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Abstract This paper studies a class of queueing control problems involving com-
monly used control mechanisms such as admission control and pricing. It is well
established that in a number of these problems, there is an optimal policy that can be
described by a few parameters. From a design point of view, it is useful to understand
how such an optimal policy varies with changes in system parameters. We present
a general framework to investigate the policy implications of the changes in system
parameters by using event-based dynamic programming. In this framework, the con-
trol model is represented by a number of common operators, and the effect of system
parameters on the structured optimal policy is analyzed for each individual operator.
Whenever a queueing control problem can be modeled by these operators, the effects
of system parameters on the optimal policy follow from this analysis.

Keywords Control of queueing systems · Event-based dynamic programming ·
Structured optimal control policies · Effects of system parameters
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1 Introduction

This paper focuses on a class of queueing control problems that frequently arise in
modeling service systems, telecommunications systems, or production and inventory
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systems. The objective in such systems is, in general, managing the queue length
or the inventory level in order to maximize a reward function. This can be achieved
by controlling the arrival rates using admission control or dynamic pricing, or by
controlling the service rate by slowing down or speeding up service. A significant
literature exists on the investigation of such problems. One of the common important
findings is that in a number of situations the optimal control policy has a simple
structure which facilitates simple operational policies. We study how changes in the
system parameters such as arrival rates, service rates, number of servers or the buffer
size influence the optimal policy.

There has been some work on developing general approaches for obtaining results
on the structure of optimal policies. For instance, Veatch and Wein [27] investigate a
class of queueing problems with this perspective. Smith and McCardle [24] present
some results for general Markov Decision Processes (MDPs). In particular, a fruitful
general approach for queueing problems is proposed by Koole [12] which introduces
the so-called event-based dynamic programming framework. Event-based dynamic
programming expresses the value function of a given control problem in terms of the
composition of different operators corresponding to individual events. Establishing
the structure of an optimal policy can then be performed by verifying that the differ-
ent operators constituting the problem satisfy certain properties. This decomposition
of the problem is extremely useful, since the properties of commonly used operators
in queueing control problems can be investigated individually once and collected in
a library as in Koole [12] and [13]. Then, if a queueing control problem is composed
of known operators, establishing the structure of the optimal policy is usually trivial
by checking the operator library. Our approach is similar. We employ the event-based
dynamic programming framework and focus on a number of frequently employed
operators and the effects of problem parameters on these operators. This has two pur-
poses: first it gives a clearer view of how and why the optimal policy is influenced by
system parameters. Second, as in Koole [12], whenever a queueing control problem
can be expressed as a composition of these operators, understanding the effects of a
given system parameter on the optimal policy becomes an easy problem.

We first need to establish certain properties of the value functions with respect to
the system parameters. Koole [13], independently, has considered these properties for
a set of operators which describes arrivals to and departures from a queueing system
as exogenous processes. These results address certain optimal design issues such as
the optimal number of servers, but do not include any conclusions on how optimal
control policies change with system parameters. We, on the other hand, concentrate
on the effects of these properties on optimal control policies. To our knowledge, there
are only a few specific studies which concentrate on this issue. For instance, Ku and
Jordan [14] study an admission control problem in a two-stage multi-server loss sys-
tem. They characterize the structure of the optimal policy, and then establish the
effects of the system parameters on this policy. Gans and Savin [7] consider a joint
admission control and dynamic pricing problem in a multi-server loss system and
analyze the effects of the parameters on the optimal policy. The optimal admission
policy is shown to have a threshold structure, and they prove the monotonicity of the
optimal thresholds and the optimal prices in the system parameters. Aktaran-Kalaycı
and Ayhan [1] and Çil, Karaesmen and Örmeci [4] examine the effects of the parame-
ters on the optimal decisions in a multi-server queueing system with limited capacity.
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They show the monotonicity of the optimal prices as in [7]. Another related stream
is queueing control problems with non-stationary or periodically varying parameters.
Lewis, Ayhan and Foley [16] and Yoon and Lewis [29] establish monotonicity prop-
erties of admission control and pricing problems in time. Most of these papers and
a number of other important models in the literature fit into our framework, and the
influence of the parameters on these models can be determined easily by our results.
In order to demonstrate the application of the general approach, we also investigate
two models in some detail.

Our main contribution is providing a general framework to investigate the effects
of system parameters on the optimal policy in queueing control problems. To our
knowledge, this problem has not been considered in this generality before. Müller
[19] proposes an approach to investigate the effects of transition probabilities on the
value function of a Markov Decision Process in a general setting. However, his fo-
cus is not on policy implications. A fairly rich class of problems, including several
earlier studied ones, fall within the framework developed here. There are, of course,
certain limitations to the generality. First a given problem must be within the scope
of event-based programming and the value iteration principle must hold. Moreover,
for infinite-horizon problems the existence of optimal value functions and optimal
policies should be checked separately. We do not address these issues here (see [12]
and [13] for more on these issues). These issues are sometimes easy to verify and
follow by known general results such as the ones in Puterman [22], but in some cases
an analysis of the individual problem may be necessary. Second, we investigate a
certain number of operators which are frequently used and cover a significant scope,
but other problem-specific operators should be investigated individually. Using the
results on the operators here, we think it should not be difficult to extend the investi-
gation to other operators.

The other contributions of this paper are as follows: we investigate a subset of the
dynamic programming operators from Koole [12] but in certain cases we modify or
generalize these operators. In addition, we also present a number of new operators.
Some of these are relevant for recent applications of interest such as dynamic pricing,
others are introduced since they are used in the control of make-to-stock queues that
model production/inventory systems. We present structural properties for these para-
meters as well as investigating the effects of system parameters. The full strength of
event-based dynamic programming appears when the structure of the optimal policy
and the effects of the parameters have to be determined for a new problem. To this
end, we explore an inventory rationing problem for a make-to-stock queue with mul-
tiple classes of demand arriving in batches. Using the operators and the framework,
we present a characterization of the optimal policy and determine the effects of the
system parameters.

The rest of the paper is organized as follows. We present the framework and the
operators modeling the events in some queueing control problems in Sect. 2. Then, in
Sect. 3, we establish certain properties of the operators to guarantee the existence of
optimal monotone policies and to characterize their behavior with respect to parame-
ter changes. Section 4 presents several models that can be generated by combining
the operators we have defined, in order to illustrate how to apply our results. Finally,
we conclude the study and mention our future research objectives in Sect. 5.
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2 The operators

Event-based dynamic programming [12, 13], proposes to represent the value function
of a stochastic dynamic program as the composition of individual event operators.
These operators can first be analyzed individually and then be combined to investigate
the structure of optimal policies. The approach has been very fruitful in queueing
control problems. Koole [13] presents a complete overview.

In the rest of the paper, x will denote the state of the system (the number of cus-
tomers in the queue or the inventory level of an item). Similarly, we will always
denote the customer or demand arrival rate by λ, the service or production rate by
μ, and the number of parallel servers by m. We consider only the maximization ob-
jective, but all our results are valid for minimization problems when the properties
are re-defined properly. Moreover, we define v(x) as a generic value function which
coincides with the total maximal expected discounted profit of the system over an
infinite horizon, when the initial state of the system is x. Naturally, the existence of
the infinite-horizon value functions should be shown for each different model.

We define the operators mainly for one-dimensional systems. However, the frame-
work can accommodate Markov modulation by defining an operator, TENV(j), to rep-
resent transitions to the exogenous environment j as in [12]. The considered systems
can have finite or infinite buffer capacity. The operators below will mainly be de-
fined for the infinite capacity case. However, the specifics of the finite-buffer case are
addressed explicitly whenever necessary.

In principle, we can classify the operators into two types: the controllable opera-
tors are those which involve a maximization, while the uncontrollable operators are
all the others. We provide the definitions of the operators used in the rest of the paper.

The cost operator represents the system incurring a non-negative holding cost,
h(x), which is a function of the state of the system:

TCOSTv(x) = v(x) − h(x),

where the holding cost function h(x) is increasing and convex in the inventory level x.
Here, we note that the words “increasing” and “decreasing” mean “non-decreasing”
and “non-increasing,” respectively, in the whole paper.

The arrival operator, TARR, represents the arrival process to a queueing system:

TARRv(x) = a(x)v(x + 1) + [
1 − a(x)

]
v(x).

The function a(x) is the probability that an arriving customer joins the system when
there are x customers, which we refer to as the joining probability. We assume that
a(x) is decreasing in x. When a(x) is constant, TARR models a system where cus-
tomers enter the system with a fixed probability, say a, independent of the state. Such
arrivals, which do not depend on the state, are referred to as regular arrivals. More-
over, we can model a finite system with capacity K by setting a(x) = 0 for all x ≥ K .

The effects of parameter changes on the operators can be of two kinds. They either
influence the probability of the corresponding event or modify the definition of the
operator. In particular for TARR, a change in the arrival rate λ will always change the
probability of observing an arrival. On the other hand, the definition of TARR will
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change with a change in a parameter α, only if a(x) depends on α for α ∈ {λ,μ,m}.
Finally, an increase in the system capacity K always changes the definition of this
arrival operator. It should be noted that when a(x) depends on a parameter α with α ∈
{λ,μ,m,K}, most structural results require certain conditions on how the function
a(x) varies with α, an issue that will be addressed later.

The departure operator, TDEP, represents the departure of an existing customer
from the system, where the service rate may depend on the state of the system:

TDEPv(x) = b(x)v
(
(x − 1)+

) + [
1 − b(x)

]
v(x),

where a+ = max{0, a}. The function b(x) corresponds to the probability of a service
completion when the system has x customers. We assume that b(x) is an increasing
function of x. A change in the service rate μ will always change the probability of ob-
serving a departure. Whenever we investigate the effects of the number of servers, m,
we assume that the system has m identical parallel servers. Then, b(x) is specified by:

b(x) = min{x,m}
M

. (1)

Hence, a change in m will always change the definition of TDEP. In general, b(x)

may depend on parameters λ, μ or m, which will alter the definition of TDEP. Then,
as with the function a(x) in TARR, we need to consider how b(x) varies with the
parameter under consideration.

