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Touristic attractions, such as observatory decks, boat tours, museums, have recently started to manage

their operations via hiding or obstructing some parts of their waiting lines, which we will refer to as queue

disguising behavior. If customers are not aware of these disguised parts of the queues, the firm can easily

boost its revenues by engaging in queue disguising behavior. However, it is not obvious that the firm benefits

from disguised queues when customers are strategic, i.e., when they anticipate that the firm hides some parts

of the waiting lines. Our goal in this paper is to investigate the impacts of strategic customer behavior on the

firm’s queue disguising decisions and profits. To this end, we consider a firm that can hide the initial parts

of the waiting lines that form in front of its service center, and thus customers have to make their service

requests based on the observable portion of the queue. We also suppose that some of the customers, which

will be referred to as strategic customers, penalize the firm by not revisiting the firm in the future if they are

fooled to request service because of the disguised queues. In the absence of strategic customers, we find that

the firm’s optimal queue disguising strategy yields only negligible profit improvements, relative to letting

customers observe the entire waiting line. As a matter of fact, these minimal profit improvements vanish, and

the queue disguising becomes harmful as the cost of holding customers in the queue increases. One, then,

may expect that the queue disguising should not be a profitable strategy in a system with strategic customers

because the firm has to account for the negative implications of disguised queues on customers’ behavior.

We establish that this intuition is only true when the firm optimally hides some of its waiting spots while

facing non-strategic customer. If the queue disguising is already harmful under non-strategic customers, we

surprisingly find that the firm starts to obtain sizable benefits from queue disguising as the customers become

more strategic. More interestingly, the firm’s profit gains from disguised queues increase as the holding cost

increases in contrast to the case without strategic customers. This result brings to light a crucial insight

for the service environments we consider in this paper as these systems bear non-negligible costs to keep

the waiting customers happy: The firms can significantly benefit from disguised queues if customers act

strategically whereas any attempts to obstruct the waiting lines hurt a firm facing non-strategic customers.

Key words : Strategic customers; queue management; finite queues; asymptotic analysis.

1. Introduction

Waiting lines, or queues as the British would say, are often inevitable in service environments.

Ranging from emergency rooms to ball park entrances, patrons frequently end up waiting for some
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time before getting the attention of a service provider. Waiting is not only a concern for people

visiting the service facilities. As waiting can be associated with numerous behavioral, psychological,

and micro-economical interpretations, service providers also struggle with the unwelcome conse-

quences of queues. A “one-fit-all” solution never exists to handle the customers’ waiting experience

in service systems. Depending on the type of the service encounter, customer expectations, and

physical conditions of the service facility, the “right” solution to mitigate the undesirable implica-

tions of customer waiting vary significantly. Banks, government offices (e.g., DMV), and pharmacies

let customers enter an “invisible” queue, so that customers do not need to physically stand in the

queue. In services where physical presence in queue is required, such as toll booths, security check

points, and venue entrances, service providers try to make the waiting more tolerable by allowing

customers to choose the queue they want to join. As mentioned in Fitzsimmons et al. (2014), other

efforts to ease the discomfort of staying in the queue include setting up a more pleasant waiting

area, communicating the anticipated waiting times with customers, and providing “service-related

diversions” such as handing out dinner menus. Service firms can also manage their waiting lines

by following a priority rule. Some services prioritize customers according to their observable char-

acteristic while in some others, customers can purchase the service priority. All of these different

practices affect the dynamics and the perception of waiting and may help the firm better serve its

customers if used in the right context.

As another tactic to manage its waiting lines, a service firm may intentionally obstruct how

customers observe the waiting area. Specifically, firms can hide the initial parts of the waiting lines,

so that customers see a shorter version of the queue. We will refer to such a practice as queue

disguising strategy. The queue disguising strategy has, recently, become a widespread exercise

in touristic attractions, such as theme parks, observatory decks, museums, boat tours, etc. For

instance, one has to go through several unexpected hidden waiting rooms before taking the last

elevator to the Observation Deck at the Empire State Building. Patrons of theme parks also

experience that the “real” queue usually turns out to be longer than the queue they initially see.

The queue disguising strategy, most probably, has become popular because it can help a service
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firm to manipulate the customer demand and thus may improve the firm’s profits, especially if the

customers are not aware of the disguised queues. However, it is not obvious that firms can benefit

from obstructing its waiting lines when customers are strategic, i.e., when customers react and

change their behavior once they realize the existence of the disguised queues. Hence, in this paper,

we aim at investigating the impacts of strategic customer behavior on the efficiency of the queue

disguising strategy as a demand management tool. To this end, we consider a firm that can hide the

initial parts of the waiting line that forms in front of its service center, and thus customers have to

make their service requests based on the observable portion of the queue. In particular, customers

request service and join the queue if the number of customers in the observable part of the waiting

line is below a threshold which depends on the speed of the service and their tolerance/patience

for waiting.

When the firm hides a portion of its waiting line, some of the customers join the queue despite

that fact that doing so is sub-optimal had they known the existence of the hidden portion of the

queue. If these customers realize that the firm fooled them to join the queue, then they may feel

a dissatisfaction. It is also natural to expect that some of these customers will penalize the firm if

the levels of their dissatisfaction are so high. Specifically, we suppose that some of the customers,

which will be referred to as strategic customers, react to the existence of disguised queues by not

revisiting the firm in the future if they fallaciously make a service request. We capture the strategic

customers’ future punishment by studying the firm’s queue disguising problem as a two-period

model. Our two-period model is aligned with how most of the service environments we focus on

this paper function because customers revisit these services multiple times, at least at a seasonal

level. In fact, in theme parks, customers typically take the same ride several times on the same day.

It is worth noting that our model can also apply to the service settings without customer revisits

as long as the future customers have access to (mostly digital) platforms where the past customers

can share their experience, such as online travel forums and blogs.

According to the 2015 report from Themed Entertainment Association (See Rubin (2016)), the

top 25 amusement/theme parks attracted 235 million visits worldwide, which was a 5.4% increase
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from 2014. Each of the top three parks from this list had more than 15 million visitors. The same

report also states that the attendance for the top five museums and water parks were 36 and 10

million in 2015. All of these astonishing numbers clearly suggest that the service systems that this

paper review serve large amount of people in a short time. To capture this feature, we consider the

firm’s service center as a large-scale service system, where the service and arrival rates are high, in

this paper.

As the main objective of this paper is to analyze how strategic customer behavior affects the

firm’s queue disguising decisions, we first focus on the case where customers are not strategic. When

the firm faces non-strategic customers, we show that the firm finds queue disguising optimal only

when the customers are very impatient and the cost of keeping the customers in the queue, which

will be referred to as holding cost, is very small. As the customers become more tolerant for waiting

or the holding cost increases, we show that the firm hides a smaller portion of its waiting lines. In

fact, once the customer patience or the holding cost exceeds a critical level, the firm completely

abandons queue disguising. We also examine the extent to which disguised queues increase profit,

relative to letting customers observe the entire waiting line. We find that the firm’s profit gains

from the disguised queues are capped by a threshold which points to negligible profit improvements

in large-scale systems.

