea of this case-by-case analysis comes from
our computational studies. In these studies, we observe that for some holding cost
parameters p2 1 > p1.3, whereas for some other parameters py 1 < pi,3. This result
implies that the opportunity cost of an additional class-1 customer at state (x; + 1, x2)
may or not may not be higher than the opportunity cost of an additional class-1 cus-
tomer at state (x1, x» + 2) according to the cost parameters. The intuition behind this
result is the ratio of the holding cost of an expensive customer and a cheap customer.
When this ratio is very high, i.e. cost of an expensive customer is much higher than
cost of a cheap one, having 2 more class-1 customers may be more expensive than
having one expensive and two cheap customers, and thus p> | > pi 3.

@ Springer

Queueing Syst

Then, we write inequality (18) for the pricing operator as:
F(pa,D)[p2.1+v(x1 +2,x0)]+ F(po.)v(x1 + 1, x2)
— F(p2)[p22+ v +2.x204+ D] — F(p2)vxi + 1, x2+ 1)
<F(pio[pia+ v +1,x2+ D]+ F(provlx, x2+ 1)
—F(pi3)[pra+v@ +1.xa+2)] - F(pravxx+2). (19

Case 1: (p2,1 > p1.3)
Using the optimality of ps » at the state (x1 + 1, x2 4 1) and after some algebra,
we have that:

F(po,0)[p21 + v +2,x)] + F(pa,)v(xr + 1, x2)
— F(p22)[p22+v(x1+2,x0+ D] = F(pa2)v(x1 + 1,x2+ 1)
< F(po,D)[v(x1 +2,x2) — v(x; +2,x2 4+ 1)]
+ F(po,)[v(xi +1,x2) —v(x1 4+ L,xa + D] (20)
Similarly, by using the optimality of pj 2, we have that
F(p1o)[pra+ v+ Lxa+ D]+ F(proavx, x2+ 1)
— F(p13)[p13+ v+ Lxa +2)] — F(p13)v(xr, x2 +2)
> F(p13)[veer + Lxo + 1) —v(xp + 1,xo +2)]
+ F(p13)[v(xr, x2 + 1) — v(x1, x2 +2)]. (21)

Now, we focus on the right-hand side of the inequalities (20) and (21) and show
that the following inequality holds:

F(pa,)[vx1 4+2,x2) —v(x1 +2,x2+ 1]
+ F(p2,)[v(x1 + 1,x0) —v(x1 + 1, x2 + D]
<F(pi3)[ve+Lxa+ 1) —vx +1,x+2)]
+ F(p13)[v(xi, x2 + 1) —v(xp, x +2)]. (22)

As we know that (p2,1 > p1.3), we also have that I:"(pl,g) = F(pz,l) + &, where
& > 0. Then, inequality (22) becomes:

F(pa,D)[v(x1 +2,x2) —v(x1 + 2,50+ 1]
+ F(pa,)[v(xi +1,x2) —v(x1 4+ Lxa + 1]
<F(p)[vexi+Lxa+ 1) —v@+1,x+2)]
+ F(p2)[v(xr, x2+ 1) —v(x1, x2+2)]

& [+ 1Lxo+1) —v(x +1,x2 +2)]
—[v(x1, x2+ 1) —v(xy, x2 +2)]

@ Springer

Queueing Syst

Here, the first two lines are true by the second condition of subconcavity and the
last line is true by the submodularity of v(x1, x2). Therefore, inequality (22) is true.
When we combine (20), (21) and (22), it is obvious that (19) holds for the first case.

