
Saving Seats for Strategic Customers

Eren B. Çil
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We consider a service provider in a market with two segments. Members of the first request a reservation

ahead of service and will not patronize the firm without one. Members of the second walk in and demand

service immediately. These customers have a fixed cost of reaching the firm and may behave strategically. In

equilibrium, they randomize between walking in and staying home. The service provider must decide how

much of a limited capacity to make available to advance customers. When the advance demand segment

offers a higher per customer margin, the firm may opt to decline some reservation requests in order to bolster

walk-in demand. When walk-in customers are more valuable, we have a variation of Littlewood (1972).

Where Littlewood would always save some capacity for valuable late arrivals, here it is possible that the

optimal policy saves no capacity for walk-ins. Thus, it may be better to ignore rather than pamper walk-in

customers. This outcome is robust to changes in the model.
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1. Introduction

Managing a flow of customers with varying profitability and arrival patterns is an important

challenge in many service businesses. In industries ranging from airlines to restaurants, managers

must decide how much capacity to make available to segments that arrive early and how much to

save for later arrivals. This fundamental problem has many theoretical intricacies that have inspired

a large body of research. Much of this work, however, has ignored that capacity management

decisions do not exist in a vacuum. How a firm doles out its capacity affects how customers show

up. The firm must consequently consider how its allocation of capacity affects the demand for its

services.

The restaurant industry exemplifies the issues involved. Restaurants face the question of whether

or not to take reservations. That is, they must choose whether to court customers who require a

guaranteed seat or to count on customers who prefer the flexibility of just walking in. At a high level,

this is not an either-or choice. A restaurant can offer some or all of its seats to reservation seekers

and then fill the remaining seats with walk-in customers. Indeed, if one is given profit margins

and fixed demand distributions for each segment, models exist in the literature to help solve this

problem (e.g., Littlewood (1972), Bertsimas and Shioda (2003)). But the demand distributions are
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not necessarily fixed, particularly for walk-in customers. If a walk-in customer incurs a cost to ask

for a seat (e.g., a cab ride across town), she is unlikely to make the effort unless the chance of

getting a seat is sufficiently high. Such considerations have kept some restaurants from offering

reservations at all (Bruni (2006)) or at least limiting the number of reservations they will take

(Arnett (2005)).

In this paper, we consider a service provider with a fixed capacity facing two segments, advance

customers and walk-in customers. Both segments require service at the same point in time but

differ in when they request service. Advance customers – as the name suggests – contact the firm

to reserve capacity ahead of the service time. Walk-in customers in contrast arrive at the time of

service and require immediate attention. In the context of a restaurant, the time of service would

be, say, Friday evening. Advance customers are those who make reservations early in the week while

walk-ins are those who show up unannounced on Friday. Walk-in customers incur a cost to visit

the firm and request service and thus a face a lottery; they must sink the cost to ask for service

without any guarantee that capacity is available. Whether a given walk-in customer is willing to

take that risk depends on her perceived chance of being served. Thus there is a dependency between

how much capacity the firm makes available to advance customers and how many walk-ins request

service.

We consider two cases. In the first, advance demand is more profitable but uncertain while the

number of walk-in customers in the market is fixed. Here, it may be optimal to set aside capacity

for walk-in customers. If a large amount of capacity is made available to advance customers,

walk-in traffic may be insufficient to compensate for poor advance-demand realizations. The firm

consequently commits to potentially turning away some valuable early service requests in order

to assure a high level of walk-in traffic. The firm is not guaranteed to use all of its capacity. The

optimal policy targets a probability of unused capacity that increases with the profitability of the

advance segment and the walk-in segment’s cost to request service.

Saving capacity for strategic walk-in customers is intuitively appealing. Remarkably, this result

does not necessarily carry over to our second setting in which walk-in demand is more profitable

but uncertain. Here, the service provider only restricts advance sales when the margin on advance

customers and the walk-in segment’s fixed costs are low. Otherwise, the firm makes all capacity

available for advance customers. That is, it may be better to ignore the more valuable segment

than to save capacity for them.

Not saving additional capacity for more profitable but strategic walk-in customers is an intriguing

finding; it is also a robust outcome. Our basic model assumes that advance demand is deterministic

but this is not necessary for the result. If advance demand is uncertain, the firm may not make all

capacity available for advance demand but may still save less capacity for walk-ins than it would
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if they were not strategic. Our basic model also assumes that walk-in customers are homogeneous

and all share the same net utility for the service. Heterogeneous valuations for the service alters

the absolute amount of capacity saved for strategic walk-ins but again strategic walk-in customers

may result in less capacity being held back from the advance market.