The controlled departure and the controlled production operators, TCD and
TC_PRD, represent the choice of the best service rate in queueing and inventory sys-
tems, respectively. When the system uses π portion of the service rate, a non-negative
cost of cπ is incurred. We assume that c0 = minπ∈[0,1] cπ . Then:

TCDv(x) =
{

maxπ∈[0,1]{−cπ + πv(x − 1) + (1 − π)v(x)} if x > 0,

−c0 + v(x) if x = 0,

TC_PRDv(x) = max
π∈[0,1]

{−cπ + πv(x + 1) + (1 − π)v(x)
}
.

TCD (TC_PRD) is affected by a change in the service rate (production rate) μ, where
μ changes the probability of finishing the service of a customer (of producing an
item). For a capacitated system, an increase in the parameter K will change the de-
finition of TC_PRD. TC_PRD is the main production control operator employed in the
literature on make-to-stock queues [9, 17].

The queue pricing and the inventory pricing operators, TQ_PRC and TI_PRC repre-
sent the optimal price, p, to be charged for the arriving customers in queueing and
inventory systems, respectively. We assume that p ∈ P where P is a compact set
and that the revenue rate λF̄ (p)p is bounded. Let R be the random variable corre-
sponding to the maximum price a customer is willing to pay and let F(.) denote its
cumulative distribution function. The operators can be expressed as:

TQ_PRCv(x) = max
p

{
F̄ (p)

[
v(x + 1) + p

] + F(p)v(x)
}
,
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TI_PRCv(x) =
{

maxp{F̄ (p)[v(x − 1) + p] + F(p)v(x)} if x > 0,

v(x) if x = 0,

where F̄ (p) = 1−F(p). For both of these pricing operators, an increase in the arrival
rate λ increases the probability of observing the event of pricing due to an arrival.
Changes in the capacity of the system K change the definition of the operator TQ_PRC.

The batch admission and the batch rationing operators, TB_ADMi,B
and TB_RTi,B

,
represent the choice of the number of the customers to be admitted from an arriving
batch of class-i customers with batch size B in queueing and inventory systems, re-
spectively. We assume that some of the customers in a batch can be admitted while the
remaining ones are rejected, which is defined as partial acceptance in [20]. κi is the
number of class-i customers admitted from this batch, and Ri is the reward obtained
by admitting one class-i customer. Therefore:

TB_ADMi,B
v(x) = max

κi≤B

{
κiRi + v(x + κi)

}
,

TB_RTi,B
v(x) = max

κi≤min{x,B}
{
κiRi + v(x − κi)

}
.

The batch operators have a similar spirit to pricing operators, with respect to the
effects of parameters. That is, they are both affected by an increase in the arrival
rate λ, which increases the probability of observing the event of batch admission or
rationing, while the operator TB_ADMi,B

is additionally affected by an increase in the
capacity of the system K , which changes the definition of the operator.

The uniformization operator puts all events together with their corresponding
probabilities:

TUNIF
({fi}lj=1; {pi}lj=1

)
(x) =

l∑

j=1

pjfj (x), with
l∑

j=1

pj ≤ 1.

TUNIF is a convex combination of functions fj , and it only reflects the changes in the
parameters so that it is not affected by any parameter directly.

∑l
j=1 pj < 1 models

the discounting criterion, whereas
∑l

j=1 pj = 1 refers to long-run average criterion.
The fictitious operator, TFIC, represents all the fictitious events, which affect nei-

ther the state nor the reward of the system:

TFICv(x) = v(x).

This operator is affected by both λ and μ, since increases in these parameters
increase the probability of an arrival or a departure (or production), which decreases
the probability of a fictitious event.
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3 Properties of the operators

3.1 Structural properties preserved by the operators

We first focus on first-order monotonicity defined as a decreasing value function i.e.
v(x) ≥ v(x + 1), for all x. This property implies a non-negative burden, or oppor-
tunity cost, of an additional customer or an additional unit of inventory, denoted by
�v(x) ≡ v(x) − v(x + 1). For most plausible queueing systems, this burden is non-
negative. But this need not be the case in inventory models.

In many queueing and inventory problems, the opportunity costs, �v(x), affect
optimal decisions, and monotonicity of �v(x) (e.g., concavity of the value function
in a maximization problem), implies the monotonicity of optimal policies. For in-
stance, the optimality of threshold policies in admission control problems is due to
the monotonicity of opportunity costs. Therefore, the monotonicity of �v(x) (con-
cavity/convexity of v(x)) also requires investigation.

We also consider upper and lower bounds on the opportunity costs, �v(x), in
queueing and inventory problems, respectively. The existence of upper bounds in
queueing systems implies that the opportunity cost of a new customer, �v(x), may
be lower than the reward of one or more demand classes for all states x, and thus
these classes are admitted to the system whenever possible. Similarly, the existence
of lower bounds in inventory systems implies that opportunity cost of an additional
inventory, �v(x), may be higher than the reward of one or more demand classes for
all states x, and thus the demands from these classes are satisfied whenever possi-
ble. Such classes are defined to be preferred classes in [21] and [23]. The bounds
imply the existence of preferred class(es). We define new properties Lower-Bounded
Differences (LBD) and Upper-Bounded Differences (UBD) as follows: f is an LBD
function if there exists L ∈ R such that f (x) − f (x + 1) ≥ L for all x, and it is a
UBD function if there exists U ≥ 0 ∈ R, U ∈ R with f (x) − f (x + 1) ≤ U for all x.

The formal definitions of the properties stated above are:

Dec(x) : f (x + 1) ≤ f (x),

Inc(x) : f (x) ≤ f (x + 1),

Conc(x) : �f (x) ≤ �f (x + 1),

Conv(x) : �f (x + 1) ≤ �f (x),

LBD(L) : f (x) − f (x + 1) ≥ L,

UBD(U) : f (x) − f (x + 1) ≤ U.

In the above, while U ≥ 0, we do not impose any restriction on L because in inventory
models the opportunity cost of an additional inventory may be negative.

The results on the properties of the operators are presented in Table 1. The ticks
in Table 1 represent that the corresponding operators preserve the desired properties
(Dec, LBD, UBD or Conc) for the function f . Consider e.g., operator TCD and prop-
erty Dec(x): If a function f is decreasing in x, then TCDf is also decreasing in x.
For the operator TARR, on the other hand, to preserve concavity of a function f , the
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Table 1 Properties preserved by the operators when the function f (x) has the corresponding property

Operator Preserved properties Additional

Dec(x) LBD(L) UBD(U) Conc(x) condition(s)

TUNIF
√ √ √ √

–

TCOST
√ √ √

–

TARR
√∗ √∗ √∗† ∗ a(x): Dec(x)

† a(x): Conv(x)

TDEP
√∗ √∗ √∗† ∗ b(x): Inc(x)

† b(x): Conc(x)

TCD
√ √ √

–

TC_PRD
√ √

–

TQ_PRC
√ √∗ √ ∗ f (x): Conc(x)

TI_PRC
√∗ √ ∗ f (x): Conc(x)

TB_ADMi,B

√ √∗ √ ∗ f (x): Conc(x)

TB_RTi,B

√∗ √ ∗ f (x): Conc(x)

TENV(j)
√ √ √ √

–

TFIC
√ √ √ √

–

function a(x) needs to be both decreasing and concave in x. The proofs of these
properties are given in Appendix A.

We note that whenever a finite system receives regular arrivals (a(x) = a for all
x < K and a(x) = 0 for all x ≥ K), TARR does not preserve concavity since a(x) is
not convex in x. Hence, regular arrivals preserve concavity only in infinite systems.
Finally, TCOST does not preserve the UBD property because the holding cost function
h is increasing in x. Hence, a queueing system incurring a holding cost cannot have
a preferred class.

Whenever a system can be represented by a combination of these operators, we
can use Table 1 to check whether a specific property is satisfied in this system easily:
Setting v0 ≡ 0 satisfies all the properties considered in the table, which starts an
induction for any of these properties. Now assume vn satisfies one of these properties.
If all the operators in the model preserve this specific property, then the induction step
is verified so that vn+1 satisfies this property as well, from which we can conclude
the system has that specific property.

An investigation of Table 1 reveals that all queueing operators preserve monotonic-
ity and concavity (with only mild assumptions on a(x) in operator TARR and b(x)

in operator TDEP), whereas all inventory operators preserve concavity. Therefore, all
control problems that can be represented by a combination of these operators will
have concave value functions, which ensures the existence of a monotone optimal
control policy, usually described by a set of appropriate thresholds. Moreover, all
queueing operators, except for TCOST, preserve the UBD property, whereas all inven-
tory operators preserve the LBD property. Thus, systems represented by a combina-
tion of these operators will have preferred customers, which can also be described
by appropriate thresholds. These observations are important for the effect of parame-
ters on the structure of optimal policies. Sections 3.2 and 3.3 will analyze how the
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value functions and optimal control policies, respectively, vary with changes in the
parameters.

