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Abstract The purpose of this paper is to investigate the structural properties of the
optimal batch acceptance policy in a Markovian queueing system where different
classes of customers arrive in batches and the buffer capacity is finite. We prove that
the optimal policy can possess certain monotonicity properties under the assump-
tions of a single-server and constant batch sizes. Even though our proof cannot be
extended to cases where either one of the assumptions is relaxed, we numerically
observe that the optimal policy can still possess the same properties when only
the single-server assumption is relaxed. Finally, we present counterexamples that
show the non-monotone structure of the optimal policy when the batch sizes are
not constant.

Keywords Queueing theory · Dynamic programming · Admission policy ·
Batch arrivals

1 Introduction

Buffer capacity control in production and service systems addresses optimal allo-
cation of fixed buffer resources to different demand segments. Since this objective
can be achieved by admission control policies which determine when to accept or
reject different segments, this class of control problems has received a lot of atten-
tion in the queueing literature. An interesting problem within this class is the case
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where the customers arrive in batches. In models with batch arrivals, two types of
control policies can be employed: a partial acceptance policy in which some of the
jobs in a batch can be admitted while the rest are rejected or a batch acceptance
policy where the system can either admit or reject the whole batch. In our study,
we focus on a batch acceptance problem in a system where the buffer capacity
(i.e. the waiting space) is finite and several classes of customers differing in their
rewards arrive in batches. We note that we will refer to queues with finite buffer
capacity as capacitated queues. Moreover, the system incurs a holding cost per
customer per unit time. The objective of the problem is to maximize the expected
total discounted profit over an infinite horizon or the expected long-run average
profit.

Admission control problems of queueing systems have been studied exten-
sively in the literature. For comprehensive reviews on queueing control problems
and their applications on communication networks, we refer to Stidham (2002) and
Altman (2002), respectively. Most of the earlier studies focus on systems where
customers arrive individually. These systems can further be grouped into two, as
systems with no waiting room (which we will refer to as loss systems) and systems
with infinite waiting room (which will be referred to as uncapacitated systems).
Altman et al. (2001), Örmeci et al. (2001), Savin et al. (2005), Gans and Savin
(2004) and Örmeci and van der Wal (2006) fall into the former group, whereas
Stidham (1978), Ghoneim and Stidham (1985), Stidham (1985) and Blanc et al.
(1992) consider systems in the latter group. All these studies investigate mainly
the structure of optimal admission control problems and prove the optimality of
threshold policies.

Admission control problems in queueing systems receiving batch arrivals have
been studied as a natural extension of the single arrivals case. Moreover, consid-
ering batch arrivals allows modeling systems where customers may request more
than one resource at a time. When partial acceptance is employed as the control
policy, the optimality of threshold policies is shown in several studies; see Örmeci
and Burnetas (2004, 2005) for loss systems, see Kulkarni and Tedijanto (1998)
for capacitated systems, and see Stidham (1978), Langen (1982) and Helm and
Waldmann (1984) for uncapacitated systems. On the other hand, the structure of
an optimal batch acceptance problem is analyzed only for an uncapacitated system,
where Artiges (1995) shows the optimality of a threshold policy for a discrete-time
queueing system with constant batch size. In this paper, our aim is to classify the
set of continuous-time Markovian capacitated systems for which this result can be
extended. It is well-known that boundaries have a strong effect on the structure of
optimal policies. In particular, Örmeci and Burnetas (2004) provide an example of
a loss system using a batch acceptance policy, which does not possess any mono-
tonicity property. In a related control problem, Kim and Van Oyen (1998) note that
even though the well-known cµ rule, which is an index type priority rule, is shown
to be optimal for many dynamic scheduling problems of uncapacitated systems, it
may not be optimal for equivalent scheduling problems of capacitated systems.

As a result, we examine the structure of batch acceptance problems in several
capacitated systems. We first investigate the optimal policy in a single-server queue
with identical batch sizes for each class and show the optimality of a threshold pol-
icy. Unfortunately, our proof cannot be extended to other capacitated systems when
any one of the two assumptions, i.e., the single server and the constant batch size,
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is relaxed. However, we observe through many numerical examples that threshold
policies are still optimal for multi-server systems with constant batch sizes. Finally,
we present counterexamples to underline that such monotonicity properties do not
exist whenever the constant batch size assumption is relaxed. This leads to the
conclusion that optimal threshold policies exist for capacitated systems only if the
batch sizes are identical for all customer types.