Case 2: (p2,1 < p1,3)
We first rearrange (19) as:

F(pa0)[p21+v(x1 +2,x)] 4+ F(po.)v(xi + 1, x2)
— F(p12)[pr2+ v+ Lxa+ D]+ F(pr2)v(x, xo + 1)
< F(p22)[p22+v(x1+2, x4+ D] = F(pa)vxi + Lxa + 1)
— F(p13)[p13+ v+ Lxa+2)] = F(p13)v(xr, x2 +2).
Then, using the optimality of pj > and after some algebra, we have that:
F(pa,)[P21 +v(x1 +2,x2)] + F(pa,)v(xr + 1, x2)
— F(pi))[pra+ v+ Lx+ D]+ F(provle. xa+ 1)
< F(pa)[v(x1 +2.x2) — vy + Lz + 1]
+ F(p2,)[v(x1 + 1,x2) —v(x1, 52 + D].
Similarly, by using the optimality of p» 2,
F(p22)[p22+ v +2,x0+ D] = F(pao)v(x + 1, x2+ 1)
—F(p13)[p13+ v+ 1,x+2)] = F(p13)v(xy, x2 +2)
> F(p13)[vexr +2,00+ 1) —v(x + L xo +2)]
+ F(pr3)[vexr + Lxa+ 1) —v(xr, x2 +2)].
As in the previous case, we show that the following is true:
F(po,)[v(x +2,x2) —v(x + Lxa + D]
+ F(p2.)[v(x1 + Loxa) —v(xp, x2+ 1]
<F(pi3)[vexr +2,00+ 1) — v + 1,xo +2)]
+ F(pi3)[vxi + Lo+ 1) —vx, x2+2)].

(23)

(24)

(25)

(26)

Since (p2,1 > p1.3), we have that I:"(pz,l) = I:"(pl,3) + &, where & > 0. Then,

inequality (26) becomes:

F(p13)[v(x +2,x2) —v(xr + Lxa + D]
+ F(p1a)[v + 1, x2) — v(xi, x2+ D]

—I—é[[v(xl +2,x) —vix1+ 1, x4+ l)] — [v(x1 +1,x2) —v(xy, x2 + 1)]]

<F(pi3)|ver +2,0+ 1) —v(xi + Lxo +2)]
+ F(pi3)[vxr + L+ 1) —vx, x2+2)].

@ Springer

Queueing Syst

Here, the first two lines hold by the second condition of subconcavity and the
last line is true by the first condition of subconcavity. Therefore, inequality (26) is
true. When we combine (24), (25) and (26), it is seen that (19) holds for the second
case. Therefore, Tprc, preserves the second condition of subconcavity for both of the
cases.

In conclusion, we show that Tprc, v(x1, x2) will preserve both conditions of the
subconcavity if the necessary assumptions are satisfied. The proof for Tprc, is simi-
lar. While considering Tprc,, we need to investigate the first condition in two cases:

(p1,2) = p3,1 and (p12) < p3,1.

Appendix F: Structure of the optimal sequencing policy

In order to establish the structure of the optimal sequencing policy, we need to show
that inequalities (1), (2) and (3) hold for the value function, v(xy, x2). Below, we
provide a sketch of the proof that v(xy, x2) is decreasing in x{. From the optimality
equations, we have the following for the finite horizon value function vy, 41:

uTseQua(x1,x2) + > AjTorc; Vn(x1, X2) — h1x1 — haxa
j=12

> uTspQua(xi + 1,x2) + Y AjTere; va(x1 + 1, x2) — hi(x1 + 1) — hoxa.
j=12

The inequalities in the first two lines can easily be shown to hold and the last line is
trivially true. Therefore, v,4+1(x1, x2) and v(xy, x3) are decreasing in x. The infinite
horizon value function v(xq, x2) can be shown to possess the other monotonicity
properties Dec2 and Dec21 in a similar way. Thus, v(xy, x) satisfies inequalities (1),

2), 3.

Lemma 2 The value functions v(xy, x2) and v'(x1, x2) have the monotonicity prop-
erties Decl, Dec2 and Dec21 as specified in inequalities (1), (2), and (3).

F.1 Proof: order of the optimal prices among classes (Corollary 1)

We prove this result by contradiction. To this end, we suppose pj(xi,x2) <
p5(x1, x2) for some (x1, x2) on the contrary. Let p’; = pj(xl, x7) for notational con-
venience. First, note that the following inequalities hold due to the optimality of p
and p3:
Fi(p)[p} + v + Lx)]+ Fi(p)u(xr, x2)
> Fi(p))[p5 + v+ 1,x0)] + Fi(ph)v(xr, x2),
F(p3)[ps + v, x2+ D]+ Fa(ph)v(xy, x2)
> B(pD[pf + v, 2+ D]+ Fa(pHvxr, x2).