3.2 Effects of parameters on the properties of the value functions

In this section, we assume that optimal control policies are monotone, or equivalently
the functions entering the operators are decreasing and concave in queueing systems
and concave in inventory systems. Since the goal is to compare systems when certain
parameters change, considering two systems with two different parameters will be
considered simultaneously. To make the dependence on the parameter explicit, vα(x)

denotes the value function when the parameter under consideration has the value of α.
To outline the general approach, let us consider a system that can be represented

by two event operators TE1 and TE2 with respective event rate parameters α1 and α2.
The system also incurs a holding cost of h(x). We are interested in the effects of an
increase in α1 by ε > 0. In order to compare the two systems, we need to ensure
that both systems live in the same time scale. For this purpose, we add the fictitious
operator TFIC to the model with an event rate parameter of θ > ε. Then, using the
well-known method of uniformization [18], we express the corresponding optimality
equation for vn+1

α (x) as follows:

vn+1
α1

(x) = TCOST
(
TUNIF

({
TE1v

n
α1

(x)
}
,
{
TE2v

n
α1

(x)
}
,
{
TFICvn

α1
(x)

}; {α1, α2, θ})).
Now, consider the altered system with the rate of E1 as α1 + ε. The rate of

the fictitious event in this system is decreased to θ − ε to ensure that uniformiza-
tion still holds at the same time scale. In addition, let us suppose that we antici-
pate the expected burden of an additional customer would decrease as α1 increases:
�vα1(x) ≥ �vα1+ε(x) for all x. This anticipation can be verified by an induction ar-
gument since vα1(x) can be computed by the value iteration algorithm using vn

α1
(x)

as vα1(x) = limn→∞ vn
α1

(x). Setting v0
α1+ε(x) = v0

α1
(x) ≡ 0 starts the induction, and

it is assumed that �vn
α1

(x) ≥ �vn
α1+ε(x) for all x. Next, it is required to show that

this inequality is preserved for n + 1:

�vn+1
α1

(x) =

⎡

⎢⎢
⎣

−�h(x)

+α1 �TE1v
n
α1

(x)

+α2 �TE2v
n
α1

(x)

+θ �TFICvn
α1

(x)

⎤

⎥⎥
⎦ ≥

⎡

⎢⎢⎢⎢
⎣

−�h(x)

+α1 �TE1v
n
α1+ε(x)

+α2 �TE2v
n
α1+ε(x)

+θ �TFICvn
α1+ε(x)

+ε �[TE1v
n
α1+ε(x) − vn

α1+ε(x)]

⎤

⎥⎥⎥⎥
⎦

= �vn+1
α1+ε(x). (2)

In the first line of (2) the costs cancel each other. The next three lines require op-
erators TE1, TE2 and TFIC to preserve the inequality �vn

α1
(x) ≥ �vn

α1+ε(x), whereas
the last line needs �[TE1v

n
α1+ε(x) − vn

α1+ε(x)] ≤ 0, which can be expanded further
as:

�
[
TE1v

n
α1+ε(x) − vn

α1+ε(x)
] = TE1v

n
α1+ε(x) − vn

α1+ε(x)

− (
TE1v

n
α1+ε(x + 1) − vn

α1+ε(x + 1)
) ≤ 0.
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Notice that this inequality implies that the completion of E1 is more valuable when
the number of customers is higher.

The comparisons in (2) can be grouped into two: one compares two systems with
two different parameters (α1 versus α1 + ε); the other one, on the other hand, is
involved only with the altered system, where the consequences of having the event
E1 instead of having no event in states x and x + 1 are compared. The first kind of
comparison is carried out for all the operators constituting the model, whereas the
second kind applies only to the operator directly affected by the altered parameter.
It is clear that monotonicity of �vα1(x) in α1 requires both types of comparisons to
hold.

The properties which will induce monotonicity on the optimal policy structure
with respect to parameter changes are supermodularity, submodularity, and increasing
and decreasing marginal benefit, i.e.,

SpM(α, x) : �fα(x) ≥ �fα+ε(x),

SbM(α, x) : �fα(x) ≤ �fα+ε(x),

IMB(x) : Tf (x) − f (x) ≤ Tf (x + 1) − f (x + 1),

DMB(x) : Tf (x) − f (x) ≥ Tf (x + 1) − f (x + 1).

Intuitively, the value function, vα(x), is supermodular with respect to α and x if
the opportunity cost, �vα(x), is decreasing in α, and it is submodular if �vα(x)

is increasing in α. The properties IMB(x) and DMB(x) refer to the second type of
comparison above. An increase in parameter α generates an extra term T vα+ε(x) −
vα+ε(x) in the optimality equation, whenever this increase affects the probability of
observing the event represented by T .

We will consider systems with infinite waiting room (storage), in the next subsec-
tion. The finite waiting room case requires additional care, and its analysis is deferred
to Sect. 3.2.2.

3.2.1 Systems with infinite waiting room (storage)

Table 2 summarizes our results, whose proofs are given in Appendix B. The columns
labeled as SpM(α, x) and SbM(α, x) assume that the function f is supermodular
and submodular in α and x, respectively. As can be observed, properties SpM(α, x)

and SbM(α, x) hold for all parameters α ∈ {μ,λ,m}, whereas IMB(x) and DMB(x)

apply only to the parameters indicated in parentheses.
We first analyze the effects of the service (production) rate, μ, and the arrival rate,

λ, (i.e. α ∈ {μ,λ}). The changes in these parameters induce both kinds of compar-
isons, hence we need to consider preservation of super/submodularity, as well as the
monotonicity of marginal benefits.

We start with super/submodularity properties: First, assume that aα(x) in TARR
and bα(x) in TDEP do not change with α. Then, an increase in α does not change
the definitions of the operators. Therefore, Table 2 ensures that all operators preserve
supermodularity and submodularity of a function, f , whenever f is supermodular
and submodular with respect to a certain parameter α and x, where α can be μ or λ.
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Table 2 Properties of the operators in systems with infinite waiting room (storage)

Operator Properties Additional

SpM(α, x) SbM(α, x) IMB(x) DMB(x) condition(s)

TUNIF
√ √

– – –

TCOST
√ √

– – –
∗ aα(x): Dec(α);SbM(α, x)

TARR
√∗ √ † √ § (λ) † aα(x): Inc(α);SpM(α, x)

§ aα(x) = aα for all x ≥ 0
∗ bα(x): Inc(α);SpM(α, x)

TDEP
√∗ √ † √∗ (μ) † bα(x): Dec(α);SbM(α, x)

TCD
√ √ √

(μ) –

TC_PRD
√ √ √

(μ) –

TQ_PRC
√ √ √

(λ) –

TI_PRC
√ √ √

(λ) –

TB_ADMi,B

√ √ √
(λ) –

TB_RTi,B

√ √ √
(λ) –

TENV(j)
√ √

– – –

TFIC
√ √

– – –

If aα(x) and bα(x) vary with α, then we need additional conditions on how α

affects these functions. For example, consider a system where the arrivals and depar-
tures are modeled by operators TARR and TDEP, respectively. Now the service rate μ

is increased by ε so that we expect the opportunity cost of an additional customer
in a system to decrease, or equivalently supermodularity of vμ(x) with respect to μ

and x. Hence, among others, we need to check whether the operator TARR preserves
supermodularity with respect to the service rate μ. If aμ(x), the joining probability,
increases with μ in all states x, then the overall load of the system may increase,
which may, in turn, increase the opportunity costs, contradicting supermodularity.
However, if aμ(x) is decreasing in μ and submodular in μ and x, as indicated in
Table 2, then TARR preserves supermodularity. Table 2 specifies exact conditions on
aα(x) and bα(x) for TARR and TDEP to preserve supermodularity and submodularity.

As a result, all operators preserve both supermodularity and submodularity with
respect to α and x, where α ∈ {μ,λ} (under mild conditions). Hence, it is the
monotonicity of the marginal benefits, which determines whether the value function
vα(x) is super/submodular with respect to α and x. Table 2 shows that all operators
associated with parameters {μ,λ} have either increasing or decreasing marginal ben-
efits, corresponding to supermodularity or submodularity, respectively, of vα(x) with
respect to α and x.

In the context of queueing control, Table 2 states that departure-related operators
have an increasing marginal benefit, i.e., the departure of an existing customer is
more valuable when there is one more customer in the system. This implies the su-
permodularity of the value functions with respect to μ and x. Therefore, an increase
in μ decreases the opportunity costs, as expected. On the other hand, arrival-related
operators have a decreasing marginal benefit, so the value functions are submodular
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with respect to λ and x. It should be noted that, this property is guaranteed for TARR
only when the joining probability, aλ(x), is constant in x. If aλ(x) is strictly decreas-
ing in x, the system faces two opposing effects: On the one hand, as the arrival rate
increases, the load of the system becomes higher so that the arrival of a new customer
has a higher burden on the system. On the other hand, a new customer also relieves
this burden because s/he induces a decrease in the joining probability.

An increase in m changes the definition of operator TDEP (see (1)), but does not
induce a term for marginal benefit. Since bm(x) is increasing in m and supermodular
with respect to m and x, bm(x) satisfies the condition for preserving supermodularity
with respect to m and x, but not submodularity. This is intuitive, since increasing the
number of servers, or service capacity, cannot increase the opportunity costs. Finally,
we note that the joining probability in the TARR, am(x), may also depend on m.
However, only supermodularity with respect to m and x is relevant, and for this it
is sufficient to have am(x) to be decreasing in m and submodular in m and x from
Table 2.

In short, all queueing models that can be represented as a combination of the op-
erators described here satisfy supermodularity with respect to μ and m. Queueing
models satisfying the submodularity property with respect to λ can be built as a com-
bination of all operators, whenever aα(x) of TARR is constant for all x.

A similar investigation of Table 2 for inventory models shows that the value func-
tions satisfy supermodularity with respect to λ and submodularity with respect to μ

for all possible combinations of the operators considered here.

3.2.2 Systems with finite waiting room (storage)

Table 3 summarizes our results whose proofs are given in Appendix B. All assump-
tions and notations we have described for Table 2 are also valid for Table 3.

We first note that operator TARR does not appear in the table, since the behavior of
TARR is rather complicated in systems with finite waiting room. For details, we refer
to Appendix C.

The effects of the service (production) rate, μ, the arrival rate, λ, and the number
of servers m in systems with finite waiting room (storage) are the same with those
in infinite capacity systems, as long as m < K . Hence, we will concentrate on the
effects of K and m when m = K which is the case for the well-known loss system.