The rest of the paper is organized as follows: in the next section, we build the
corresponding Markov decision process (MDP) model of the single-server sys-
tem with constant batch size. We present the structural properties of the model
and the optimal actions in the third section. In Sect. 4, we examine the problem
when the single-server assumption is relaxed. Section 5 presents counterexamples
to the monotonicity property of the optimal policy when the constant batch size
assumption is relaxed. Finally, we present some concluding remarks in the last
section.

2 MDP model

In this section, we build a discrete-time MDP for a system employing a batch
acceptance policy. We consider a single server queue with waiting room capacity
(including the server), K , and N classes of customers. Arrivals occur according to
a Poisson process with rate λ. At each arrival epoch, the probability that an arriving
batch consists of class- j customers with j = 1, . . ., N is p j and the batch size, B,
is the same for all classes of customers. Whenever a class- j batch is admitted to the
system, it brings a reward of R j > 0 upon its arrival. Without loss of generality,
we assume that rewards are ordered as R1 ≥ R2 ≥ · · · ≥ RN . The service times of
all admitted customers are exponentially distributed with mean 1/µ, regardless of
the class of the customer. Moreover, the queue owner incurs a holding cost per unit
time as a function of the queue size. We are interested in dynamic admission poli-
cies that maximize the total expected discounted profit with a continuous discount
rate β over an infinite horizon as well as the long-run average profit.

Under any given batch acceptance policy, π , the system evolves as a continuous
time Markov chain with state X (t), where X (t) is the number of customers in the
system at time t . Then, the state space, S, is the set of non-negative integers less
than or equal to K , i.e., S = {x : 0 ≤ x ≤ K }. If we denote the number of class- j
customers admitted to the system under policy π until time t by N j (t), the expected
total discounted profit of the system starting in state x is given as follows:

E
π
x

⎡
⎣

N∑
j=1

∞∫

0

e−βt R j d(N j (t)) −
∞∫

0

e−βt h(X (t))dt

⎤
⎦ , (1)

where h(X (t)) is the holding cost per unit time when there are X (t) customers in
the system.

The objective of the problem is to find an optimal policy π∗ that maximizes
E

π
x [.]. To achieve this aim, we first build the discrete time equivalent of the original

system. Since we can interpret discounting as exponential failures with rate β, the
arrivals occur according to a Poisson process with rate λ, and the mean service
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rate is µ, the maximum rate of transition is λ + µ + β, which is finite. There-
fore, we can use uniformization (Lippman 1975) and normalization to build the
discrete time equivalent of the original system. After uniformization and normaliza-
tion, we assume that the time between two consecutive transitions is exponentially
distributed with rate λ + µ + β, and using the appropriate time scale, assume that
λ + µ + β = 1.

We use the event-based dynamic programming framework introduced by Koole
(1998) to define the value function of the system and show some structural proper-
ties of the value function. This formalism establishes that if certain event operators,
T , satisfy some structural properties under given assumptions, then the value func-
tion of the models which can be constructed by using these operators will also
satisfy the same structural properties under the same assumptions. Therefore, we
build our model as the combination of the operators: departure (TDEP) and batch
arrival (TB_ARR( j)). Since the class of the arriving batch is random at each arrival
epoch we let the batch arrival operator depend on the class of the arriving batch.
In this operator, the states reached as a result of the action taken are the same for
all types but the rewards are different for each type of batches.

As we mentioned before, we will describe the structural properties of a system
which operates over an infinite horizon. For this purpose, we first prove the struc-
tural properties with the objective of maximizing the expected total β-discounted
reward for a finite number of transitions, n. The finite horizon problems allow us to
use induction to prove the structural properties for all finite n. To start the induction
we specify the initial function v0 as v0(x) = 0 for all x . We denote the maximum
expected total β-discounted reward of a system starting in state x when n tran-
sitions remain by vn(x) and present the optimality equation of the finite horizon
problem as,

vn(x) = µTDEPvn−1(x) + λ

N∑
j=1

p j TB_ARR( j)v
n−1(x) − h(x) (2)

where,

TDEPv(x) =
{

v(x − 1) if x > 0
v(x) x = 0,

TB_ARR( j)v(x) =
{

max
{

R j + v(x + B), v(x)
}

if x ≤ K − B
v(x) if x > K − B,

where h(x) is increasing and convex in x .
We first concentrate on maximizing the total expected β-discounted reward

over an infinite horizon. Since both the state and action spaces are finite and the
rewards are bounded, there is always an optimal stationary policy due to The-
orem 6.2.10 of Puterman (1994). Moreover, this policy can be computed by the
value iteration algorithm. Then, all our results for the finite horizon problem can be
extended to infinite horizon problem with discounting. Specifically, v(x) denotes
the value function for the infinite horizon expected discounted reward. Thus for
β >0,
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v(x) = lim
n→∞ vn(x).