We next study the case where customers are strategic. When customers are strategic, the firm

has to account for the negative implications of disguised queues on customers’ behavior. One, then,

may expect that the queue disguising should not be a profitable strategy in a system with strategic

customers because the firm’s benefits from queue disguising is already insignificant in the absence

of strategic customers. We establish that this intuition is only partially true. In the case where

the firm optimally hides some of its waiting spots while facing non-strategic customer, we find

that the strategic customer behavior dampens the profit gains queue disguising strategy yields for

the firm. However, if the queue disguising is already harmful under non-strategic customers, we

surprisingly find that the firm starts to obtain sizable benefits from employing disguised queues

as the customers become more strategic. Along the same lines with these findings, the structural
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properties of the firm’s optimal queue disguising strategy also take a U-turn as a response to

the presence of strategic customers. In particular, the firm hides more spots in its waiting line as

the customers’ patience or the holding cost increases, which completely contrasts with the firm’s

optimal decisions when facing non-strategic customers. Our analysis underscores the importance

of taking customer behavior into account in managing service systems.

On the theoretical front, we derive approximations for the key performance metrics of the firm’s

service center by studying the asymptotic behavior of the original system. Specifically, we consider

a sequence of systems that are the replicas of the firm’s service center in a parametric regime where

the demand and the arrival rates grow unboundedly. As the service facilities we consider in this

paper tend to process customers at a fast pace and attract high volumes of customer demand, our

asymptotic analysis lead to efficient and accurate approximations for many crucial system metrics

such as server utilization and average queue length.

The rest of the paper is organized as follows. We survey the related literature in Section 2. Then,

in Section 3, we describe the basics of our model. Section 4 builds an approximation for the firm’s

profit functions based on the limiting behavior of the original system in a parametric regime where

the demand and the arrival rates are high. We analyze the firm’s queue disguising problem both

in the absence and the presence of the strategic customers in Section 5. Section 6 concludes the

paper.

2. Literature Review

The previous work related with our paper can be divided into two categories. The first category

consists of research that studies the applications of strategic customers in service systems. The

second line of research focuses on sharing system information, such as waiting times and queue

lengths, with customers in service business.

The decision making process of price and time sensitive customers in service systems have

attracted the attention of researchers for many years. The literature on this research stream dates

back to Naor’s seminal work (See Naor (1969)), which analyze customer behavior in a single-server

queueing system. In this paper, we build our model based on the Naor’s model, where customers
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can see the entire waiting line upon their arrival and request service based on the queue length

they observe. Our major deviation from Naor (1969) is that we allow the firm to partially and

intentionally hide the waiting line that forms in front of its service center. Furthermore, we consider

a two-period model where some of the customers may react to the firm’s queue disguising strategy

in the second period. Motivated by Naor (1969), many researchers study the pricing problem of

a monopoly facing price- and delay-sensitive customers in various settings (See De Vany (1976),

Mendelson and Whang (1990), Afeche and Mendelson (2004), Boudali and Economou (2012)).

Another body of research that is motivated by Naor (1969) considers the competition among ser-

vice providers who make pricing and/or service capacity decisions. We refer the reader to Hassin

and Haviv (2003) for an extensive summary of the early attempts to model price and service com-

petition. More recent examples service competition models with a focus on customers’ demand

decisions are Cachon and Zhang (2007), Allon and Federgruen (2008), Li et al. (2012), and Chiu

et al. (2014).

The other growing body of literature that is related to our paper studies service systems where

firms disclose information about their waiting lines and/or inventories. In one of the earliest attempt

to explore the role of information sharing in service environments, Hassin (1986) shows that a firm

may find it optimal not to reveal the queue length despite sharing more information being socially

optimal. Another earlier paper in this line of research is Whitt (1999). Whitt (1999) compares two

models of multi-server queues with limited buffer capacity where one model provides no information

while the other one is sharing the queue length information. The paper shows that information

sharing improves the throughput of the system but deteriorates the likelihood of serving customers

without letting them wait. Guo and Zipkin (2007) also compares service systems varying in terms

of the level of information provided. The paper considers three different information structures:

(i) no information, (ii) queue- length information, and (iii) exact waiting-time information. Guo

and Zipkin (2007) establishes that the information sharing may have a non-monotone impact

on the system performance. The paper’s findings do not completely echo Whitt (1999) because

two papers employ different customer-choice mechanisms. Ziani et al. (2015) performs a similar
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comparison when service requests arrive in batches. More recently, Simhon et al. (2016) and Kim

and Kim (2017) study the information disclosure decisions of a firm operating a single-server

system. Interestingly, they show that revealing the queue length is not optimal when the queue

is short. In addition to these papers that explores the queue length information sharing, Armony

and Maglaras (2004) studies a call center model where the firm shares its system information

via committing to a guaranteed time for the service start. Jouini et al. (2011) is another paper

where the firm chooses to share information without revealing queue length. It considers delay

announcement as the medium of information sharing. All of the above mentioned papers assumes

that the firm accurately shares the queue or delay information once it decides to do so. In our

paper, we model a service system where the firm deliberately provide an imprecise information to

influence customers’ decisions.

In the information sharing literature, our paper is closer to the papers that study service envi-

ronments where partial and/or uninformative information is shared. Examples of these papers are

Dobson and Pinker (2006), Economou and Kanta (2008), and Allon et al. (2011). The imprecise

information sharing is a feasible option in the models reviewed in these papers because customers

cannot fully observe the queues or the inventories. In our paper, customers can observe the entire

waiting lines, except for the disguised portion. More importantly, the main focus of our paper is

to study the implications of strategic customer behavior, which is not considered in any of these

papers.

3. The Model

We study a two-period model in which a profit maximizing service firm caters to time sensitive

customers. The firm owns a single service facility, and the service times are independent and

exponentially distributed with mean 1/µo. In both periods, customer demand for the service is

generated according to a Poisson process with rate λo. This forms the “potential demand” for the

firm. Following the conventional terminology from the literature, we refer to the ratio λo/µo as the

system load and denote it by ρo.

On the demand side, each customer incurs a waiting cost of c per unit time spent in the system
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and obtains a value of R after a successful completion of service. The firm earns a value of V when

a customer is served and incurs a holding cost of h per customer per unit time until her service

starts. The driver of the holding cost can be loss of goodwill, the opportunity cost associated with

the customer not being able to generate revenues, and in some settings the actual cost of holding

the customer. For instance, theme parks hire entertainment crews in order to alleviate the pain of

standing in line for customers.

When customers arrive to the system, they decide whether to request service or not. Customers

deciding not to request service obtain a utility of zero. If a customer requests service, she joins

the queue in front of the server and waits for her service to commence. The service of a customer

starts immediately if the server is available. Customers who waits in the queue are served in a

First-Come-First-Served manner. While making their decisions, customers can observe the number

of people in the queue to the extent that is allowed by the firm. To be specific, the firm can hide

the first K ≥ 0 spots in its waiting lines to influence the decisions of the customers. We refer to

the number of disguised waiting spots, K, as the disguised-queue size. We suppose customers are

unaware of the firm’s queue disguising decision when they first visit the firm. The main objective

of the firm is to find the optimal disguised-queue size K to maximize its profits.