@ Springer

Queueing Syst

Combining these two inequalities, we have that

[F1(p3) — Fi(pD]v(x1 + 1, x2) + [Fa(p}) — Fa(p3) Ju(xi, x2 + 1)
— ([F2(pD) — Fi(pD)] — [F2(p3) — F1(p3)])v(x1, x2)
+ ([F(pD)pi — FL(pD)pi] = [F2(p3) p3 — Fi(p3)p3]) > 0.

Rearranging the above inequality, we have that

[Fi(py) — Fi(pD][vix1 +1,x2) —v(x1, x2 + 1]
+ ([F2(p) = Fi(pD] = [F2(p)) — Fi(pD)])[v(x1, x2 + 1) — v(x1, x2)]
+([R(pDpi — F(pDpi] = [F2(p3)p; — Fi(p3)p3]) > 0. (27)

Since Fi(p;) — F1(p}) > 0 by our assumption on the optimal prices, p} < p3,
and [v(x1 4+ 1,x2) — v(x1,x2 + 1)] <0 by the monotonicity of v(xy, x3), the first
term above is less than zero. The second term is also less than zero because
([F2(p]) — Fi(pD] — [F2(p3) — F1(p3)]) = 0 by our assumptions on the opti-
mal prices (pT < p%‘), and the reservation price distributions (condition (1)), and
[v(x1,x2 + 1) — v(x1, x2)] < 0 by the monotonicity of v(xy, x3). Furthermore, the
last term is less than zero as Fo(p)p — F1(p)p is (weakly) increasing in p (condi-
tion (2)) and pj < p3. Combining these three observations, inequality (27) cannot be
true, which leads to a contradiction. Therefore, our assumption on the optimal prices
cannot be correct. Hence, the optimal prices for class 1, p]“(xl, X3), are greater than
the optimal prices for class 2, p’f(xl , X2), as long as the reservation price distributions
satisfy the condition stated in the corollary.

Appendix G: Proof: monotonicity of the optimal prices

Let p} and p; be the optimal prices for class 1 for the states (xy, x2) and (x1 + 1, x2),
respectively, and assume that pf > p3. Then, we have the following as a result of the
uniqueness and optimality of p} and p3:

Fi(pH[pt + v+ 1Lx2)]+ FL(pPvlxr, x)
> Fi(pH)[p5 + v+ Lxo) |+ Fi(p3)v(xi, x2)
F (py)[p3 + v(x1 +2,x2)] + Fi(py)v(x1 + 1, x2)
> Fi(pH[pT + v +2,x)]+ Fi(pPoxr + 1, x2).
When we combine these inequalities, we obtain:
[Fi(p)) — FL(p)][[v0x1, x2) — v(x1 + 1,)]
— [v(x1 +1,x) —v(x; + Z,xz)]] > 0. (28)
Since Fi(p}) — Fi(p3) > 0 by our assumption on the optimal prices and

[v(x1, x2) —v(x] + 1,x2)] — [v(x1 + 1,x2) — v(x1 + 2, x2)] < 0 by the concavity

@ Springer

Queueing Syst

of v(xy, x2), inequality (28) cannot be true. Therefore, there is a contradiction and
our assumption on the optimal prices is not correct. Hence, the optimal prices for
class 1, pT(xl, X7), are increasing in the number of class-1 customers in the system.
The monotonicity of the optimal prices for class 1 in x, and on the diagonal can be
proven in a similar manner. Finally, the monotonicity of the optimal prices for class 2
can also be proven similarly.

Appendix H: Detailed numerical results

In this section, we present the detailed numerical results pertaining to the examples
of Sect. 4.

We denote by g* the expected optimal profit corresponding to the solution of the
MDP. We also employ two benchmark policies: a static pricing heuristic and a total
queue length heuristic. A static pricing policy charges one unique price to each cus-
tomer class regardless of the queue length. Under any given static pricing policy, the
system becomes a priority queue whose expected queue lengths are easily obtained
(see [9]). We numerically search over the two prices to obtain the corresponding ex-
pected profit gsp.