Besides the discounted reward criterion, we can also consider the criterion of
maximizing the expected long-run average reward. In this case, we need to define
the relative value function, v′(x), and the optimal expected revenue per unit time,
g∗. Then, the optimality equation for the average reward criterion is,

g∗ + v′(x) = µTDEPv′(x) + λ

N∑
j=1

p j TB_ARR( j)v
′(x) − h(x)

In addition to the finite state and action spaces and bounded rewards, the corre-
sponding model is unichain since the state 0 is reachable under all possible policies
and it is aperiodic due to the fictitious service completions in x = 0. Thus, The-
orem 8.4.5 of Puterman (1994) guarantees the existence of an optimal stationary
policy for the long-run average problem and the validity of the value iteration algo-
rithm to find this policy. Furthermore, Weber and Stidham (1987) establish that
the long-run average problem can be obtained as the limit of the infinite horizon
discounted problem as β → 0 under some specific conditions. The model consid-
ered in this section satisfies all of these conditions, so that all results for the infinite
horizon problem with discounting hold also for the long-run average problem.

3 Single-server case with constant batch size: structure of the optimal policy

The first structural property on which we focus is the monotonicity of the value
function in x for all states x , explicitly v(x) ≥ v(x + 1). We can iterate on this
property to obtain v(x) ≥ v(x + B) which means that admitting an arriving batch
induces a positive burden in the system. This is a natural consequence of collecting
the rewards immediately upon admitting a batch: the customers already in the sys-
tem do not generate any additional reward, instead they prevent the system to accept
new customers who will bring some reward. We refer to this burden,v(x)−v(x+B),
as the opportunity cost of admitting a new batch. In many queuing system prob-
lems, the opportunity cost affects the optimal decisions, while the monotonicity
of the opportunity cost implies optimal threshold policies in the admission control
problems. Therefore, we also explore the monotonicity of the opportunity cost. To
simplify the notation, we define ∆B f (x) as ∆B f (x) = f (x) − f (x + B) for any
function f defined on S. We first prove that the operators preserve the monoto-
nicity properties of both v(x) and ∆Bv(x) in order to prove the properties for the
whole system. The following lemma summarizes our results on the monotonicity
properties preserved by the operators, and its proof is placed in the appendix.

Lemma 1 Assume that v(x) is non-increasing and ∆Bv(x) is non-decreasing in
x. Then, T v(x) is non-increasing in x and ∆B T v(x) is non-decreasing in x for
T =TDEP and T =TB_ARR( j) for all j=1,…,N.

Now, we observe that the same monotonicity properties hold for the value func-
tion: we first prove the properties for vn(x) for all n by induction. As a result of the
specification that v0(x) = 0 for all x , the initial condition of the induction holds for
all x . Then, we assume that vn−1(x) ≥ vn−1(x + 1) and ∆Bvn−1(x) ≤ ∆Bvn−1

(x+1) and prove the same inequalities forvn(x). Since we use event-based dynamic
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programming, these inequalities hold for vn(x) due to Lemma 1 and the monoto-
nicity and concavity of h(x). Hence, we complete the proof of the monotonicity
properties for vn(x) and ∆Bvn(x) for all n. Since v(x) = limn→∞ vn(x), we con-
clude that the value function, v(x), in this model is also non-increasing in x , and
similarly ∆Bv(x) is non-decreasing in x . The same results are also valid for the
average reward criterion.

Finally, we state the effects of the monotonicity of the value functions and the
opportunity costs on the optimal policies: let l∗j =min

{
x : v(x)−v(x + B)≥ R j

}
,

where we set l∗j = K − B + 1 if there is no such x , so that, it is optimal to reject a
class- j batch in state l∗j . Since the opportunity cost of an arriving batch, ∆Bv(x), is
non-decreasing in x , the opportunity cost of admitting a class- j batch will continue
to exceed the reward obtained by admitting this batch in all states x ≥ l∗j and thus,
it is not worth admitting these batches. Therefore, the optimal batch acceptance
policies for any class j are of threshold type. Moreover, if the reward obtained
by admitting a class- j batch is higher than the reward of a class-i batch, then the
optimal threshold of class j will be also higher than that of class i as a result of
the definition of l∗j . The following theorem summarizes our structural results for
the discounted problem, which are also valid for the average reward criterion.