Whether walk-in or advance demand is more profitable, saving capacity for walk-in demand is

only an issue when capacity is limited. Given ample capacity, walk-ins face little risk of being denied

service and strategic behavior is irrelevant. The question then is whether the service provider would

pick a capacity that results in saving little capacity for walk-ins. We show that strategic walk-in

customers affect both the firm’s capacity and reservation policy. As the walk-in segment’s cost for

requesting service increases, it may be optimal to increase the amount of capacity installed while

saving additional capacity for walk-ins. This holds regardless of which segment is more profitable.

However, once the walk-in segment’s cost increases sufficiently, total capacity and the amount of

capacity set aside for walk-ins falls. Indeed, given a high enough cost, the firm chooses a capacity

and reservation policy that keeps any walk-in customers from patronizing the firm.

Our work is related to several branches of literature. The first obviously is revenue management

for which Talluri and VanRyzin (2004) provides a comprehensive survey. In particular, our second

setting is a variant of Littlewood (1972) who assumes late-arriving customers are more profitable

but not strategic. His distribution of late demand is independent of the number of seats available

while ours is a function of how many seats are set aside for walk-ins. In Littlewood (1972), it is

always optimal to save some seats for late arrivals but here it may be best not to save any seats.

Other work that has considered balancing advance and walk-in sales includes Kimes (2004) and

Bertsimas and Shioda (2003). The former examine how a restaurateur can maximize revenue per

available seat hour and discusses the relative advantages of offering reservations or relying on walk-

ins. She does not examine how offering reservations impacts walk-in demand levels. In Bertsimas

and Shioda (2003), the firm’s decisions include whether to accept a reservation request and what

wait time to quote a walk-in party. They assume reservation and walk-in demand are independent.

We have a single service period but allow for an interplay between reservation and walk-in demand.

When our advance customers are more valuable, the walk-in segment serves as a salvage oppor-

tunity for capacity unclaimed by advance customers. The key feature is that demand in the salvage

market is affected by the amount of capacity open to advance customers. This setting is related to

Cachon and Kök (2007). They consider a newsvendor model in which the per-unit salvage value

depends on the amount of unsold stock. In our model, the salvage value is fixed but the probability

that excess inventory is sold depends on the stocking decision. When our walk-in customers are

more valuable, the demand distribution depends on the amount of capacity that is available. This
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is similar to Dana and Petruzzi (2001). They consider a retailer whose customers have random out-

side options. Whether an individual customer patronizes the retailer depends on that customer’s

option and the firm’s inventory level. Our consumer model is simpler but has a similar implication:

consumer demand depends on the inventory available.

Others have considered how the presence of strategic customers impacts operations. Netessine

and Tang (2009) provides a recent survey on this subject. Much of this work has focused on

managing inventory in retail environments. Su and Zhang (2008) examine supply chain performance

under a variety of contract terms when strategic customers weigh buying early at full price against

the possibility of buying discounted goods later. Cachon and Swinney (2009) take on similar issues

but focus on quick response and other supply chain improvement initiatives.

In service settings, Lariviere and Van Mieghem (2004) consider congestion-averse consumers

choosing arrival times over a horizon and show that as the horizon and number of customers grow

the resulting arrival pattern converges to a Poisson process. Our model has only a single sale period.

In Alexandrov and Lariviere (2007), a firm sells to a single segment of strategic customers which

can be served either through advance reservations or through walk-ins. If reservations are employed,

some customers may fail to keep their appointment resulting in lost sales for the firm. Despite

that, the firm may still offer reservations. Our model emphasizes the role of multiple segments.

In particular, there are customers who will not patronize the service provider if reservations are

offered.

Below, we present the basics of the model. Sections 3 and 4 consider, respectively, having early

demand and late demand be more profitable. We demonstrate the robustness of saving fewer seats

for more profitable walk-in customers in Section 5. In section 6, the firm sets both its capacity and

reservation level. Section 7 concludes. Proofs are in the Appendix.

2. Model fundamentals

We consider a monopolist in a market with two segments. All customers desire service at the same

point in time. The segments differ in several ways including when they request service. The first

segment, advance customers, contacts the firm before the time service is required and requests

reservations. An advance customer only patronizes the firm if she receives a reservation. The second

segment, walk-in customers, requests service immediately. Let Na denote the number of advance

customers and Nw the number of walk-in customers. We assume all customers require the same

amount of the firm’s capacity to be served.