In his seminal paper, Naor (1969) establishes that customers request service as long as they see

bRµo/cc people in the system when the queue is fully observable, i.e., when the disguised-queue

size K is zero. We will refer to bRµo/cc as the Naor threshold and denote it by τN . On the other

hand, when the firm chooses a non-zero K, customers will behave similar to Naor’s model but

will keep requesting service until there are K + τN people in the system because they can only

partially observe the waiting line. Hence, in the first period, the firm’s service facility operates

as an M/M/1/K + τN queue with arrival rate λo and service rate µo given the queue disguising

decision of the firm. Then, we can write the firm’s profit in the first period as

Π1(K,λo, µo) = V ∗µo ∗σ(K,λo, µo) +h ∗Q(K,λo, µo), (1)

where σ(K,λ,µ) and Q(K,λ,µ) are the average utilization of the server and the average queue

length in an M/M/1/K + τN queue with arrival rate λ and service rate µ. It is worth noting that
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the above profit is the firm’s profit rate per unit time, but throughout the paper we refer to it as

the profit for ease of explanation.

When the customers request service up to the Naor threshold, they join the queue only if joining

is in their self-interest. However, the queue disguising strategy of the firm may fool some customers

to make a service request although such a decision is not in the best interest of themselves. As

a result of this misleading circumstances, customers may be dissatisfied and decide to punish the

firm. In particular, we suppose that γ ≥ 0 fraction of customers who end up waiting for more than

the Naor threshold will decide to leave the firm in the second period. Thus, letting β(K,λo, µo)

be the probability with which the customers wait for more than or equal to τN people in the

first period, the effective arrival rate in the second period will be λ[1 − γβ(K,λo, µo)]. As the

customers staying with the firm (who form the effective demand) continue to request service until

they find K + τN people in the system, the firm’s service facility, in the second period, operates

as an M/M/1/K + τN queue with arrival rate λ[1− γβ(K,λo, µo)] and service rate µo. Then, the

firm’s profit in the second period becomes

Π2(K,λo, µo) = Π1(K,λ[1− γβ(K,λo, µo)], µo). (2)

Notice that β(K,λ,µ)≡
∑K+τN−1

i=τN
Pi(K,λ,µ), where Pi(K,λ,µ) is the steady state probability of

having i customers in an M/M/1/K + τN queue with arrival rate λ and service rate µ.

Given the setup described above, the firm solves the following optimization problem to determine

the optimal disguised-queue size:

Π∗(λo, µo)≡max
K≥0

Π1(K,λo, µo) + Π2(K,λo, µo). (3)

As it is evident from the above discussions, the customer reward R and waiting cost c affects

the system only through the Naor threshold τN . Hence, we will henceforth treat τN as a system

parameter replacing these two parameters. By doing so, we will use the Naor threshold as the mea-

sure of customers’ tolerance/patience for waiting. Besides its notational convenience, considering

τN as a parameter helps us to relate our analysis and findings to real life because it is easier to

conceptualize the Naor thresholds of the customers than their valuations and waiting costs. To
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illustrate that, consider an instance of our model where the service rate is 200 customers per hour,

customer reward is $10 and waiting cost is $20 per hour. It might be difficult to put this descrip-

tion of the example into perspective because the concepts of reward and waiting cost are hard to

observe and measure. We believe it is more natural to describe the same example by noting that

the Naor threshold is 100.

4. Approximations

In the previous section, we introduce the details of how we model the firm’s service system and

customers’ behavior. According to the model we construct, once the customers make their service

request decisions, the firm’s operations in both periods simply run as a single server queueing

system with finite waiting capacity. Although single server systems with finite queues have explicit

formulas for the performance metrics such as server utilization and average queue length, these

formulas do not result in tractable enough expressions to study and solve the firm’s problem. More

importantly, our main goal in this paper is not just to obtain optimal solutions. In fact, we aim

at assessing the benefits of the queue disguising strategy and exploring the impacts of strategic

customer behavior on these benefits. The solutions we can obtain studying the firm’s original

system, which are often quite complicated and implicit, makes our main objective analytically

intractable. Hence, in this section, we shall approximate the firm’s profit functions by studying the

limiting behavior of the original system in a parametric regime where the demand and the arrival

rates are high. As the service facilities we consider in this paper tend to process customers at a

fast pace and attract high volumes of customer demand, the asymptotic analysis lead to promising

and accurate approximations.

To construct our approximations, we consider a sequence of systems, indexed by n, that are the

replicas of the firm’s service facility, except for the arrival and the demand rate. We denote the

service and the arrival rates in the nth replica system by µn and λn, respectively. Furthermore, we

denote the system load of the nth replica by ρn. In addition to the large-scale nature of the service

systems we study, they are typically heavily loaded systems. In other words, the system load is

close to 1. Hence, while constructing our approximations, we consider a sequence of systems where
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ρn converges to 1 as the size of the system grow. In particular, we let

ρn ≡ 1−ω/µn,

where ω is a positive constant. We do not impose any structure on ω but the choice of the constant

ω turns out to be crucial to obtain accurate approximations for the system dynamics of the firm’s

original service facility.

In the following subsections, we first study the firm’s profit in the first period and then focus on

the second period profit.

4.1. The First Period

In this subsection, we construct our approximation for the firm’s profit function in the first period

by studying the sequence of the replica systems described above. To this end, we first establish the

asymptotic behaviors of the server utilization, σ(K,λ,µ), and the average queue length, Q(K,λ,µ),

functions along this sequence as the system size grows in Proposition 1.

Proposition 1. Consider the sequence of systems introduced at the beginning of Section 4. If

µn→∞ as n→∞, then we have that

lim
n→∞

[
1−σ(κµn, λn, µn)

]
µn = ω

(
1 +

1

e(κ+τN/µo)ω − 1

)
, and (4)

lim
n→∞

[
Q(κµn, λn, µn)

]
/µn =

1

ω
− κ+ τN/µo
e(κ+τN/µo)ω − 1

. (5)

Proposition 1 proves the asymptotic behaviors of the sever idleness and the average queue length.

To derive the above results, we let the firm’s queue disguising decision be a fraction of the service

rate along the sequence of the replica systems. We denote that fraction by κ. By doing so, we avoid

a limiting result that is independent of the firm’s choice of the disguised-queue size as the system

size grows.

We can use the results in Proposition 1 to formulate approximations for the firm’s original system

in the first period. For instance, we can approximate the server utilization using the limit result

from (4), after dividing it by the service rate. As we illustrate in Figure 1, the accuracy of such an

approximation heavily depends on the choice of the constant ω.
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Figure 1 Performance of the approximation for the server utilization based on the limit result from (4) for various

values of ω when µo = 250, and λo = 248.