The value functions preserve supermodularity and submodularity with respect to
K and x for all operators, except for those directly affected by K . These opera-
tors are the two controllable arrival-related operators in queueing systems, TQ_PRC,
TB_ADMi,B

, and the production operator of inventory systems, TC_PRD. They preserve
only supermodularity of the value functions with respect to K and x since an increase
in K increases the action spaces of these operators. For example, consider TB_ADMi,B

in a queueing system with waiting room capacity K : if it is optimal to reject the ar-
rivals, the optimal policy does not change when the capacity increases, whereas if
the arrivals are rejected due to the limited capacity, a new customer may be accepted
when there are K customers after an increase in the capacity. Then, the opportunity
cost of a new customer can only decrease by an increase in K . A similar argument
can be given for operators TQ_PRC and TC_PRD. Thus, these operators preserve only
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Table 3 Properties of the operators in systems with finite waiting room (storage) of size K

Operator Properties Additional

SpM(α, x) SbM(α, x) IMB(x) DMB(x) condition(s)

TUNIF
√ √

– – –

TCOST
√ √

– – –

TDEP
√∗ √ † √∗ (μ) ∗ bα(x): Inc(α);SpM(α, x)

† bα(x): Dec(α);SbM(α, x)

TCD
√ √ √

(μ) –

TC_PRD
√ √∗ √

(μ) ∗ not valid for α = K

TQ_PRC
√ √∗ √

(λ) ∗ not valid for α = K

TI_PRC
√ √ √

(λ) –

TB_ADMi,B

√ √∗ √
(λ) ∗ not valid for α = K

TB_RTi,B

√ √ √
(λ) –

TENV(j)
√ √

– – –

TFIC
√ √

– – –

supermodularity with respect to K and x. Appendix D presents an example where
submodularity is not preserved with respect to K and x by TB_ADMi,B

. Finally, the
effects of the number of servers, m, when m = K , are similar to those of K .

To summarize, all finite-capacity queueing models that can be represented as a
combination of the operators given in Table 3 satisfy supermodularity with respect
to μ and m, and submodularity with respect to λ (under mild conditions on bα). All
such inventory models satisfy submodularity with respect to μ and supermodularity
with respect to λ. Moreover, all systems represented as a combination of above oper-
ators preserve supermodularity with respect to K . Since all queueing systems require
an arrival process (either one of the two operators TQ_PRC and TB_ADMi,B

) and all in-
ventory systems require a production process (TC_PRD), none of the systems that can
be constructed by a combination of these operators have submodular value functions
with respect to K and x.

3.3 Effects of parameters on structural properties of optimal control policies

Now we summarize our results on queueing systems by the following theorem:

Theorem 1 In a queueing system represented as a combination of operators intro-
duced above, the opportunity cost, �vα(x), is increasing in α when α = λ, and de-
creasing in α when α ∈ {μ,m,K}.

Proof First consider an increase in an arrival rate λ: Sects. 3.2.1 and 3.2.2 show that
�vλ(x) is submodular with respect to λ and x, so that �vλ(x) is increasing in λ.

Now consider an increase in service capacity by letting α be either μ or m. Then,
by Sects. 3.2.1 and 3.2.2, vα(x) is supermodular with respect to α and x, and �vα(x)

is decreasing in α.
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Finally, consider an increase in K . Section 3.2.2 ensures that �vK(x) is super-
modular with respect to K and x, and �vK(x) is decreasing in K . �

A consequence of Theorem 1 is that optimal prices are increasing and optimal
admission thresholds are decreasing in λ, while an increase in μ and K decreases the
prices and increases the optimal thresholds.

Theorem 2 In an inventory system represented as a combination of the operators
introduced above, the opportunity cost, �vα(x), is decreasing in α when α ∈ {λ,K}
and increasing in α when α = μ.

Proof The proof is similar to that of Theorem 1 and follows from the results in
Sects. 3.2.1 and 3.2.2. �

The consequences of Theorem 2 are as follows: an increase in any demand rate
or in storage capacity will increase optimal prices and optimal rationing threshold
levels. An increase in production rate, on the other hand, will have the opposite effects
on each of these controls. In addition, the optimal used portion π of the potential
production rate increases by an increase in the demand rate or storage capacity and
decreases by production rate.

4 Illustration of results and examples

4.1 Illustration of results on admission control problems

We consider an admission control problem in a queueing system with m identical
parallel servers and infinite waiting room. The system receives N different types
of customers, where class-i customers arrive at the system according to a Poisson
process with a rate λi bringing a reward of Ri , and require an exponential service time
with rate μ. Then, the state of the system can be defined as the number of customers
in the system x, where x ∈ Z

+, Z
+ = {0,1, . . . }. A non-negative holding cost of h(x)

is incurred per unit time, where h(x) is a convex and increasing function of x. At each
arrival epoch, the decision maker either accepts the incoming customer or rejects her
in order to maximize the discounted expected profit over an infinite horizon (with
a discount rate of β). We assume that a rejected customer is lost forever. This is
a simplified version of the model in [5], where all batches have unit sizes. Similar
admission control problems for queueing systems have been studied by for instance
Stidham [25] and Blanc et al. [3].

By standard arguments (see [18]), we employ uniformization to form the equiva-
lent discrete-time model. In particular, we assume that

∑N
i=1 λi + Mμ + θ + β = 1

without loss of generality, where M ≥ m + 1 and θ > 0. We note that θ + μ(M − m)

corresponds to the rate of fictitious events, introduced to ensure that the time scale
will not be affected when one of the parameters, μ or λi or m, is varied.

Let us denote by vn(x) the total expected β-discounted profit of such a system
when there are n remaining transitions in the horizon. Using event-based operators,
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we can write:

vn+1(x) = TCOST
(
TUNIF

({
TDEPvn(x),

{
TB_ADMi

vn(x)
}
i
, TFICvn(x)

};
{
Mμ, {λi}i , θ

}))
,

where, in this case, the generic operator TB_ADMi,B
is employed with a fixed batch

size of B = 1.
In this particular model, having β > 0 guarantees the existence of a solution for

a discounted infinite horizon problem and the infinite horizon value function can be
obtained by: v(x) = limn→∞ vn(x). It should be noted that, taking β → 0 in v(x)

converts the problem to maximizing the long-run average profit in the usual way, see
e.g., [22] and the results directly carry over to that case as well. In the rest of this
section, the criterion of discounted infinite horizon profit maximization is used.

From Table 1, it follows that all the operators TUNIF, TB_ADMi
, TDEP, TCOST, TFIC

preserve monotonicity and concavity, which guarantees the existence of an optimal
threshold policy leading to the well-known threshold structure as summarized below:

Proposition 1 There exists an optimal policy of threshold type, i.e., there exist num-
bers l∗i ≥ 0 for i = 1, . . . ,N , such that: If x ≥ l∗i , it is optimal to reject an incoming
class-i customer; otherwise it is optimal to admit her. Moreover, if the rewards are
ordered as R1 ≥ R2 ≥ · · · ≥ RN , then l∗1 ≥ l∗2 ≥ · · · ≥ l∗N .

As for the effects of system parameters, an increase in the service rate μ has a
direct effect on TDEP. By Table 2, TDEP has the increasing marginal benefits property,
and supermodularity propagates for all operators of the model. As for an increase in
the arrival rates λi , it can be seen from Table 2, that TB_ADMi

has the property of
decreasing marginal benefits, and all operators support submodularity in λi and x.
The following theorem summarizes the policy implications of the results:

Theorem 3 In this admission control problem, the optimal thresholds l∗i are increas-
ing in the service rate, μ, and the number of servers, m, and decreasing in the arrival
rates λi .

4.2 Other examples from the literature

Several known models from the literature can easily be analyzed for the effects of
changes in the parameters using the framework provided.

We start with the basic queueing control models introduced in Lippman [18]. The
first model is an admission control problem, which is very similar to the above exam-
ple. This model can be represented as a combination of the batch admission operator,
TB_ADMi,B

(with batch sizes of 1 and modified for the finite buffer size with K = m),
the departure operator TDEP (with b(x) given by (1)), TFIC, and TUNIF. It is shown,
similarly, that optimal thresholds, l∗i , exist. Moreover, since the operator TCOST is
excluded from this model, all operators preserve the UBD property, so that class 1
is always preferred if the rewards are ordered R1 > R2 > · · · > RN . In addition to
these existing results, using the properties given in Table 3, we can conclude that the
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optimal thresholds l∗j are increasing in μ and m, and decreasing in λi for all i, j . We
finally note that these results are also valid for an extension of this model to a loss
system with batch arrivals as considered by Örmeci and Burnetas [20].

The second model of Lippman is an M/M/1 queue with a controllable service rate
consisting of the operators TCD, TARR and TFIC. It is shown that the optimal service
rate is increasing in the queue length. We can complement these results by establish-
ing, for example, that the optimal service rate is increasing in the arrival rate. The
third model of Lippman considers a dynamic pricing problem in an M/M/m queue.
This problem employs the operators TQ_PRC, TDEP and TFIC. The optimal price to be
charged to an arriving customer is shown to be increasing in the queue length. The
effects of parameters on this problem have recently been analyzed independently by
Aktaran-Kalaycı and Ayhan [1] and Çil, Karaesmen and Örmeci [4]. Our framework
also easily yields that the optimal prices are decreasing in the service rate and in the
number of servers, whereas they are increasing in the arrival rate.

Most basic control problems for make-to-stock queues can also be analyzed within
this framework. Consider the standard problem of production control of a single
processor with exponential processing times, Poisson demand arrivals, linear holding
costs and lost sales (see Veatch and Wein [28]). The optimal production policy for
this problem is a threshold policy called a base stock policy: it is optimal to produce
whenever the inventory level is below the base stock level and not to produce oth-
erwise. The optimality equation is composed of the operators TC_PRD, and TDEP, in
addition to TCOST and TFIC. It then follows by Table 2 that the optimal base stock level
is decreasing in μ. Li [17] considers a make-to-stock queue with dynamic pricing of
inventories. In this model, the Poisson demand rate depends on the price chosen. Li
shows that the optimal production policy is of base-stock type, and optimal prices are
decreasing in the inventory level. The optimality equation of this model is composed
of the operators TC_PRD, and TI_PRC, in addition to TCOST and TFIC. Using the lem-
mas, we can establish that the base stock level is decreasing and the optimal prices are
decreasing in the processing rate. Even an extension of Li, when the demand arrivals
occur according to a Markov modulated Poisson process (MMPP), studied by Gayon
et al. [8], falls into our framework by adding the operator TENV(j). For instance, an
increased arrival rate in any one of the environment states leads to higher optimal
prices.

4.3 A stock rationing problem for a make-to-stock queue with batch arrivals

Our final example investigates a stock rationing problem with batch demand arrivals.
To our knowledge, this version of the problem has not been analyzed before and the
framework is employed for both obtaining new structural results and investigating the
effects of parameters.