Theorem 1 In the given model, v(x) ≥ v(x + 1) and ∆Bv(x) ≤ ∆Bv(x + 1),
and for every j , there exists a threshold value, 0 ≤ l∗j ≤ K − B + 1, such that an
arriving class-j batch is admitted if and only if x < l∗j . Moreover, l∗j ’s are monotone
in j , i.e., l∗1 ≥ l∗2 ≥ · · · ≥ l∗N .

4 Multi-server case with constant batch size: numerical study

In this section, we investigate the structure of optimal batch acceptance policies
when we relax the single-server assumption. Let c denote the number of identi-
cal parallel servers. In this case, our methodology to prove the monotonicity of
∆B TDEPv(x) requires the concavity of v(x), i.e., v(x) − v(x + 1) ≤ v(x + 1) −
v(x + 2); and unfortunately we have observed many numerical examples in which
v(x) is not concave: consider a system with six identical and parallel servers, two
classes of batches and no holding costs, i.e., h(x) = 0 for all x , where the parame-
ters are set, before normalization, as K = 15, B = 5, R1 = 5, R2 = 10, p1 = 0.75,
p2 = 0.25 and λ = 100, µ = 17 and β = 0. The value function v(x) is not concave
for this system. As a result, our methodology fails to prove the monotonicity of
∆B TDEPv(x). This implies that we cannot prove the monotonicity of the opportu-
nity cost, ∆Bv(x), and so the existence of an optimal threshold policy. On the other
hand, we have not observed any counterexamples to the monotonicity of ∆Bv(x)
in our comprehensive numerical study.

In the numerical study, we consider a multi-server queue with two classes of
customers and no holding costs, where we fix K = 15, λ = 100, B = 5, and
R2 = 10. Then we let µ change in range [1,250], R1 in range [1,50], the number
of servers, c in range [2,6], all with increments of 1, and p1 in a range [0.01, 0.80]
with 0.01 increments. In this way, we generate 5,000,000 different instances, and
observe that in all these instances ∆Bv(x) is non-decreasing in x and the opti-
mal policy is a threshold policy. Our intuition also agrees with these observations:
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whenever the batch sizes are identical, all classes use the available capacity in the
same way, so that the only criterion to compare different classes is their rewards,
which naturally induce the same order in admission control. Based on this intuition
and the numerical evidence, despite the lack of proof, we can state the following
conjecture:

Conjecture 1 In a multi-server queue with constant batch sizes, there exists a
threshold value for every j , 0 ≤ l∗j ≤ K − B + 1, such that an arriving class-
j batch is admitted if and only if x < l∗j . Moreover, l∗j ’s are monotone in j , i.e.,
l∗1 ≥ l∗2 ≥ · · · ≥ l∗N .

5 Random batch size: counterexamples

In this section, we present counterexamples to show that optimal batch accep-
tance policies do not have any structural properties when the constant batch size
assumption is relaxed. Differences in batch sizes bring a new criterion to evaluate
the classes, namely how the classes use the available resources. This criterion is
quite different than the rewards, as the value of classes may change drastically
when most of the resources are being used, i.e., when the system state is close to
the boundary. In all capacitated systems, boundary effects are observed. In sys-
tems with constant batch sizes, these effects are identical for all classes, so that
they affect optimal admission policies only in a monotone way. For systems with
random batch sizes, on the other hand, the boundary effects on different classes
depend on their batch sizes, which, in turn, induce non-monotonicity on optimal
admission policies. The following examples show these non-monotone effects first
in a single-server system, then for a multi-server system.

5.1 Single-server case

In this example, we observe the optimal batch acceptance policy of a single-server
queue with two classes of customers, and no holding costs. Class-1 customers arrive
in 5-unit batches whereas class-2 customers arrive in 1-unit batches. The param-
eters are: K = 8, λ = 10, p1 = 0.7, p2 = 0.3, R1 = 50, R2 = 10, µ = 1/2,
β = 1.