The intuition behind the crucial role of ω becomes more clear when we consider the extreme

scenario where the firm hides infinite number of waiting spots, which corresponds to an infinitely

large κ. Under this extreme scenario, limit result from (4) would become just ω. Therefore, we

would propose 1− ω/µo as the approximation for the server utilization if we wanted to use the

results from Proposition 1. It is also important to note that the system would behave as a single-

server queue with unlimited waiting room in this extreme scenario of infinitely large κ. Based on

these two observations, one can notice that 1−ω/µo should be equal to the fraction of time that an

M/M/1 queue remains busy, which is λo/µo, to obtain an accurate approximation. Consequently,
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we pick µo− λo as the constant ω and use the following approximations for the server utilization

and the average queue length in the firm’s service facility:

σ(K,λo, µo) ' σ̃(K,λo, µo)≡ 1− ω̃

µo

(
1 +

1

e(K+τN )ω̃/µo − 1

)
(6)

Q(K,λo, µo) ' Q̃(K,λo, µo)≡
µo
ω̃
− K + τN
e(K+τN )ω̃/µo − 1

(7)

where ω̃ = µo− λo. As we demonstrate in Figure 2, the functions proposed above trace the server

utilization and the average queue length functions from the original system with great accuracy

for a wide range of K values. Hence, using the approximations in (6) and (7), we refine the firm’s

profit in the first period as

Π1(K,λo, µo)' Π̃1(K,λo, µo)≡ V ∗µ ∗ σ̃(K,λo, µo) +h ∗ Q̃(K,λo, µo).

4.2. The Second Period

Once we establish our approximations for the first period, we now turn our attention to the firm’s

profits in the second period. As we mentioned in Section 3, the effective demand in the second

period will be smaller than the potential demand because some of the strategic customers from

the potential demand pool will not revisit the firm in the second period to penalize the disguised

queues. Thus, it is crucial to first derive the effective arrival rate in the second period. Similar to

our analysis for the server utilization and average queue length, we construct an approximation

for the effective arrival rate in the second period by studying the sequence of the replica systems

introduced at the beginning of Section 4. As a first step, we show how the function representing

the fraction of customers not revisiting the firm, which is γβ(K,λ,µ), behaves along this sequence

as the system size grows. We formally present our findings in Proposition 2.

Proposition 2. Consider the sequence of systems introduced at the beginning of Section 4. If

µn→∞ as n→∞, then we have that

lim
n→∞

γβ(κµn, λn, µn) = γ
eκω − 1

e(κ+τN/µo)ω − 1
. (8)

Similar to our results in Proposition 1, the above proposition yields an accurate approximation

for the effective demand in the second period when we set ω equal to λo− µo. More importantly,
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Figure 2 Accuracy of the approximations for the server utilization and the average queue length in the First

Period when µo = 250 and λo = 248.

Proposition 2 establishes that the fraction of customers not revisiting the firm in the second period

will be strictly positive if the firm hides its waiting lines. As a result, the firm’s facility will be

underloaded in the second period even if the potential arrival rate is very close to the service rate.

When the service center is underloaded, the customers service decision in the second period becomes

immaterial because the queue length never exceeds the Naor threshold τN due to high service

rate. Then, all customers revisiting the firm in the second period request service. Consequently, in

the second period, the firm’s service center operates as an underloaded single-server system with

unlimited waiting capacity. This is a critical observation for obtaining efficient approximations for
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the second period because the performance metrics of an underloaded single-server system have

very simple structures. For instance, the server utilization and the average queue length are both

simple functions of the system load, conventionally denoted by ρ. Namely, the server utilization is

ρ, and the average queue length is ρ2/(1−ρ). Based on these simple functional forms, we construct

the following approximations for the server utilization and the average queue length in the second

period:

σ(K,λo[1− γβ(K,λo, µo)], µo) ' σ̃2(K,λo, µo)≡ ρo
(

1− γ eKω̃/µo − 1

e(K+τN )ω̃/µo − 1

)

Q(K,λo[1− γβ(K,λo, µo)], µo) ' Q̃2(K,λo, µo)≡
σ̃2(K,λo, µo)

2

1− σ̃2(K,λo, µo)
,

where we again have that ω̃ = λo − µo. As Figure 3 illustrates, the functions proposed above

accurately approximate the server utilization and the average queue length functions in the second

period of the original system for a wide range of disguised-queue size, K, values. In this section,

we use these approximations to refine the firm’s profit in the second period as follows:

Π2(K,λo, µo)' Π̃2(K,λo, µo)≡ V ∗µ ∗ σ̃2(K,λ,µ) +h ∗ Q̃2(K,λ,µ).

In this section, we build simple yet precise approximations for the key performance metrics of

the firm’s service facility. Then, we use these simplified forms of the metrics to refine the profit

functions of the firm. Next, we solve the firm’s queue disguising problem based on these refined

functions.

5. The Queue Disguising Problem

Here, we study the firm’s problem with the objective of finding optimal disguised-queue size. We

carry out all of analysis based on the refined profit functions introduced in Section 4. We then

numerically show that the analysis based on the approximated profit functions results in near

optimal solutions for the firm’s original problem.

As mentioned in the Introduction, the main goal of this paper is to study the implications of

strategic behavior on the firm’s queue disguising decision. To this end, we study the firm’s problem

in two different scenarios: i) none of the customers acts strategically ii) there is a strictly positive
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Figure 3 Accuracy of the approximations for the server utilization and the average queue length in the Second

Period when µo = 250, λo = 248, and γ = 2/3.

portion of customers who can strategically react to firm’s queue disguising decision. We first focus

on the scenario where customers are not strategic.

5.1. Optimal Decision with Naive Customers

As a first step towards understanding the role of strategic customer behavior on the firm’s queue

disguising strategy, we derive the firm’s optimal decision when none of the customers are strategic.

In other words, we start our analysis by setting the fraction of customers who can react to firm’s

decisions, which is denoted by γ, equal to zero. When customers are not strategic, the firm’s

profits functions in both periods become identical because the queue disguising decision has no
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ramifications on the second period demand. Hence, it is sufficient for the firm to consider only the

first period profits while choosing its queue disguising strategy and solve the following problem,

which we refer to as the Naive Customers problem:

Π̃∗nc ≡ max
K≥0

Π̃1(K,λo, µo).

The firm’s profit in the above problem is not always a concave function of the disguised-queue

size, K. In fact, it can start as a concave function and then become convex. However, we show

that the firm’s (refined) first period profit is unimodal in the disguised-queue size, and thus the

firm’s problem when facing non-strategic customers has a unique maximizer. We formally present

the optimal solution of the Naive Customers problem in the following theorem.

Theorem 1. The optimal disguised-queue size in the Naive Customers problem, denoted by K∗nc,

is

K∗nc = max{0, µoxnc/ω̃− τN},

where xnc is the unique non-negative solution for ex
(

1 + V ω̃2

hµ
−x
)

= 1. K∗nc is decreasing in the

holding cost h and the Naor threshold, τN . Furthermore, there exist two non-negative critical values

hnc and τNnc such that

K∗nc = 0 for any h≥ hnc or τN ≥ τNnc.

The above theorem establishes that the firm may find it optimal to hide a portion of its wait-

ing line. When the firm starts to disguise some of its waiting spots, it makes customers to keep

requesting service even when there are more people in the queue than the Naor threshold τN . As

a result, the server utilization goes up because less customers leave the system without joining the

queue. On the other hand, the firm also has to handle longer queues when it employs the queue

disguising strategy. Evidently, the gains from improved server utilization outweigh the losses from

having longer queues when the holding cost h and the Naor threshold τN are both low. Hence,

the firm optimally chooses a positive disguised-queue size K. However, we also show that queue

disguising strategy becomes less attractive as h and τN increases. In fact, once the holding cost or

the Naor threshold exceeds a critical level, the firm optimally choose not to hide any parts of its
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waiting line.