Different customer classes with difference rewards have to be satisfied from a
common stock. It may be optimal to not fulfill certain demand types in anticipation
of future demand from more valuable classes. The basic stock rationing problem
goes back to Topkis [26] who studies the optimal ordering and rationing policies for
a single-product inventory system with several demand classes under periodic review.
Our focus here is on a recent stream of research that uses the make-to-stock queueing
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framework to model limited production capacity. For instance, Ha [9], [10], and de
Véricourt et al. [6] examine such inventory systems under different assumptions. In
particular, Ha [9] considers the stock rationing problem in a make-to-stock production
system with several demand classes and lost sales and characterizes the structure of
the optimal policy.

Consider an extension of the model introduced by Ha [9]: a make-to-stock produc-
tion system that produces a single product with N demand classes with batch demand
and lost sales. Demand arrivals of class i occur according to a Poisson process with
rate λi , and each class-i customer requests B units of products with probability piB ,
where i = 1, . . . ,N and B = 1,2, . . . . We assume that the demands may be partially
satisfied. Whenever a class-i demand is satisfied, a reward of Ri > 0 per unit is ob-
tained, and without loss of generality we assume that R1 ≥ · · · ≥ RN . The production
time is assumed to be exponentially distributed with mean 1/μ. Moreover, the in-
ventory holding cost per unit time, h(x), is an increasing and convex function of the
on-hand inventory.

At any time, the decision maker has to decide whether to produce or not, and
the number of products to be rationed to class-i customers, κi . We assume that the
variable production cost is c, which is set to 0 in [9]. Then, we represent the arrivals
and rationing by TB_RTi,B

, the production control by TC_PRD, where π ∈ {0,1} and
cπ = πc, and the fictitious events by TFIC.

The objective of the problem is to maximize the expected total β-discounted re-
ward over an infinite horizon. As before, we use uniformization and assume that
assume that μ + ∑N

i=1 λi + θ + β = 1. The value function v(x), which is defined as
the total expected β-discounted profit over an infinite horizon when the system starts
in state x can then be expressed as:

v(x) = TCOST
(
TUNIF

({
TC_PRDv(x),

{
TB_RTi,B

v(x)
}
i,B

, TFICv(x)
};

{
μ, {λipiB}i,B, θ

}))
.

4.3.1 Structure of the optimal policy

In the original model [9], Ha shows that the optimal production control and rationing
policies are of threshold type, and class 1 is preferred, i.e., it is always optimal to sat-
isfy class-1 demands whenever it is possible. We investigate the existence of similar
structures in the extended model which would be implied by concavity and the LBD
property of the v(x).

The concavity of v(x) is directly verified by Table 1. This, in turn, has the follow-
ing implication for the optimal production policy. Let:

S∗ = min
{
x : v(x) − v(x + 1) > −c

}
. (3)

Due to the concavity of v(x), for all states x ≥ S∗, it is not worth producing a new
unit; while for all x < S∗ it is always optimal to produce. S∗ given by (3) is therefore
the optimal production threshold.

Now we consider the effect of concavity on the rationing policy. Let:

l∗i = max
{
x : v(x − 1) − v(x) < −Ri

}
, (4)
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with l∗i = 0 if there is no such x. Therefore, when x = l∗i , it is optimal to reject the
whole class-i batch since v(l∗i − 1)+Ri < v(l∗i ), while for x = l∗i + 1 it is optimal to
satisfy one unit from a class-i batch because v(l∗i )+Ri ≥ v(l∗i + 1), by the definition
of l∗i . Then for all x ≤ l∗i , v(x − 1) + Ri < v(x) due to the concavity of v(x), so that
it will be always optimal to reject the whole batch in all states x ≤ l∗i , i.e., κ∗

i (x) = 0.
Similarly, for all x ≥ l∗i + 1, v(x − 1) + Ri ≥ v(x) by concavity, so that it will be
optimal to satisfy class-i demand until either the inventory level drops down to l∗i
or the whole batch is satisfied. Hence, κ∗

i (x) = min{x − l∗i ,B} for all x ≥ l∗i + 1.
In other words, the optimal rationing policy will reject the whole class-i batch if
x ≤ l∗i , partially satisfy the demand if l∗i < x < l∗i + B , and satisfy the entire batch if
x ≥ l∗i + B . Therefore, a low threshold l∗i leads to a higher fulfillment rate of class-i
demand. In fact, if the reward obtained by admitting a class-i customer is higher than
the reward of a class-j customer, then the optimal threshold of class-i will be lower
than that of class-j as a result of the definition of l∗i , i.e., when Ri ≥ Rj , l∗i ≤ l∗j .
Moreover, it is always optimal to satisfy class-1 customers whenever it is possible,
i.e., class 1 is preferred. This result is easily established by Table 1, since all operators
of the model preserve the LBD(R1) property (see the proof of Table 1 for details).
The following theorem establishes the structure of an optimal policy for this model.

Theorem 4 In this stock rationing model:

• A base-stock policy is an optimal production control policy. S∗ (given by (3)) is the
base-stock level so that it is optimal to produce if and only if x < S∗.

• The optimal rationing policy is a sequential threshold policy for each demand
class, where optimal thresholds are given by (4). Then, the optimal number of class-
i customers to be satisfied from an arriving batch in state x, κ∗

i (x), is given by:

κ∗
i (x) =

{
min{B,x − l∗i } if x > l∗i ,

0 if x ≤ l∗i .

Moreover, l∗i ’s are monotone in i and class 1 is preferred, i.e., lN
∗ ≥ · · · ≥ l1

∗ = 0.

Remark 1 The concavity of TB_RTi
was established by Lautenbacher and Stidham

[15] in a revenue management context. A version of Theorem 4 has independently
been obtained by Huang and Iravani [11]. Our approach not only facilitates the overall
proof but can also be employed to generalize the model using other operators that
preserve concavity.

4.3.2 Effects of the parameters: μ, λi

From Table 2, vμ(x) is submodular with respect to μ and x and vλi
(x) is supermod-

ular with respect to λi and x. Since both properties are shown similarly, we only
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provide an expanded version of the latter one, which requires:

μ�TC_PRDvλi
(x) +

N∑

j=1

λj

∑

B

pjB�TB_RTj,B
vλi

(x) + θ�TFICvλi
(x) − �h(x)

≥ μ�TC_PRDvλi+ε(x) +
N∑

j=1

λj

∑

B

pjB�TB_RTj,B
vλi+ε(x)

+ θ�TFICvλi+ε(x) − �h(x)

+ ε

[∑

B

piB

(
�TB_RTi,B

vλi+ε(x) − �vλi+ε(x)
)]

,

where all four lines satisfy the inequality by Table 2, with first three lines due to
SpM properties of all operators and the last line due to IMB property of operator
TB_RTi,B

. Hence, vλi
(x) is supermodular with respect to λi and x. The overall result

is summarized by the following theorem.

Theorem 5 In this stock rationing model, the optimal base-stock level, S∗, and the
optimal rationing thresholds, l∗i , are decreasing in μ and increasing in λi for all
i = 1, . . . ,N .

5 Conclusion

We presented a general framework for investigating the effects of system parameters
on the optimal policy for a class of queueing and inventory control problems. Our
approach is based on an exploration of the properties of the operators that constitute
the value function of the given control problem. The approach gives a clear guideline
of how system parameters affect the structure of the operators and the consequent
effects on the optimal policy. In addition, for a rich class of problems, the framework
enables a direct assessment of how changes in different system parameters affect the
optimal policy.

There are several interesting research directions. Extending the scope of applica-
tion of the general approach is one potential direction. Discrete-time models with
non-stationary parameters can be handled with some modifications. An example is
provided by Aydin, Akcay and Karaesmen [2]. Additional control operators could
be investigated and possibly a more general class of problems could be addressed.
Exploring multi-dimensional problems is also a major challenge. As always these
problems pose additional difficulties and an immediate general extension seems very
hard but it would be interesting to understand to what extent the results here could be
generalized to multi-dimensional problems.
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Appendix A: Proofs of the statements given in Table 1

In this appendix, we present the proofs of the properties presented earlier. In partic-
ular, we present the complete proofs for the key operators and omit them for other
operators when the approach is similar. In addition, the proofs are presented mainly
for systems with infinite buffer capacity. The differences in the finite capacity case
are shortly discussed at the end of each proof. Finally, in all proofs below and in Ap-
pendix B, we implicitly assume that the optimal action is unique. Non-uniqueness of
the optimal action can be resolved by using additional conditions or defining appro-
priate set-based orders for each operator. For instance, a hazard-rate based condition
ensures the uniqueness of the optimal price for the pricing operator but we do not
elaborate on this issue further.

A.1 Monotonicity

This section focuses on the monotonicity properties of the operators introduced in
Sect. 3. The desired property is:

Tf (x) ≥ Tf (x + 1), (5)

whenever f (x) is a decreasing function of x. Below, we present the proofs for
TB_ADMi

and TQ_PRC. The other proofs are similar and can be obtained from the
authors.

A.1.1 Monotonicity preserved by TQ_PRC

Let px and px+1 be the optimal prices for the states x and x + 1, respectively. Then,
inequality (5) for TQ_PRC is as follows:

F̄ (px)
[
f (x + 1) + px

] + F(px)f (x)

≥ F̄ (px+1)
[
f (x + 2) + px+1

] + F(px+1)f (x + 1). (6)

We have the following inequalities by the definition of the pricing operator and the
monotonicity of f (x):

F̄ (px)
[
f (x + 1) + px

] + F(px)f (x)

≥ F̄ (px+1)
[
f (x + 1) + px+1

] + F(px+1)f (x),

F̄ (px+1)
[
f (x + 1) + px+1

] + F(px+1)f (x)

≥ F̄ (px+1)
[
f (x + 2) + px+1

] + F(px+1)f (x + 1).