Table 1 The optimal batch acceptance policy for single-server queue and random batches

No. of customers Optimal policy Optimal policy
in the system for class 1 for class 2

0 1 1
1 1 1
2 1 1
3 1 0
4 0 1
5 0 1
6 0 1
7 0 1
8 0 0
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As it can be seen in Table 1, the optimal policy accepts both classes whenever
it can, except for state 3. In this state, the policy rejects the class-2 customers in
order to wait for a 5-batch, which will fully use the resources. If one small job is
accepted in state 3, most of the capacity will stay idle until many class-2 custom-
ers arrive at the system. Therefore, the optimal batch acceptance policy does not
possess any monotonicity property when we consider a single-server queue and
random batches.

5.2 Multi-server case

In this case, we only change the number of servers from 1 to 3 and the waiting
room capacity from 8 to 20 in the previous example and observe that the system
rejects class-2 customers only in state 15. In other words, the optimal policy still
does not possess any monotonicity property. The intuition behind this result is the
same as the previous one.

6 Conclusion

The aim of this study has been to characterize the set of capacitated systems for
which there exist optimal batch admission policies that are of threshold type. We
are able to show the existence of optimal threshold policies for systems with single
servers and constant batch sizes, while we have strong numerical evidence that
this result extends to multi-server systems with constant batch sizes. Finally, when
the batch sizes differ, we know that optimal batch admission policies do not have
any monotone behavior in general as evidenced by the counterexamples. Hence,
we can conclude that the set of capacitated systems with monotone batch admis-
sion policies is restricted to those receiving batches with identical batch sizes. As a
result, this paper presents a complete analysis of capacitated systems which employ
batch admission policies addressing all monotonicity questions regarding optimal
policies.

Appendix

A Proof of Lemma 1

A.1 Monotonicity of TDEPv(x) and ∆B TDEPv(x)

Due to the definition of the departure operator, the operator preserves the structural
properties of v(x) whenever x > 0. Therefore, the proof of Lemma 1 for TDEP is
trivial whenever x > 0. However, we have to show that Eqs. (3) and (4) also hold
for x = 0 in order to complete the proof of the lemma:

TDEPv(0) ≥ TDEPv(1) (3)

TDEPv(0) − TDEPv(B) ≤ TDEPv(1) − TDEPv(B + 1) (4)
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Table 2 Possible optimal actions in states x and x + 1 for the condition x < K − B

Cases ā j = (ax , ax+1) Rewritten form of Eq. (5)

Case I (1,1) R j + v(x + B) ≥ R j + v(x + B + 1)
Case II (1,0) R j + v(x + B) ≥ v(x + 1)
Case III (0,0) v(x) ≥ v(x + 1)

Equation (3) can be rewritten as v(0) ≥ v(0) by using the definition of the oper-
ator, which is obviously true. Similarly, we can write Eq. (4) as v(0)− v(B − 1) ≤
v(0)−v(B) and it holds by the monotonicity of v(x). Therefore, both Eqs. (3) and
(4) hold and the proof of Lemma 1 for the departure operator is completed. ��

A.2 Monotonicity of TB_ARR( j)

In this proof, we show the monotonicity of TB_ARR( j)v(x) when v(x) is
non-increasing in x . In other words, we want to prove the following inequality
for all j = 1, . . . , N .

TB_ARR( j)v(x) ≥ TB_ARR( j)v(x + 1) (5)

We first compare the states x and x + 1, so that we define an optimal action
vector ā j such that ā j = (ax , ax+1) where ax and ax+1 are optimal actions for
a given state x and x + 1 when a class- j batch arrives, respectively. An optimal
action can be either admitting the whole batch, 1, or rejecting the whole batch, 0.
Although there are four permutations of two consecutive optimal actions, due to
the monotonicities of v(x) and ∆Bv(x) the action ā j = (0, 1) cannot be optimal,
so that it is enough to consider the cases (1, 1), (1, 0), and (0, 0). We study these
cases first for the condition x < K − B, then for the condition x = K − B, and
finally for the condition x > K − B in order to examine the boundary effect.

A.2.1 x < K − B

For this condition, we can write Eq. (5) for each case as in Table 2. Cases I and III
hold by the monotonicity of v(x). However, case II holds not only by the monoto-
nicity of v(x) but also due to the optimal action in state x : since the optimal policy
admits an arriving batch in state x , we have that R j +v(x + B) ≥ v(x). Moreover,
v(x) ≥ v(x + 1) by the monotonicity of v(x). By combining these two results,
Eq. (5) holds, i.e., R j + v(x + B) ≥ v(x + 1), when ā j = (1, 0). Therefore, the
batch arrival operator, TB_ARR( j), is non-increasing in x whenever x < K − B −1.