Theorem 1 confirms the optimality of queue disguising strategy for low levels of holding cost

and Naor threshold but it is still an open question whether the queue disguising strategy results in

significant profit improvements. To answer that, we next asses how much the firm benefits when

the optimal disguised-queue size is non-zero. Specifically, we define the relative profit gain from

the queue disguising strategy as

Gnc = 100×

(
Π̃∗nc

Π̃1(0, λo, µo)
− 1

)
. (9)

Proposition 3. Let Gnc be the relative profit gain from the queue disguising strategy as defined

in (9). Then, the following statements holds true:

1. Gnc is decreasing in τN .

2. if τN ≥ 4 and µo ≥ 2ω̃, then Gnc is decreasing in h. Furthermore, we have that

Gnc ≤Gnc ≡ lim
h→0
Gnc ≤

1

τN − 1
.

Aligned with the findings in Theorem 1, the above proposition shows that the benefits from

the queue disguising strategy decline as the Naor threshold or the holding cost increases. This is

somewhat expected because the optimal disguised-queue size also decreases in these two param-

eters. More interestingly, we show that the profits gains from the queue disguising strategy is

bounded from above. Although this upper bound has a complex structure from which it is hard

to derive direct insights, we show that the bound is always smaller than a simple function of the

Naor threshold, 1/(τN − 1) to be specific. An important implication of this relationship is that the

firm’s optimal queue disguising strategy can only lead to negligible profit improvements in service

system where it is normal for customers to wait hundreds of people before their services commence.

As illustrated in Figure 4, the upper bound we derive for the profit gains from queue disguising,

Gnc, can be as small as 1% in systems with high levels of Naor thresholds. Figure 4 also highlights

that the bound Gnc is close to 1/(τN − 1) only when the system load of the firm’s service facility

is nearly 1, which occurs when ω̃ is small relative to the service rate µo. Gnc can be significantly

smaller than 1/(τN − 1) if the system load is away from 1.
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Figure 4 The upper bound of the relative profit gain from the queue disguising strategy, Gnc, when V = 1.

We conclude our analysis of the firm’s queue disguising problem in the absence of strategic

customers by demonstrating the accuracy of the optimal disguised-queue size we derive based on

the refined profit function. As a first step towards this goal, we numerically solve the firm’s original

problem for various parameters and find the exact optimal disguised-queue size, denoted by Ko
nc.

We then calculate the relative profit gains from queue disguising strategy in the firm’s original

problem as

Gonc ≡ 100×
(

Π1(K
o
nc, λo, µo)

Π1(0, λo, µo)
− 1

)
.

We present the results of our numerical study in Figure 5.
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Figure 5 The relative profit gain from the queue disguising strategy, Gnc, when µo = 500 and V = 1.

It is clear from Figure 5 that the analysis we carry out using the refined profit functions generates

exceptionally precise approximation for the benefits the firm obtain from the queue disguising
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strategy. The above figure also shows that the upper bound 1/(τN−1) is achieved only for extremely

low values of the holding cost h. In fact, the upper bound is achieved only when h is fractional

(e.g., less than 0.1%) compared to V , the value that firm earns from serving customers.

Our numerical study also reveals that misuse of the queue disguising strategy can be costly

for a firm facing non-strategic customers, especially when disguised queues are not preferable. We

observe that the firm’s profit may decline sharply as the disguised-queue size K increases if queue

disguising is not optimal. Interestingly, the firm’s profit, as a function of K, seems flat for the

cases where the firm optimally hides its queues. The main driver of this result is that the marginal

changes in the firm’s profit as K changes highly depend on the holding cost h. Thus, the optimality

of queue disguising, which occurs when holding cost is trivially small, implies that the firm’s profit

is actually almost unresponsive to the changes in the disguised-queue size. On the contrary, the

fact that queue disguising is undesirable, which happens under moderate to high holding costs,

indicates a steep decline in the firm’s profit as the disguised-queue size increases. We illustrate that

observation in Figure 6.
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Figure 6 The firm’s profit in the absence of strategic customer as a function of the disguised-queue size K when

ω̃= 1 and V = 1. The profit is divided by µo to have the same scale in both figures.

After reviewing the Naive Customers problem, we turn our attention the queue disguising deci-

sion of a firm facing strategic customers.
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5.2. Optimal Decision with Strategic Customers

We continue our analysis by studying the firm’s problem in the presence of strategic customers.

As the firm faces strategic customers, the firm’s profits in both periods are no longer identical.

Hence, the firm has to consider both the first and the second period profit functions and solve the

following problem:

Π̃∗sc ≡ max
K≥0

Π̃1(K,λo, µo) + Π̃2(K,λo, µo).

We refer to the above problem as the Strategic Customers problem. Unlike, the Naive Customers

problem, the above problem is not amenable to use standard first-order conditions in order to find

an optimal solution. Therefore, rather than deriving the exact solution of the Strategic Customers

problem, we attempt to obtain the structural properties of the firm’s optimal queue disguising

decision in systems where the original service rate µo is large. We formally present our findings in

the following theorem.

Theorem 2. The optimal disguised-queue size in the Strategic Customers problem, denoted by

K∗sc, satisfies that

lim
µo→∞

K∗sc

K̂sc

= 1,

where

K̂sc =

(
eτN ω̃/µo − 1

) (√
hV µo−V ω̃

)
γV ω̃

.

Furthermore, K̂sc is increasing in the holding cost h and the Naor threshold.

The above theorem shows that the optimal disguised-queue size is asymptotically equivalent to

a relatively simple expression, K̂sc. As an implication of this asymptotic relationship, we expect

that the firm’s optimal disguised-queue size in the Strategic Customers problem, denoted by K∗sc,

will exhibit similar structural properties to K̂sc if the service speed is sufficiently high. Theorem

2 shows that K̂sc is a monotone increasing function of the holding cost and the Naor threshold,

thereby implying that the optimal disguised-queue size should also be an increasing function of h

and τN in sufficiently fast systems.

Our findings in Theorem 2 suggest a significant shift in how the firm utilizes the disguised queues.
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Specifically, the above results suggest that the firm has to hide more waiting spots as the holding

cost or the Naor threshold increases while facing strategic customers. However, this completely

contrast with the firm’s optimal decisions in the Naive Customers problem, where the optimal

disguised-queue size declines in h or τN . We illustrate this contrast in Figure 7, where we obtain

K∗sc by numerically solving the Strategic Customers problem.
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Figure 7 The comparison of the firm’s optimal queue disguising decisions in the Strategic Customers and Naive

Customers problems when V = 1, µo = 500, ω̃= 1, and γ = 2/3.