The implementation of a total queue length based heuristic is more challenging. In
our setting, the workload approximation logic of Maglaras [16] translates into a pric-
ing policy that only depends on the total queue length x; + x5 rather than on individ-
ual queue lengths. Unfortunately, beyond this basic fact, devising and implementing a
well-performing total queue length heuristic is in itself extremely difficult. The imple-
mentation in [16] depends on a free parameter that needs to be optimized numerically.
Since our main objective in this paper is not constructing a new total queue length
based heuristic, we employ the optimal prices that were numerically computed in the
MDP solution to come up with a reasonable total queue length based price. In partic-
ular, for any given total queue length w = x 4 x3, the corresponding price for class j
is obtained by averaging the optimal prices: p]W(w) =(pj O, w)+ p;’f(w, 0))/2. This
is not a useful practical heuristic since the optimal prices come from the numerical
solution of the multi-dimensional MDP. But it yields a simple benchmark approxi-
mation that performs well. For instance, for the set of numerical examples presented
in [16], this implementation yields slightly better results in terms of percentage opti-
mality. We denote by gy the expected optimal profit corresponding to the total queue
length heuristic.

The percentage suboptimality of the static pricing and total queue length bench-
marks are denoted respectively by A se and A,w and are defined as:

& —¢g g —-¢

Agw = ¥'%100 and A= ¥ % 100.
g* *

8

We are also interested in the fluctuations in the optimal price for a given workload
level. As a simple measure we take the relative difference of the highest and the
lowest price for the total queue length as a measure of this fluctuation. To this end,
we denote percentage relative price difference for a total queue length of w for class i

@ Springer

Queueing Syst

Table5 A =iy =X, pu=4,h; =04, h=0.1

rog* o* PT p; Ap (1) Ap B Ap () Ap, (1) Ap,(3) Ap,(S) AgW AgSP

I 043 023 0.68 052 7.02 21.67 29.69 O 0 0 0.03 0.23
2 182 046 1.11 1.04 7.14 12.28 18.64 O 0 1.78 0.03 0.33
3 412 068 1.70 1.62 3.7 7.27 1356 0 0 0 0.06 0.53
4 7.8 0.84 244 234 3.63 6.89 11.67 1.88 0 0 0.11 131
5 1073 092 332 321 1.75 4.92 952 0 0 0 0.16 2.60
6 1451 096 4.27 4.15 1.69 4.69 746 0 0 0 0.17 3.63
7 1839 098 524 512 1.64 2.99 5.71 0 0 0 0.16 4.28
8 2231 098 622 6.10 0 4.35 4.11 1.61 0 1.41 0.16 4.65

Table 6 Ay =)y=A pu=4h =4 hy=1

rogr PPt Py Ap (D) AR B) Ap(5) Ap (D) Ap3) Ap () Agw Agse

0.13 0.09 1 065 0 0 0 0 0 0 0 1.49
0.89 029 1.68 1.24 18.65 1.01 0 0 0 0 0.86 4.61
239 046 240 1.88 16.88 13.63 3.09 1.59 1.35 2.41 0.81 5.36
453 06 320 261 13.51 20.48 9.80 0 1.38 2.5 0.83 6.67

7.16 0.71 4.06 3.42 14.7 21.95 12.36 1.59 1.39 2.53 0.8 7.88
10.17 0.79 496 428 9.59 23.46 13.63 1.56 2.77 2.53 0.79 9.14
13.44 084 590 5.19 8.22 19.51 13.63 1.54 2.74 3.79 0.79 10.15
16.89 0.88 6.86 6.12 6.76 17.07 13.63 0 1.33 3.75 0.72 1091

[IEE N B Y L I

by A, (w). More precisely,

|p; (w,0) — p;(0, w)]

P . x 100,
min{p}(w, 0), p}(0, w)}

Ap (w) =

Finally, we denote by p* the utilization rate under the optimal policy and by p}
and p3 the optimal static prices under the optimal static pricing policy.