A.2.2 x = K − B

In this condition, we only need to study the cases (1, 0) and (0, 0) because the only
feasible action for x > K − B is rejecting an arriving batch. We can rewrite Eq. (5)
for theses cases as in Table 3. Case II holds by the monotonicity of v(x) and case
I holds by both the monotonicity of v(x) and the optimal action in state x , as in
the case II of the previous condition. Thus, TB_ARR( j) is non-increasing in x for
x = K − B.
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Table 3 Possible optimal actions in states x and x + 1 for the condition x = K − B

Cases ā j = (ax , ax+1) Rewritten form of Eq. (5)

Case I (1,0) R j + v(K ) ≥ v(K − B + 1)
Case II (0,0) v(K − B) ≥ v(K − B + 1)

A.2.3 x > K − B

The condition x > K − B is trivial because the only possible action for states
x > K − B is to reject the arriving batches and monotonicity of the batch arrival
operator follows from the monotonicity of v(x).

Thus, we complete the proof of the monotonicity of the batch arrival operator
for all states x . ��

A.3 Monotonicity of ∆B TB_ARR( j)

In this proof, we show the monotonicity of ∆B TB_ARR( j)v(x) when ∆Bv(x) is
non-decreasing in x . In other words, we want to prove the following inequality for
all j = 1, . . . , N .

∆B TB_ARR( j)v(x) ≤ ∆B TB_ARR( j)v(x + 1) (6)

To show the monotonicity of ∆B TB_ARR( j)v(x), we compare the states x , x +1,
x + B, and x + B + 1. Therefore, the optimal action vector ā j is defined as
ā j = (ax , ax+1, ax+B, ax+B+1) where ax , ax+1, ax+B and ax+B+1 are the opti-
mal actions for states x , x + 1, x + B, and x + B + 1 when a class- j batch arrives,
respectively. Although there are 16 optimal action permutations for these 4 states,
it is enough to consider the cases (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0),
and (0, 0, 0, 0) due to the assumptions on v(x) and ∆Bv(x). As in the monotonic-
ity of the operator, we prove the monotonicity of ∆B TB_ARR( j)v(x) first for the
condition x < K − 2B, then for the condition x = K − 2B and finally for the
condition K − 2B < x ≤ K − B − 1 to observe the boundary effect. Since our
state space is bounded by K , it is not necessary to consider the monotonicity of
∆B TB_ARR( j)v(x) for x ≥ K − B.

A.3.1 x < K − 2B

For this condition, we can rewrite Eq. (6) for each case as in Table 4. Case III
is obvious and cases I and V hold by the monotonicity of ∆Bv(x). In case II,
v(x + B) ≤ R j + v(x + 2B) as a result of the optimal action in state x + B and
thus, case II also holds. Similarly, case IV holds by the optimal action in state x +1
in this case. Therefore, we finish the proof of the monotonicity of ∆B TB_ARR( j)v(x)
for the condition x < K − 2B.

A.3.2 x = K − 2B

For this condition, we do not need to study all of the five cases mentioned for
x < K − 2B. Since the only feasible action in states x ≥ K − B + 1 is 0 (i.e.,
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Table 4 Possible optimal actions in states x , x + 1, x + B and x + B + 1 for the condition
x < K − 2B

Cases ā j = (ax , ax+1, ax+B , ax+B+1) Rewritten form of Eq. (6)

Case I (1,1,1,1) v(x + B) − v(x + 2B)
≤ v(x + B + 1) − v(x + 2B + 1)

Case II (1,1,1,0) v(x + B) − v(x + 2B) ≤ R j
Case III (1,1,0,0) R j ≤ R j
Case IV (1,0,0,0) R j ≤ v(x + 1) − v(x + B + 1)
Case V (0,0,0,0) v(x) − v(x + B) ≤ v(x + 1) − v(x + B + 1)

rejecting an arriving batch) because of the capacity, we only focus on the cases:
(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), and (0, 0, 0, 0). The proofs of these cases are
similar to the cases II, III, IV, and V in Sect. A.3.1.

A.3.3 K − 2B < x ≤ K − B − 1

Similar to the previous condition, we only need to study the cases, (1, 1, 0, 0),
(1, 0, 0, 0), and (0, 0, 0, 0). The proofs of these cases are similar to the cases III,
IV, and V in Sect. A.3.1.

Hence, ∆B TB_ARR( j)v(x) is non-decreasing in x for all states. ��
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