The main driver of the U-turn in firm’s queue disguising strategy due to strategic customers is

that in the Strategic Customers problem, the future customer arrivals depend on the firm’s queue

disguising decision. In contrast, in the absence of the strategic behavior, the firm’s queue disguising

decision in the first period has no impact on the future demand. Hence, the disguised queues

become undesirable in the Naive Customers problem once the cost of longer queues they cause

outweighs the benefits of higher server utilization achieved owing to deceiving customers. This

occurs when holding cost or Naor threshold is high. However, as two periods are interconnected in

the Strategic Customers problem, the firm’s queue disguising decision will play an important role

to moderate the effective demand in the second period besides just affecting customers’ service

decisions in the first period. To be specific, by hiding its waiting lines, the firm can curb some of

the future demand (if needed) and reduce the customer waiting and average queue length in the

second period. It turns out, when holding cost or the Naor threshold is high, running a second
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period with shorter queues at the expense of longer queues in the first period is more appealing

for the firm than having two moderately loaded systems. As the comparison between Figures 2.b

and 3.b illustrates, the average queue length in the first period increases in the disguised-queue

size K in a linear fashion whereas the queues in the second period declines by K at an exponential

rate. This difference in how the average queue length in each period responds to the changes in

disguised-queue size is one of the main rationale behind a non-zero optimal disguised-queue size.

Similar to the impact of strategic customer behavior on the optimal disguised-queue size, we find

that the structure of the profit gains from disguised queues also alters as the customers becomes

strategic. Specifically, we show that the firm obtains more benefits from disguised queues as the

holding cost increases in the Strategic Customers problem when the service rate is sufficiently high.

We also show that the benefits from queue disguising strategy increases by the Naor threshold τN as

long as τN is not too high compared to the service rate. Although the firm’s revenue improvements

due to queue disguising may decline as the Naor threshold rises, it is important to note that the

disguised queues always benefit the firm. Recall that, in Proposition 3, we show that the benefits

from the optimal queue disguising strategy always decreases by h and τN . Hence, the strategic

reaction of customers also has a significant impact on the relationship between the firm’s benefits

from disguised queues and the holding cost (or the customer patience). We present these results

formally in Proposition 4 by defining the relative profit gain from the optimal queue disguising

strategy in the Strategic Customers problem as

Gsc = 100×

(
Π̃∗sc

2Π̃1(0, λo, µo)
− 1

)
. (10)

Proposition 4. Let Gsc be the relative profit gain from the queue disguising strategy as defined

in (10). Letting ζ ≡ limµo→∞ τN/µo, we have that

lim
µo→∞

Gsc = G̃sc(h, ζ),

where G̃sc(h, ζ) is an increasing function of h and ζ.

Furthermore, for any fixed µo, we have that

lim
τN→∞

Gsc =
hω̃(2µo− ω̃)

2µo(V ω̃(µo− ω̃)−hµo)
> 0.
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Once we obtain the above analytical results based on the refined forms of the profit functions, we

again turn our attention to the firm’s original problem. As in the case of non-strategic customers,

we numerically solve the firm’s original problem for various parameters and find the exact optimal

disguised-queue size, denoted by Ko
sc. We then and calculate the relative profit gains from queue

disguising strategy in the firm’s original problem as

Gosc ≡ 100×
(

Π1(K
o
sc, λo, µo) + Π2(K

o
sc, λo, µo)

2Π1(0, λo, µo)
− 1

)
.

200 400 600 800 1000
0

5

10

15

20

τN

h= 0.01

h= 0.1

h= 1/4

h= 1/2

a) ω̃= 1
200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

τN

h= 0.01

h= 0.1

h= 1/4

h= 1/2

b) ω̃= 5

Figure 8 The relative profit gain from the queue disguising strategy, Gonc, when µo = 500, V = 1, and γ = 2/3.

The above figures, which present the results of our numerical study, verifies that the insights

we obtain based on our asymptotic analysis also hold in the firm’s original problem. Figure 8 also

illustrates how the strategic behavior of customers alters the effectiveness of queue disguising when

we compare it with Figure 5. The comparison of these figures shows that for low levels of holding

cost, the firm’s benefits from queue disguising decline as the customers start to react to disguised

queues. More specifically, the relative profit gains Gosc is virtually zero in the above figure when

h= 0.01 whereas the gains under non-strategic customers Gonc is about 1%, a small yet non-zero,

in Figure 5. More strikingly, when the holding costs are high (e.g. more than 10% of the firm’s

reward V ), the firm starts to enjoy considerable benefits from queue disguising strategy although

the queue disguising yields almost zero gains in the absence of strategic customers. Given that

the service environments we consider in this paper incur non-negligible holding costs, our analysis
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advises these services to take advantage of disguised queues only if customers are bothered by

making erroneous decisions due to disguised waiting lines. When customers are non-strategic or

do not react to queue disguising, we suggest firms to make their entire waiting line visible because

any disguised queue will be costly for them.

6. Conclusion

Service systems commonly suffer from the mismatch between demand and supply in the forms of

server idleness and the waiting lines. Hence, service providers are often in search for alleviating

one of these issues without exacerbating the other one. As the waiting line management may

require handling of customers’ decisions, it is naturally the harder problem, and thus received

more attention both in academia and the “real world”. In this paper, we contribute to the growing

literature on waiting line management. In particular, we study a firm that can partially hide the

waiting line forming in front of its service center, thereby pushing customers to make their decisions

based on the observable portion of the queue. We also suppose that some of the customers are

strategic and penalize the firm by not revisiting the firm in the future if they are fooled to request

service because of the disguised queues.

The main focus of this paper is to gain insights about how the strategic behavior of the customers

impact the firm’s queue disguising decisions. Hence, we first focus on the case where customers are

not strategic. We show that the queue disguising is optimal for a firm only when the holding cost

and the customers’ tolerance for waiting are low. Otherwise, the firm does not find it optimal to

hide any of its waiting spots. In the absence of strategic customers, we also find that the firm’s

optimal queue disguising strategy yields only negligible profit improvements, relative to letting

customers observe the entire waiting line. In fact, these minimal profit improvements vanish as

holding customers in the queue becomes costlier. On the other hand, when some of the customers

behave strategically, we find that the optimally chosen level of disguised queue can increase the

firm’s profit considerably. More interestingly, the firm’s profit gains from disguised queues increase

as the holding cost increases unlike the case without strategic customers. This result brings to

light a crucial insight for the service environments we consider in this paper as these systems bear
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non-negligible costs to keep the waiting customers happy: The firms can significantly benefit from

disguised queues if customers act strategically and penalize the firm by not revisiting the firm

whereas any disguised queues hurt a firm serving non-strategic customers.

As the service facilities we review in this paper usually attract a high volume of demand and

serve customers very rapidly, we solve the firm’s queue disguising problem using an approximation

built on the asymptotic behavior of the firm’s original service center. Specifically, we consider a

sequence of systems that are the replicas of the firm’s service center in a parametric regime where

the demand and the arrival rates grow unboundedly. We illustrate that our asymptotic analysis lead

to efficient and accurate approximations for many crucial system metrics such as server utilization

and average queue length. We, then, use these approximations to refine the firm’s profit functions.

Through an extensive numerical study, we support the robustness of our findings that are obtained

based on the refined profit function.
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Appendix A: Proofs in Section 4

A.1. Proof of Proposition 1

We first want to note that the server utilization function, σ(K,λ,µ), in an M/M/1/K +Rµ/c queue with

arrival rate λ and service rate µ can be written as

σ(K,λ,µ) = 1− 1− ρ
1− ρK+Rµ/c+1

where ρ≡ λ/µ.

Using the above equation, we have that

[
1−σ(κµn, λn, µn)

]
µn = µn

1− ρn
1− ρ(κ+τN/µo)µn+1

n

=
ω

1− (1−ω/µn)
(κ+R/c)µn+1

.