Combining these inequalities ensures that inequality (6) holds, and so TQ_PRC is de-
creasing in x. The pricing operator can also be used in the capacitated queues. In this
case, we need to observe the boundary effects in state x = K − 1. However, since we
will use the optimality of pK−1, the foregoing proof is still true. Note that pK can be
taken as a large enough price to set F̄ (pK) = 0.
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A.1.2 Monotonicity preserved by TB_ADMi

Let κ
iBi
x and κ

iBi

x+1 be the optimal numbers of class-i customers to be admitted from
an arriving batch in states x and x + 1. Then, we can write inequality (5) for the
operators as follows:

κiBi
x Ri + f

(
x + κiBi

x

) ≥ κ
iBi

x+1Ri + f
(
x + 1 + κ

iBi

x+1

)
. (7)

Since κ
iBi
x is the optimal action for the state x and f (x) is decreasing in x, we have:

κiBi
x Ri + f

(
x + κiBi

x

) ≥ κ
iBi

x+1Ri + f
(
x + κ

iBi

x+1

)
, and

κ
iBi

x+1Ri + f
(
x + κ

iBi

x+1

) ≥ κ
iBi

x+1Ri + f
(
x + 1 + κ

iBi

x+1

)
.

As in the previous case, combining these inequalities completes the proof. Therefore,
TB_ADMi

f (x) is decreasing in x if f (x) is a decreasing function of x. As in the
pricing operator, the proof for the monotonicity in systems with finite capacity does
not change due to the optimality of κ

iBi
x .

A.2 Upper-bounded difference, UBD

Here we show that our queueing operators preserve the UBD property, i.e.,

Tf (x) − Tf (x + 1) ≤ U, (8)

whenever f (x)−f (x + 1) ≤ U for some U > 0. The operators TARR, TDEP, TCD are
not involved with any rewards so that they preserve UBD property for any U > 0. On
the other hand, the operators TQ_PRC and TB_ADMi

generate revenue directly, so for
these operators we will specify a positive value for U . For this purpose, we will spec-
ify a maximum price for TQ_PRC and a maximum revenue for TB_ADMi

. We present
the proofs for these two operators below, the proofs for the other operators are similar.

A.2.1 UBD property preserved by TQ_PRC

We make the realistic assumption that allowable prices are bounded. Then pmax =
sup{px : x = 0,1,2, . . .} < ∞, where px is an optimal price in state x. We set
U = pmax, so f (x) − f (x + 1) ≤ pmax for all x.

The operator TQ_PRC preserves the UBD property of function f , only if f is
a concave function of x. Hence, we assume that f (x) − f (x + 1) ≤ f (x + 1)

− f (x + 2), which ensures the monotonicity of optimal prices, i.e., px ≤ px+1 for
all x.

Now, we write inequality (8) for TQ_PRC as:

F̄ (px)
[
f (x + 1) + px

] + F(px)f (x) − F̄ (px+1)
[
f (x + 2) + px+1

]

− F(px+1)f (x + 1) ≤ pmax. (9)
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Table 4 Possible optimal
actions in states x, x + 1 with
operator TB_ADMi

Cases (κ
iBi
x , κ

iBi
x+1) Rewritten form of inequality (11)

Case I (a, a) f (x + a) − f (x + a + 1) ≤ R1

Case II (a + 1, a) Ri ≤ R1

Since px ≤ px+1, F̄ (px) ≥ F̄ (px+1). Then, we can manipulate the LHS of the in-
equality to have:

F̄ (px+1)
[
f (x + 1) + px − f (x + 2) − px+1

]

+ [
F̄ (px) − F̄ (px+1)

][
f (x + 1) + px − f (x + 1)

]

+ F(px)
[
f (x) − f (x + 1)

] ≤ pmax, (10)

which is always true since f (x) − f (x + 1) ≤ pmax and px ≤ px+1 ≤ pmax for all
x ≥ 0. Thus TQ_PRCf (x) − TQ_PRCf (x + 1) ≤ pmax.

For systems with finite capacity, we need to consider state x = K − 1 to observe
the boundary effects. For this state, only the first line in the LHS of inequality (10)
changes, and the inequality is still true since px ≤ px+1. In fact, in finite systems, we
can specify pmax as pK−1 due to the monotonicity of optimal prices.

A.2.2 UBD property preserved by TB_ADMi

As for TQ_PRC, we need to specify a value of U for TB_ADMi
. For this purpose, we

assume that there are N classes of customers, where class-i customers bring a reward
of Ri with R1 ≥ R2 ≥ · · · ≥ RN , without loss of generality. Then, the UBD property
is valid for U = R1, the maximal reward that can be obtained from a customer. Hence,
we assume f (x) − f (x + 1) ≤ R1, where R1 is the reward associated with class
1. Moreover, the operator TB_ADMi

preserves the UBD property of function f , only
when f is a concave function of x. Therefore, we also assume that f (x)−f (x +1) ≤
f (x + 1) − f (x + 2).

Let κ
iBi
x be optimal number of customers to be admitted from an arriving batch of

size Bi in state x. Now we need to show for all possible (κ
iBi
x , κ

iBi

x+1) and for all i:

κiBi
x Ri + f

(
x + κiBi

x

) − κ
iBi

x+1Ri − f
(
x + 1 + κ

iBi

x+1

) ≤ R1. (11)

It can easily be shown that concavity of f implies that κ
iBi
x and κ

iBi

x+1, optimal deci-

sions in state x and x +1, respectively, satisfy either κ
iBi
x = κ

iBi

x+1, or κ
iBi
x = κ

iBi

x+1 +1.
Then, it is enough to consider the two cases: (a, a) with 0 ≤ a ≤ Bi and (a, a + 1)

with 0 ≤ a < Bi . We rewrite inequality (11) for each case in Table 4. Case II is true
since R1 is the highest reward offered by the customers, whereas case I is also true
by the assumption f (x) − f (x + 1) ≤ R1. Thus, inequality (11) is true for all cases,
so that TB_ADMi

f (x) − TB_ADMi
f (x + 1) ≤ R1.

In systems with finite capacity, we need to observe the states x ≥ K − Bi in order
to see the boundary effects. However, optimal decisions in these states also will sat-
isfy one of the cases given in Table 4. Hence, TB_ADMi

preserves UBD property in
these systems as well.
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A.3 Lower-bounded difference, LBD

Here, we establish for TC_PRD, TI_PRC and TB_RTi
that if f (x) is an LBD function,

then:

Tf (x) − Tf (x + 1) ≥ L, (12)

where L is generally negative. TC_PRD will preserve the LBD property for any value
of L, whereas for the operators TI_PRC and TB_RTi

we will give specific values for L.
We present the proof of TI_PRC below and the other proofs are similar.

A.3.1 LBD property preserved by TI_PRC

The operator TI_PRC preserves the LBD property of function f , if f is a concave
function of x. Hence, we assume that f (x) − f (x + 1) ≤ f (x + 1) − f (x + 2),
which ensure the monotonicity of optimal prices, so that if px denotes an optimal
price in state x, then px+1 ≤ px . We let L = −p1 = −max{px : x ≥ 1}. Now, we
write inequality (12) for TI_PRC as follows:

F̄ (px)
[
f (x − 1) + px

] + F(px)f (x)

− F̄ (px+1)
[
f (x) + px+1

] − F(px+1)f (x + 1) ≥ −p1. (13)

Since px ≥ px+1, F̄ (px) ≤ F̄ (px+1). Then, we can manipulate the LHS of the in-
equality to have:

F̄ (px)
[
f (x − 1) + px − f (x) − px+1

]

+ [
F̄ (px+1) − F̄ (px)

][
f (x) − px+1 − f (x)

] + F(px+1)
[
f (x + 1) − f (x)

]

≥ −p1,

which is true since f (x) − f (x + 1) ≥ −p1 and px+1 ≤ px ≤ p1 for all x.

A.4 Concavity

We now show that all operators defined in Sect. 3 preserve concavity of function f .
We present the proofs for TCD and TB_ADMi

since the other proofs are similar. How-
ever, we note that TARR preserves concavity only when a(x) is decreasing and convex
in x and that TDEP preserves concavity when b(x) is concave.

A.4.1 Concavity preserved by TCD

Let πx be optimal service rate in state x. Then, the concavity inequality of the opera-
tor is:

− cπx + πxf (x − 1) + (1 − πx)f (x) + cπx+1 − πx+1f (x) − (1 − πx+1)f (x + 1)

≤ −cπx+1 + πx+1f (x) + (1 − πx+1)f (x + 1)

+ cπx+2 − πx+2f (x + 1) − (1 − πx+2)f (x + 2). (14)
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We first consider the LHS of inequality (14). Since πx+1 is the optimal service rate
in state x + 1, we have:

−cπx + πxf (x − 1) + (1 − πx)f (x) + cπx+1 − πx+1f (x) − (1 − πx+1)f (x + 1)

≤ −cπx + πxf (x − 1) + (1 − πx)f (x) + cπx − πxf (x) − (1 − πx)f (x + 1)

≤ f (x) − f (x + 1) + πx

([
f (x − 1) − f (x)

] − [
f (x) − f (x + 1)

])

≤ f (x) − f (x + 1), (15)

where the second inequality is true due to some algebra and the third by the concavity
of f (x).

Similarly, the RHS of inequality (14) can be manipulated to have:

− cπx+1 + πx+1f (x) + (1 − πx+1)f (x + 1)

+ cπx+2 − πx+2f (x + 1) − (1 − πx+2)f (x + 2) ≥ f (x) − f (x + 1). (16)

When inequalities (15) and (16) are combined, it is seen that inequality (14) is
true. Hence, TCD preserves concavity of f (x) in x.

Proofs for TC_PRD, TQ_PRC and TI_PRC are similar. However, while considering
finite capacity queues, we need to use the concavity of TQ_PRC for the state x = K −2.
Since we use the optimal action for the state x + 1, i.e., K − 1, and it is not affected
by the waiting room capacity, the foregoing proof is still valid for systems with finite
capacity.