Table 5 reports the results that were summarized in Sect. 4.1. It is observed that
the optimal prices do not fluctuate much for the second class. On the other hand, the
price fluctuation is sometimes significant for class 1. Despite this fluctuation, the total
queue length heuristic performs well in all cases including those where the utilization
rate is low.

Table 6 reports the detailed results for the case outlined in Sect. 4.2. The effect
of higher holding costs leads to lower optimal profits and lower utilization rates with
respect to the results in Table 6. The price fluctuations for the first class appear to be
more significant at higher utilization rates. Maybe surprisingly, the total queue length
heuristic still performs at a suboptimality of 1%.

Finally, Table 7 reports the details of the case from Sect. 4.3. The utilization rates
are now uniformly low since the first class is admitted only when there are no waiting
customers from this class. The price fluctuation is again insignificant for class 2 but

@ Springer

Queueing Syst

Table7 Ay =2,y =05, h; =2, hy=0.1

poogt et P P A () ApB) ApG) Ap() ApG) ApG) Aw Agse

I 004 0.18 2 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83
1.1 004 022 197 032 1.01 0.00 0.00 0.00 0.00 0.00 1.99 932
12 0.06 026 194 032 5.26 1.01 0.00 1.43 0.00 0.00 12.57 19.67
1.3 0.08 027 191 031 8.69 4.16 0.00 1.45 2.35 0.00 16.05 25.30
1.4 0.11 029 1.88 031 12.36 7.53 3.09 1.47 2.41 3.09 18.42 29.18
1.5 0.13 029 1.84 031 1494 11.11 6.38 1.49 3.70 3.16 17.12 26.15
1.6 0.16 029 1.81 030 17.65 13.63 9.890 151 3.79 4.35 15.64 27.50
1.7 0.18 029 1.78 0.30 20.48 16.28 1236 1.54 3.89 4.44 13.69 24.44
1.8 020 029 1.76 030 21.95 20.48 13.63 1.56 3.95 5.75 11.86 21.00
19 022 029 1.73 030 25.00 20.48 16.28 1.59 2.67 4.65 10.19 18.63
2 025 028 170 029 26.58 21.95 19.04 322 4.11 4.76 8.54 19.60

is more significant for class 1. The percentage suboptimality of the total queue length
heuristic is now quite high, ranging above 10% for a wide range of service rates and
nearing 20% in certain cases. The price fluctuation does not explain this bad perfor-
mance in itself. It appears that in this case, the optimal policy is extremely sensitive
to when class 1 customers are accepted and the acceptance rule is highly asymmet-
rical with respect to the total queue length. In particular, a class 1 customer may be
admitted with 5 class 2 customers in the system but is rejected with a single class 1
customer (and no class 1 customer) in the system. This is a challenging situation for
the total queue length heuristic.

References

1. Aktaran-Kalayci, T., Ayhan, H.: Sensitivity of optimal prices to system parameters in a steady-state
service facility. Cent. Eur. J. Oper. Res. 193, 120-128 (2009)

2. Baras, J.S., Ma, D.-J., Makowski, A.M.: K competing queues with geometric service requirements
and linear costs: The jic-rule is always optimal. Syst. Control Lett. 6, 173-180 (1985)

3. Buyukkoc, C., Varaiya, P., Walrand, J.: The cu rule revisited. Adv. Appl. Probab. 17, 237-238 (1985)

4. Cil, E.B., Karaesmen, F., Ormeci, E.L.: Sensitivity analysis on a dynamic pricing problem of an m/m/c
queueing system. In: Proceedings of the 12th IFAC Symposium on Information Control Problems in
Manufacturing (2006)

5. Cil, E.B., Ormeci, E.L., Karaesmen, E.: Effects of system parameters on the optimal policy structure
in a class of queueing control problems. Queueing Syst. 61, 273-304 (2009)

6. Chen, H., Frank, M.Z.: State-dependent pricing with a queue. IIE Trans. 33, 847-860 (2001)

7. Gans, N., Savin, S.: Pricing and capacity rationing for rentals with uncertain durations. Manag. Sci.
53, 390-407 (2007)