Then, our claim in the proposition holds by using the fact that

lim
n→∞

(1−ω/µn)
(κ+R/c)µn+1

= e−(κ+R/c)ω.

Regarding our claim about the average queue length, the server utilization function, Q(K,λ,µ), in an

M/M/1/K +Rµ/c queue with arrival rate λ and service rate µ can be written as

Q(K,λ,µ) =K +
Rµ

c
+

ρ

1− ρ
− K +Rµ/c+ ρ

1− ρK+Rµ/c+1

Using the above equation, we have that

[
Q(κµn, λn, µn)

]
/µn = (κ+R/c)

ρK+Rµn/c+1

1− ρK+Rµn/c+1
+

ρn
µn(1− ρn)

− ρn
µn[1− ρK+Rµ/c+1]

= (κ+R/c)
ρK+Rµn/c+1

1− ρK+Rµn/c+1
+

1

ω
− ρn
µn[1− ρK+Rµ/c+1]

Then, our claim in the proposition holds by using the fact that

lim
n→∞

ρ(κ+R/c)µn+1
n = e−(κ+R/c)ω.

A.2. Proof of Proposition 2

The fraction of customers not revisiting, γβ(K,λ,µ), in an M/M/1/K+Rµ/c queue with arrival rate λ and

service rate µ can be written as

γβ(K,λ,µ) = γρRµ/c
1− ρK

1− ρK+Rµ/c+1
(11)

where ρ≡ λ/µ. Using the above equation, we have that

lim
n→∞

γβ(κµn, λn, µn) = γ
e−Rω/c− e−(κ+R/c)ω

1− e−(κ+R/c)ω
= γ

eκω − 1

e(κ+R/c)ω − 1
,

where the first equality holds since

lim
n→∞

ρxµnn = e−xω,

for any constant x.
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Appendix B: Proofs in Section 5

B.1. Proof of Theorem 1

We first want to note that the firm’s refined profit function in the first period is

Π̃1(K,λo, µo) = µo

(
V − h

ω̃

)
−V ω̃+

chK − cV ω̃+hµoR

c
(
e
Rω̃
c

+Kω̃
µo − 1

) . (12)

By taking the derivative of Π̃1(K,λo, µo) with respect to K, we have that

dΠ̃1(K,λo, µo)

dK
=
e
Rω̃
c

+Kω̃
µo (chµo−hω̃(cK +µoR) + cV ω̃2)− chµo

cµo

(
e
Rω̃
c

+Kω̃
µo − 1

)2

=
h (ex(A−x)− 1)

(ex− 1)
2 ,

where the second equality is obtained by defining x≡ Rω̃
c

+ Kω̃
µo

and A≡ 1 + V ω̃2

hµo
.

Using the above derivative, we, first, argue that the profit function Π̃1(K,λo, µo) is unimodal. To this end,

we let f(x)≡ ex(A−x)− 1. Notice that f(0) =A− 1> 0. Furthermore, we have that f ′(x) = ex(A−x− 1),

so that f(x) is increasing for any x < A− 1 and decreasing otherwise. Combining these observations with

the fact that limx→∞f(x) =−∞, we obtain that f(x) = 0 has a unique root, which is referred to as xnc, and

f(x) is positive for any x< xnc and negative otherwise. This also proves that Π̃1(K,λo, µo) is increasing for

any K <µoxnc/ω̃−Rµo/c and decreasing otherwise since the derivative of Π̃1(K,λo, µo) has the same sign

as f(x).

B.2. Proof of Proposition 3

We first want to note that we can rewrite the refined first period profit function, as given in (12), after

substituting Rω̃
c

+ Kω̃
µo

by x as follows:

π1(x,λo, µo) =
hµo (x− ex + 1) +V ω̃ [(ex− 1)µo− ω̃ex]

ω̃ (ex− 1)

= V µos(x,µo/ω̃)−hq(x,µo/ω̃),

where s(x, θ) = 1− ex

θ(ex−1)
and q(x, θ) = θ− θx

ex−1
.

We also want to note that for the monotonicity results of Gnc, it is sufficient to focus only on the cases

where K∗nc > 0, i.e. xnc > x0 ≡ τN ω̃/µo. Therefore, using our results from Theorem 1, we have that Π̃∗nc =

π1(xnc, λo, µo). We also have that Π̃1(0, λo, µo) = π1(x0, λo, µo).

1. Note that the function π1(x,λo, µo) does not depend on the Naor threshold τN . Furthermore, xnc is also

independent of τN . Therefore, any change in the parameter τN does not affect the optimal profit Π̃∗nc. On

the other hand, π1(x,λo, µo) is an increasing function of x for any x < xnc by the optimality of xnc. This

implies that π1(x0, λo, µo) increases by τN since we focus on the cases where xnc >x0. Combining these two

observations, we have that
Π̃∗
nc

Π̃1(0,λo,µo)
is decreasing in τN , which directly implies that Gnc is also decreasing

in τN .
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2. By taking the derivative of Gnc with respect to h, we have that

dGnc
dh

=
dπ1(xnc, λo, µo)

dh

1

π1(x0, λo, µo)
− dπ1(x0, λo, µo)

dh

π1(xnc, λo, µo)

π1(x0, λo, µo)2

=
V µoω̃s(xnc, µo/ω̃)s(x0, µo/ω̃)

π1(x0, λo, µo)2

[
q(x0, µo/ω̃)

s(x0, µo/ω̃)
− q(xnc, µo/ω̃)

s(xnc, µo/ω̃)

]
,

where s(x, θ) and q(x, θ) are as defined at the beginning of the proof.

Note that q(x,θ)

s(x,θ)
= θ2(−x+ex−1)

ex(θ−1)−θ , and thus q(x,θ)

s(x,θ)
is increasing in x for any x≥ τN/θ, τN ≥ 4, and θ ≥ 2 by

Lemma 2. Thus, defining θ≡ µo/ω̃, we have that

q(x0, µo/ω̃)

s(x0, µo/ω̃)
− q(xnc, µo/ω̃)

s(xnc, µo/ω̃)
< 0,

for any τN ≥ 4 and µo/ω̃≥ 2, which completes the proof for the monotonicity of Gnc in h.

As a direct implication of the the monotonicity of Gnc in h and the fact that lim
h→0

xnc =∞, we have that

Gnc ≤Gnc ≡ lim
h→0

lim
x→∞

π1(x,λo, µo)

π1(x0, λo, µo)
− 1 =

ω̃

e
τN ω̃
µo (µo− ω̃)−µo

.

By taking the derivative of Gnc with respect to µo, we have that

∂Gnc
∂µo

=
ω̃
(

1− e
τN ω̃
µo (1− τN ω̃/µo + τN ω̃

2/µ2
o)
)

(
(ω̃−µo)e

τN ω̃
µo +µo

)2 =
ω̃
(

1− e
τN
θ (1− τN/θ+ τN/θ

2)
)

(
(ω̃−µo)e

τN ω̃
µo +µo

)2 ,

where we define θ ≡ µo/ω̃. Note that above derivative is positive by Lemma 1 since we assume that τN ≥ 4

and µo/ω̃≥ 2. Thus, we have that Gnc is increasing in µo, which leads to the fact that

Gnc ≤ lim
µo→∞

Gnc =
1

τN − 1
,

since lim
x→∞

x(eτ/x− 1) = τ .