A.4.2 Concavity preserved by TB_ADMi

Let κ̄ iBi = (κ
iBi
x , κ

iBi

x+1, κ
iBi

x+2) be an optimal action vector and κ
iBi
x be optimal number

of class-i customers admitted from an arriving batch Bi in state x. Then, we prove
that the batch admission operator will be concave in x if f (x) is concave in x. In
other words, we show that the following inequality is true for all possible κ̄ iBi :

κiBi
x Ri + f

(
x + κiBi

x

) − κ
iBi

x+1Ri − f
(
x + 1 + κ

iBi

x+1

)

≤ κ
iBi

x+1Ri + f
(
x + 1 + κ

iBi

x+1

) − κ
iBi

x+2Ri − f
(
x + 2 + κ

iBi

x+2

)
. (17)

It is enough to consider four different cases for κ̄ iBi as shown in Table 5, because,
as mentioned previously, the concavity of f (x) implies that the optimal number of
customers to be admitted in states x and x + 1 can differ at most by 1. We rewrite
inequality (17) for each case in Table 5. Case III is obviously true and case I is true
due to the concavity of f (x). In case II, the optimal action in state x + 1 is admitting
a customers so rejecting (a + 1)st customer of the arriving batch, which implies that
f (x +a +1) ≥ Ri +f (x +a +2). Thus, inequality (17) is true in case II. In a similar
manner, inequality (17) is also true in case IV by the optimal action in the state x + 1,
and the result follows.

For capacitated queues, we need to focus on states x ≥ K − Bi − 1 to investigate
the boundary effect. However, the optimal actions in these states will also fall in
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Table 5 Possible optimal actions in states x, x + 1 and x + 2 with operator TB_ADMi

Cases κ̄ iBi = (κ
iBi
x , κ

iBi
x+1, κ

iBi
x+2) Rewritten form of inequality (17)

Case I (a, a, a) f (x + a) − f (x + a + 1) ≤ f (x + a + 1) − f (x + a + 2)

Case II (a + 1, a, a) Ri ≤ f (x + a + 1) − f (x + a + 2)

Case III (a + 2, a + 1, a) Ri ≤ Ri

Case IV (a + 1, a + 1, a) f (x + a + 1) − f (x + a + 2) ≤ Ri

one of the categories given in Table 5. Therefore, TB_ADMi
f (x) is concave in x for

systems with finite capacity.
The proof of the concavity of TB_RTi

f (x) is similar to this proof (see also Lauten-
bacher and Stidham [15]).

Appendix B: Proof of the statements given in Tables 2 and 3

In this section, we will prove supermodularity properties of the value functions. We
omit the proof of submodularity since the proofs of these two properties are very
similar. Section B.2 proves the monotonicity properties of the marginal benefits.

B.1 Supermodularity properties

As mentioned in the paper, proving supermodularity requires us to consider two sys-
tems, one with parameter α and the other with α + ε. Here, we simplify the notation,
by denoting functions f , a, and b by fε , aε , and bε after the parameter α increases
by ε, respectively. The parameter α will always be clear from the context, so we do
not need to indicate it in the functions. Then the inequality for supermodularity of a
certain operator, T , is as follows:

�Tf (x) ≥ �Tfε(x). (18)

Here, we also need to clarify the definition of the supermodularity of f in α and
x when the state space of x is different for systems with parameter α and α + ε.
When α ∈ {λ,μ,m} with m < K , the two systems have the same state space, whereas
increasing α = K by 1 alters the state space of x. In the latter case, we define the
supermodularity of f in K and x only for x ≤ K .

B.1.1 Supermodularity preserved by TARR

Let α be in {λ,μ,m}, and the system have infinite capacity. We first note that a(x) is
assumed to be convex in x, decreasing in α, and submodular with respect to α and x.

We can write inequality (18) for this operator as follows:

a(x)f (x + 1) + [
1 − a(x)

]
f (x) − a(x + 1)f (x + 2) − [

1 − a(x + 1)
]
f (x + 1)

≥ aε(x)fε(x + 1) + [
1 − aε(x)

]
fε(x)

− aε(x + 1)fε(x + 2) − [
1 − aε(x + 1)

]
fε(x + 1).
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Now we add and subtract the terms, a(x)[fε(x) − fε(x + 1)] and a(x + 1)

[fε(x + 1) − fε(x + 2)], to this inequality, and then rearrange it to obtain:

a(x + 1)
[
f (x + 1) − f (x + 2)

] + [
1 − a(x)

][
f (x) − f (x + 1)

]

+ [
a(x + 1) − aε(x + 1)

][
fε(x + 1) − fε(x + 2)

]

≥ a(x + 1)
[
fε(x + 1) − fε(x + 2)

] + [
1 − a(x)

][
fε(x) − fε(x + 1)

]

+ [
a(x) − aε(x)

][
fε(x) − fε(x + 1)

]
. (19)

The inequality is true for the first two terms on both sides by the supermodularity of
f (x) with respect to α and x. Now we need to show that the third line also satisfies
the inequality. We have the following relations due to the concavity of f and the
submodularity of a:

0 ≤ fε(x) − fε(x + 1) ≤ fε(x + 1) − fε(x + 2),

0 ≤ a(x) − aε(x) ≤ a(x + 1) − aε(x + 1).

When we combine these inequalities, we have:

0 ≤ [
a(x) − aε(x)

][
fε(x) − fε(x + 1)

]

≤ [
a(x + 1) − aε(x + 1)

][
fε(x + 1) − fε(x + 2)

]
.

Thus, the inequality (19) is also true for the third terms. Hence, we complete the proof
of the supermodularity of TARRf (x) with respect to α and x in systems with infinite
capacity.

Now we consider systems with a finite capacity K , and let α ∈ {λ,μ,m} with
m < K . We also assume that a(x) is convex in x, and constant with respect to α. In
order to observe the boundary effects, let x = K − 1. Then the first line in inequality
(19) will be 0, and the second line still satisfies the inequality as before. Finally, the
third line is also 0, since a(x) is constant with respect to α. Therefore, TARR pre-
serves supermodularity with respect to x and α whenever a(x) does not depend on α.
Recall that in finite systems whenever a(x) = a for all x, TARR does not preserve
supermodularity, since it cannot preserve concavity (see Appendix A.4).

Finally, we note that supermodularity of a function f with respect to x and K

cannot be preserved due to the boundary effects, since the function a(x) inevitably
depends on K .

B.1.2 Supermodularity preserved by TDEP

We omit the complete proof which is similar to that of TARR. It should be noted that
the proof for this operator is valid for all α ∈ {λ,μ,m,K} and for both finite and
infinite systems.

B.1.3 Supermodularity preserved by TCD

The proof for this operator is valid for all α ∈ {λ,μ,K} and for both finite and infinite
systems. Let πx and π̃x be the optimal service rates for the state x before and after
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the parameter α increases, respectively. Then, we show that the following supermod-
ularity inequality is true for TCD.

cπx + πxf (x − 1) + (1 − πx)f (x) − cπx+1 − πx+1f (x) − (1 − πx+1)f (x + 1)

≥ cπ̃x
+ π̃xfε(x − 1) + (1 − π̃x)fε(x) − cπ̃x+1

− π̃x+1fε(x) − (1 − π̃x+1)fε(x + 1). (20)

As a result of the optimality of πx for the state x, the LHS of the inequality can be
bounded from below as follows:

cπx + πxf (x − 1) + (1 − πx)f (x) − cπx+1 − πx+1f (x) − (1 − πx+1)f (x + 1)

≥ cπ̃x
+ π̃xf (x − 1) + (1 − π̃x)f (x)

− cπx+1 − πx+1f (x) − (1 − πx+1)f (x + 1)

= cπ̃x
− cπx+1 + π̃x

[
f (x − 1) − f (x)

] + (1 − πx+1)
[
f (x) − f (x + 1)

]
, (21)

where the equality follows by some algebra. Similarly, we can obtain the following
for the RHS of inequality (20) due to the optimality of π̃x+1 and by some algebra:

cπ̃x
+ π̃xfε(x − 1) + (1 − π̃x)fε(x) − cπ̃x+1 − π̃x+1fε(x) − (1 − π̃x+1)fε(x + 1)

≤ cπ̃x
− cπx+1 + π̃x

[
fε(x − 1) − fε(x)

] + (1 − πx+1)
[
fε(x) − fε(x + 1)

]
.

(22)

Inequalities (21) and (22) together with the supermodularity of the function f

imply that inequality (20) is true. Thus, we complete the proof of the supermodularity
of TCDf (x) with respect to α and x.

Proofs of the supermodularity of TC_PRD, TQ_PRC and TI_PRC are similar to this
proof.

B.1.4 Supermodularity preserved by TB_ADMi

We first consider systems with infinite capacity, and let α ∈ {λ,μ,m}. We denote by
κ̄ iBi = (κ

iBi
x , κ

iBi

x+1, κ̃
iBi
x , κ̃

iBi

x+1) the optimal action vector, where κ
iBi
x and κ̃

iBi
x are the

optimal number of customers to be admitted from an arriving batch in state x before
and after the parameter α increases, respectively. Then, we show that the following
supermodularity inequality is true for the batch admission operator:

κiBi
x Ri + f

(
x + κiBi

x

) − κ
iBi

x+1Ri − f
(
x + 1 + κ

iBi

x+1

)

≥ κ̃ iBi
x Ri + fε

(
x + κ̃ iBi

x

) − κ̃
iBi

x+1Ri − fε

(
x + 1 + κ̃

iBi

x+1

)
. (23)

We have to consider all possible optimal action vectors. We know that κ
iBi
x and κ

iBi

x+1
can differ at most by 1 due to concavity of f . Moreover, again by concavity of f , if
κ

iBi
x = κ

iBi

x+1, we either have κ
iBi
x = κ

iBi

x+1 = 0 or κ
iBi
x = κ

iBi

x+1 = Bi . The supermod-

ularity of f with respect to α and x, on the other hand, implies that κx ≤ κ̃
iBi
x for

all x. Hence, it is enough to consider the following cases: (0,0,0,0), (0,0, a + 1, a),
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Table 6 Possible optimal actions in states x and x + 1 in systems with parameters α and α + ε

Cases κ̄ iBi = (κ
iBi
x , κ

iBi
x+1, κ̃

iBi
x , κ̃

iBi
x+1) Rewritten form of inequality (23)

Case I (0,0,0,0) f (x) − f (x + 1) ≥ fε(x) − fε(x + 1)

Case II (0,0, a + 1, a) f (x) − f (x + 1) ≥ Ri

Case III (0,0,Bi ,Bi) f (x) − f (x + 1) ≥ fε(x + Bi) − fε(x + Bi + 1)

Case IV (a + 1, a, d + 1, d) Ri ≥ Ri

Case V (a + 1, a,Bi ,Bi ) Ri ≥ fε(x + Bi) − fε(x + Bi + 1)

Case VI (Bi ,Bi ,Bi ,Bi ) f (x + Bi) − f (x + Bi + 1) ≥ fε(x + Bi) − fε(x + Bi + 1)

(0,0,Bi,Bi), (a + 1, a, d + 1, d), (a + 1, a,Bi,Bi) and (Bi,Bi,Bi,Bi), where
0 ≤ a ≤ Bi − 1 and a ≤ d ≤ Bi − 1. Table 6 presents inequality (23) for all these six
cases. Case IV is obviously true, while cases I and VI are true by the supermodularity
of f (x). In case II, it is optimal to reject the entire batch in state x of the system with
parameter α, so that f (x) − f (x + 1) ≥ Ri , and the inequality holds. Similarly, the
optimal action of case V is to admit the whole batch in state x + 1 for the system with
parameter α+ε, which implies that BiRi +fε(x+Bi +1) ≥ (Bi −1)Ri +fε(x+Bi),
coincides with case V in Table 6. Finally, in case III optimal actions in state x of the
system with parameter α and in x + 1 of the system with parameter α + ε ensure that
inequality (23) holds.