8. Gayon, J.P,, Degirmenci, I.T., Karaesmen, F., Ormeci, E.L.: Dynamic pricing and replenishment in
a production-inventory system with Markov modulated demand. Probab. Eng. Inf. Sci. 23, 205-230
(2009)

9. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley-Interscience, New York (1998)

10. Hordijk, A., Koole, G.: On the optimality of lept and jc rules for parallel processors and dependent
arrival processes. Adv. Appl. Probab. 25, 979-996 (1993)

11. Koole, G.: Structural results for the control of queueing systems using event-based dynamic program-
ming. Queueing Syst. 30, 323-339 (1998)

@ Springer

Queueing Syst

12.
13.
14.
15.
16.

17.
18.

19.
20.

21.

22.

23.

24.

Koole, G.: Monotonicity in Markov reward and decision chains: Theory and applications. Found.
Trends Stoch. Syst. 1, 1-76 (2006)

Li, L.: A stochastic theory of the firm. Math. Oper. Res. 13(3), 447—466 (1988)

Low, D.W.: Optimal dynamic pricing policies for an m/m/s queue. Oper. Res. 22, 545-561 (1974)
Low, D.W.: Optimal pricing for an unbounded queue. IBM J. Res. Dev. 18, 290-302 (1974)
Maglaras, C.: Revenue management for a multiclass single-server queue via a fluid model analysis.
Oper. Res. 54(5), 914 (2006)

Naor, P.: The regulation of queue size by levying tolls. Econometrica 37, 15-24 (1969)

Paschalidis, 1., Tsitsiklis, J.N.: Congestion-dependent pricing of network services. IEEE/ACM Trans.
Netw. 8, 171-184 (2000)

Puterman, M.L.: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

Son, J.-D.: Optimal admission and pricing control problem with deterministic service times and side-
line profit. Queueing Syst. 60, 71-85 (2008)

Weber, R.R., Stidham, S.: Optimal control of service rates in network queues. Adv. Appl. Probab. 19,
202-218 (1987)

Yoon, S.H., Lewis, M.E.: Optimal pricing and admission control in a queueing system with periodi-
cally varying parameters. Queueing Syst. 47, 177-199 (2004)

Ziya, S., Ayhan, H., Foley, R.D.: Optimal prices for finite capacity queueing systems. Oper. Res. Lett.
34, 214-218 (2006)

Ziya, S., Ayhan, H., Foley, R.D.: A note on optimal pricing for finite capacity queueing systems with
multiple customer classes. Nav. Res. Logist. 55, 412—418 (2008)

@ Springer

	Dynamic pricing and scheduling in a multi-class single-server queueing system
	Abstract
	Introduction
	The model
	Structure of the optimal sequencing and pricing policy
	Structure of the optimal sequencing policy
	Structure of the optimal pricing policy

	Numerical examples
	Example 1: symmetric arrival rates and prices, low holding costs
	Example 2: symmetric arrival rates and prices, high holding costs
	Asymmetrical cases

	Conclusion
	Acknowledgements
	Appendix A: Uniqueness of the optimal prices
	Appendix B: Definitions of properties
	Appendix C: Proof: monotonicity of the operators
	Monotonicity of TSEQ
	Monotonicity in x1
	Monotonicity on the diagonal

	Monotonicity of TPRC1
	Monotonicity in x1
	Monotonicity on the diagonal

	Appendix D: Proof: submodularity of the operators
	Submodularity of TSEQ
	Submodularity of TPRC1

	Appendix E: Proof: subconcavity of the operators
	Subconcavity of TSEQ
	Subconcavity of TPRC1
	1st condition: Delta21v(x1,x2)<=Delta21v(x1+1,x2)
	2nd condition: Delta21v(x1,x2+1)<=Delta21v(x1,x2)

	Appendix F: Structure of the optimal sequencing policy
	Proof: order of the optimal prices among classes (Corollary 1)

	Appendix G: Proof: monotonicity of the optimal prices
	Appendix H: Detailed numerical results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