B.3. Supplementary Results for the Proof of Proposition 3

Lemma 1. Let f(τ, θ) = eτ/θ
(
τ
θ2
− τ

θ
+ 1
)
. Then, f(τ, θ)< 1 for all τ ≥ 4 and θ≥ 2.

Proof of Lemma 1 : By taking the derivative of f(τ, θ) with respect to τ , we have that

∂f(τ, θ)

∂τ
=
eτ/θ(θ(1− τ)τ + θ)

θ3
<
eτ/θ(2(1− τ) + τ)

θ3
< 0

for all τ ≥ 4 and θ ≥ 2. As the above inequality proves the monotonicity of f(τ, θ), we have that f(τ, θ)<

f(4, θ) for all θ≥ 2.

Furthermore, we have that

∂f(4, θ)

∂θ
=

8(θ− 2)e4/θ

θ4
> 0,

for all θ≥ 2, which implies that f(4, θ) is increasing in θ. Thus, we have that f(τ, θ)< f(4, θ)< lim
θ→∞

f(4, θ).

Finally, our claim holds because

lim
θ→∞

f(4, θ) = 1
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Lemma 2. Let g(θ,x) = θ2(−x+ex−1)

ex(θ−1)−θ . Then, g(θ,x) is increasing in x for all x≥ τ/θ, θ≥ 2, and τ ≥ 4.

Proof of Lemma 2: By taking the derivative of g(θ,x) with respect to x, we have that

∂g(θ,x)

∂x
=
θ2 (ex(θ(x− 1)−x) + θ)

(θ (−ex) + θ+ ex)
2 .

Notice that the above derivative is positive when h(θ,x) ≡ ex(θ(x− 1)− x) + θ is positive. Hence, it is

sufficient to show that h(θ,x)> 0 for all x≥ τ/θ, to prove our claim.

In order to show that h(θ,x)> 0 for all x≥ τ/θ, we first note that

h(θ, τ/θ) = θ
[
1− eτ/θ

( τ
θ2
− τ

θ
+ 1
)]
> 0,

where the inequality holds by Lemma 1. Furthermore, we have that

∂h(θ,x)

∂x
= ex[(θ− 1)x− 1]≥ ex[(θ− 1)τ/θ− 1] = ex[τ − τ/θ− 1]≥ ex[τ/2− 1]> 0

for all x≥ τ/θ, τ ≥ 4, and θ≥ 2. The above inequality implies that h(θ,x) is increasing in x for all x≥ τ/θ.

Combining this with the fact that h(θ, τ/θ)> 0 proves that h(θ,x)> 0 for all x≥ τ/θ.

B.4. Proof of Theorem 2

We first want to note that

lim
µo→∞

[1− σ̃(K,λo, µo)]µo =
ω̃eζω̃

eζω̃ − 1

lim
µo→∞

Q̃(K,λo, µo)/µo =
eζω̃ − 1− ζω̃
ω̃(eζω̃ − 1)

lim
µo→∞

[1− σ̃2(K,λo, µo)] ∗µo =
ω̃ (eζω̃ + γK − 1)

eζω̃ − 1

lim
µo→∞

Q̃2(K,λo, µo)/µo =
eζω̃ − 1

ω̃ (eζω̃ + γK − 1)
,

where ζ ≡ limµo→∞ τN/µo. Then, we use the above limits to construct an approximation for Π̃2(K,λo, µo)

such that

lim
µo→∞

Π̃1(K,λo, µo) + Π̃2(K,λo, µo) = lim
µo→∞

Π̂sc(K,λo, µo),

where

Π̂sc(K,λo, µo)≡ V µo

(
1− ω̃eτN ω̃/µo

µo(eτN ω̃/µo − 1)
−
ω̃
(
eτN ω̃/µo + γK − 1

)
µo(eτN ω̃/µo − 1)

)

−hµo
(
eτN ω̃/µo − 1− τN ω̃/µo

ω̃(eτN ω̃/µo − 1)
+

eτN ω̃/µo − 1

ω̃ (eτN ω̃/µo + γK − 1)

)
.

The above equality implies that lim
µo→∞

K∗
sc

K̂sc
= 1, where

K̂sc ≡ arg max
K

Π̂2(K,λo, µo).

Finally, by solving the above optimization problem, we explicitly obtain that

K̂sc =

(
eτN ω̃/µo − 1

) (√
hV µo−V ω̃

)
γV ω̃

.

Notice that the above expression is an increasing function of h and τN .
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B.5. Proof of Proposition 4

Using the limit results we have in the proof of Theorem 2, we have that

lim
µo→∞

Π̃1(K,λo, µo) = lim
µo→∞

Π̂nc(λo, µo),

where

Π̂nc(λo, µo)≡ µo
[
V

(
1− ω̃eτN ω̃/µo

µo(eτN ω̃/µo − 1)

)
−h

(
eτN ω̃/µo − 1− τN ω̃/µo

ω̃(eτN ω̃/µo − 1)

)]
Then, we can write the limiting behavior of the benefits from disguised queues as

lim
µo→∞

Gsc = lim
µo→∞

Π̃1(K∗sc, λo, µo) + Π̃2(K∗sc, λo, µo)

2Π̃1(0, λo, µo)
− 1

= lim
µo→∞

Π̂sc(K̂sc, λo, µo)

2Π̂nc(λo, µo)
− 1 =

1

2
[

V ω̃[eζω̃−1]

h(eζω̃−ζω̃−1)
− 1
]

The above limit is increasing in h since V ω̃[eζω̃−1]

h(eζω̃−ζω̃−1)
is decreasing in h. Similarly, The above limit is

increasing in ζ since
d

dζ

(
V ω̃[eζω̃ − 1]

h(eζω̃ − ζω̃− 1)

)
=−V ω̃

2[eζω̃(ζω̃− 1) + 1]

[h(eζω̃ − ζω̃− 1)]2
< 0,

where the inequality holds by the fact that ex(x− 1) + 1> 0 for all x≥ 0.

To prove our second claim, we first note that

lim
τN→∞

Π̃1(K,λo, µo) = µo

(
V − h

ω̃

)
−V ω̃,

lim
τN→∞

Π̃2(K,λo, µo) =
(µo− ω̃)(µoV ω̃−h(µo− ω̃))

µoω̃
,

for all K ≤ 0.

Then after some alegbra, we have that

lim
τN→∞

Gsc = lim
τN→∞

Π̃1(K∗sc, λo, µo) + Π̃2(K∗sc, λo, µo)

2Π̃1(0, λo, µo)
− 1

=
hω̃(2µo− ω̃)

2µo(V ω̃(µo− ω̃)−hµo)
.

Finally, the above limit is positive because we must be in a parameter setting where Π̃1(K∗sc, λo, µo)≥ 0.

Furthermore, have that

lim
τN→∞

Π̃2(K∗sc, λo, µo)− Π̃1(K∗sc, λo, µo) = h

(
µo−

ω̃

µo

)
> 0,

where the inequality holds since µo > ω̃= µo−λo.