In systems with finite capacity, the decisions in x and x + 1 of systems with
parameter α and α + ε will also satisfy one of the six cases we consider for
α ∈ {λ,μ,m,K}. Hence, TB_ADMi

preserves supermodularity in finite systems as
well.

The proof of TB_RTi
is similar to this proof.

B.2 Monotonicity in marginal benefits

In this subsection, we show that if f (x) is concave, then Tf (x) − f (x) will be ei-
ther increasing (inequality (24)) or decreasing (inequality (25)) in x according to the
characteristics of the operator T :

Tf (x) − f (x) ≤ Tf (x + 1) − f (x + 1), (24)

Tf (x) − f (x) ≥ Tf (x + 1) − f (x + 1). (25)

B.2.1 TARRf (x) − f (x) is decreasing

As we mentioned in the paper, to show inequality (25) for TARR, we must assume
a(x) is constant and the buffer capacity is infinite. Then, inequality (25) for TARR

becomes:

a
[
f (x + 1) − f (x)

] ≥ a
[
f (x + 2) − f (x + 1)

]
,

which is true by the concavity of f (x). The proof for TDEPf (x) − f (x) is similar
and is omitted.
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B.2.2 TCDf (x) − f (x) is increasing

Let πx be the optimal service rate for the state x. Then inequality (24) for TCD be-
comes:

cπx + πxf (x − 1) + (1 − πx)f (x) − f (x)

≤ cπx+1 + πx+1f (x) + (1 − πx+1)f (x + 1) − f (x + 1). (26)

Now we consider the RHS of this inequality:

cπx+1 + πx+1f (x) + (1 − πx+1)f (x + 1) − f (x + 1)

≥ cπx + πxf (x) + (1 − πx)f (x + 1) − f (x + 1)

= cπx + πx

[
f (x) − f (x + 1)

]

≥ cπx + πx

[
f (x − 1) − f (x)

]

= cπx + πxf (x − 1) + (1 − πx)f (x) − f (x),

where the first inequality follows from the optimality of πx+1 and the second is due
to the concavity of f , while the equalities follow by some algebra.

The proof for TC_PRDf (x) − f (x) is similar and is omitted.

B.2.3 TQ_PRCf (x) − f (x) is decreasing

Letting px be the optimal price in state x, inequality (25) becomes:

F̄ (px)
[
f (x + 1) + px

] + F(px)f (x) − f (x)

≥ F̄ (px+1)
[
f (x + 2) + px+1

] + F(px+1)f (x + 1) − f (x + 1). (27)

We consider the LHS of this inequality:

F̄ (px)
[
f (x + 1) + px

] + F(px)f (x) − f (x)

≥ F̄ (px+1)
[
f (x + 1) + px+1

] + F(px+1)f (x) − f (x)

= F̄ (px+1)px+1 + F̄ (px+1)
[
f (x + 1) − f (x)

]

≥ F̄ (px+1)px+1 + F̄ (px+1)
[
f (x + 2) − f (x + 1)

]

= F̄ (px+1)
[
f (x + 2) + px+1

] + F(px+1)f (x + 1) − f (x + 1),

where the first inequality follows by the optimality of px and the second by the con-
cavity of f , while the equalities are due to some algebra. Hence, inequality (27) is
true.

In the capacitated case, we need to consider inequality (27) for state x = K − 1.
Then the RHS of (27) becomes 0, so that it is enough to show that the LHS of (27)
is non-negative. By simple algebra, the LHS becomes F̄ (pK−1)[f (K) + pK−1 −
f (K − 1)], which is clearly non-negative due to the optimality of pK−1. Hence,
inequality (27) is also true for the capacitated queues.

The proof for TI_PRCf (x) − f (x) is similar and is omitted.



302 Queueing Syst (2009) 61: 273–304

Table 7 Possible optimal actions in states x and x + 1

Cases κ̄ iBi = (κ
iBi
x , κ

iBi
x+1) Rewritten form of inequality (28)

Case I (0,0) 0 ≥ 0

Case II (a + 1, a) Ri ≥ f (x) − f (x + 1)

Case III (Bi ,Bi) f (x + Bi) − f (x) ≥ f (x + Bi + 1) − f (x + 1)

B.2.4 TB_ADMi
f (x) − f (x) is decreasing

Let κ
iBi
x be the optimal number of customers admitted from an arriving batch in state

x. Then, inequality (25) becomes:

κiBi
x Ri + f

(
x + κiBi

x

) − f (x) ≥ κ
iBi

x+1Ri + f
(
x + 1 + κ

iBi

x+1

) − f (x + 1). (28)

Due to the concavity of f (x) it is enough to consider three cases for optimal actions
(κ

iBi
x , κ

iBi

x+1): (0,0), (a + 1, a) and (Bi,Bi). We rewrite inequality (28) for each case
in Table 7. Case I is obviously true, and case III is true due to the concavity of f (x).
In case II, it is optimal to admit a + 1 customers from an arriving batch in state x,
which implies that Ri ≥ f (x + a) − f (x + a + 1). Moreover, by the concavity of
f (x), we have that f (x) − f (x + 1) ≤ f (x + a) − f (x + a + 1) for all a > 0. When
we combine these two inequalities, we obtain that Ri ≥ f (x) − f (x + 1) and thus,
inequality (28) is true in case II.

For capacitated queues, we need to focus on the states x ≥ K − Bi in order to
investigate the boundary effect. For these states, case III is not possible because ad-
mitting Bi customers in state x + 1 is not feasible, which leaves only cases I and II,
whose proofs are the same as above.

The proof for TB_RTi
is similar to this proof and is omitted.

Appendix C: Properties of TARR in systems with finite waiting room

Section 3.2.1 of the paper shows that operator TARR preserves the DMB property
in systems with infinite waiting room capacity only when a(x) is constant in x, an
assumption we would have still needed in finite systems. However, from Sect. 3.1, we
know that operator TARR does not preserve concavity in finite systems when a(x) is
constant in x. Unfortunately, the concavity assumption would also be needed. Due to
these conflicting requirements, TARR neither has a monotonicity of marginal benefits
(i.e., DMB property) nor preserves supermodularity in systems with a finite capacity.
Below, we present an example in which TARR does not preserve supermodularity with
respect to K and x. TARR preserves submodularity with respect to α and x, as stated
in the following lemma.

Lemma 1 Assume that a(x) is decreasing and convex in x, increasing in α, and
supermodular with respect to α and x. Then, whenever f is decreasing and concave
in x and submodular in α and x, TARR is submodular with respect to α and x, for all
α ∈ {μ,λ,m,K}.
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Now we present a counterexample to the supermodularity with respect to K and
x: Let a(x) = 1 whenever the finite room has at least one empty space, and we set:

fK(x) = fK+1(x) = K + 1 − x ∀x.

Therefore, fK(x) is both decreasing and concave in x, and supermodular in K and
x. Applying the operator TARR gives:

TARRfK(x) = K − x ∀x = 0, . . . ,K − 1, and TARRfK(K) = 1,

TARRfK+1(x) = K − x ∀x = 0, . . . ,K, and TARRfK+1(K + 1) = 0.

Now we can check the inequality for TARR to preserve the supermodularity for state
x = K − 1:

TARRfK(K − 1) − TARRfK(K) = 0 ≥? TARRfK+1(K − 1) − TARRfK+1(K) = 1,

which does not hold, so that the supermodularity is not preserved.

Appendix D: Counterexamples for submodularity

In the paper, we commented on how an increase in K affects the controllable op-
erators, i.e., TQ_PRC, TB_ADMi

and TC_PRD, where we conclude that the controllable
operators cannot preserve submodularity. Here, we present a simple counterexam-
ple for the operators TB_ADMi

. Similar examples can be produced for all the above
operators.

We first consider TB_ADMi
with Bi = 1, so each batch consists of only one cus-

tomer. We set:

fK(x) = fK+1(x) = 0 ∀x.

Therefore, fK(x) is both decreasing and concave in x, and submodular in K and x.
Applying the operator TB_ADMi

gives:

TB_ADMi
fK(x) = Ri ∀x = 0, . . . ,K − 1, and TB_ADMi

fK(K) = 0,

TB_ADMi
fK+1(x) = Ri ∀x = 0, . . . ,K, and TB_ADMi

fK+1(K + 1) = 0.

Now we can check the inequality for TB_ADMi
to preserve the submodularity for state

x = K − 1:

TB_ADMi
fK(K − 1) − TB_ADMi

fK(K)

= Ri ≤? TB_ADMi
fK+1(K − 1) − TB_ADMi

fK+1(K) = 0,

which does not hold, so submodularity is not preserved in this case.
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