The segments differ in the margins they provide the firm. The margin is πa for advance customers

and πw for walk-in customers. More generally, we can think of the margin earned from a given

customer as random but drawn from segment specific distributions with means πa and πw. We
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take the margins as fixed and beyond the firm’s control. Thus our model does not fit settings like

airlines and hotels where the amount customers pay may depend on when they request service. It is

appropriate for services such as restaurants and beauty salons. In these industries, all customers are

presented with the same price list but what they ultimately pay depends on choices finalized after

arriving at the firm. Differing margins across segments then imply that customers from different

segments make systematically different choices. We can also allow πa = πw if we introduce the

possibility that advance customers may fail to keep their reservations. See the discussion at the

end of Section 3.

Finally, the segments differ in their value for service and their cost of requesting service. Advance

customers have a value U > 0 for receiving service and incur no cost for requesting a reservation.

Consequently, every advance customer in the market requests a reservation. Walk-in customers

value the service at V > 0 but must incur a cost T to request service. V > T > 0. We will refer to

T as the travel cost and to V/T as the customer’s net utility. If a walk-in customer opts to stay

home, her utility is zero.

The firm can serve K customers. For the moment K is fixed so the service provider’s sole decision

is its reservation level R, i.e., how much capacity to make available to advance customers. 0 ≤

R≤K. K is common knowledge and R is observable to the customers. Reservation holders always

keep their reservations and are guaranteed seats. (In keeping with the restaurant example, we will

measure capacity in terms of seats.) Hence, given a realized number of advance customers, Na, the

firm’s sales to the advance segment are min{Na,R}. Advance customers have priority over walk-in

customers and the firm cannot overbook. Thus, giving out a reservation may prohibit the firm

from seating a walk-in customer. If the number of advance requests exceeds R, the reservations are

rationed randomly and each customer is equally likely to receive one. Given Na advance requests,

the service provider will have K −min{Na,R} seats available for walk-in customers. If demand

exceeds available capacity, each walk-in customer is equally likely to be served.

For simplicity, we assume customers are small relative to the size of the market. As we will

see below, walk-in customers may follow a mixed strategy. The assumption of small customers

essentially allows an appeal to the law of large numbers, implying that we can accurately predict

the aggregate outcome even though we cannot predict what an individual will do.

3. Uncertain but more profitable advance demand

Here we assume that πa > πw. The number of walk-in customers Nw is deterministic and greater

than K. The number of advance customers Na is random with continuous distribution Fa (n) on

support
[
Na,Na

]
. Na > K > Na ≥ 0. fa (n) denotes the density of Fa, and F̄a (n) = 1− Fa (n) .

The distribution Fa (n) is commonly known, but only the firm observes realized advance demand.



6 Çil and Lariviere: Saving Seats for Strategic Customers

Given a realized advance demand level of n, the firm’s revenue from advance customers when

it makes R seats available for reservations is πamin{n,R} . The expected number of advance

customers served is then

Sa(R) = E[min{Na,R}] =

∫ R

Na

nfa (n)dn+RF̄a (R) .

Observe that Sa(R)≤R and S′a(R) = 1− Fa(R). If it were certain to have more than K −Na

walk-ins, the firm would earn an expected revenue of

Πns (R) = πaSa (R) +πw (K −Sa (R)) . (1)

Since πa >πw, and Sa(R) is increasing in R, Πns(R) is maximized by setting R=K.

Unfortunately, the firm cannot take sufficient walk-in demand as a given. Any given walk-in

customer faces a lottery. If she “spends” the travel cost T , she may win V or nothing. Winning

requires getting a seat, and hence whether one walks in depends upon the chance of being seated.

Let γ denote a walk-in customer’s probability of getting a seat. Her expected utility is then γV −T,

and she walks in if γ ≥ T/V. The value of γ, of course, depends the reservation policy of the firm,

the distribution of advance demand, and the behavior of walk-in customers. We denote the number

of walk-in customers who request service given R by ν(R). When each walk-in customer visits the

firm with probability λ (R) for a given reservation level R, ν(R) will be λ (R)Nw.

Lemma 1. Suppose the firm sets a reservation level of R and walk-in customers follow a symmetric

equilibrium.

1. If Nw ≤ V
T

(K −Sa (R)) all walk-in customers request service, i.e., ν (R) =Nw, and the chance

of being served exceeds T/V.

2. Otherwise, each walk-in customer visits the firm with probability

λ (R) =
V (K −Sa (R))

TNw

, (2)

and thus ν (R) = V
T

(K −Sa (R)).

Corollary 1. Suppose the firm sets a reservation level of R and walk-in customers follow a

symmetric equilibrium. We have that ν ′(R)≤ 0 and ν(R)>K −R.

The walk-in segment cannot observe the exact number of available seats, and the equilibrium

is consequently based on the expected number of available seats K − Sa (R). When there are on

average many seats, or walk-in customers have very high net utilities (i.e., V/T is large), strategic

interaction between walk-in customers is inconsequential from the firm’s perspective since every
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walk-in customer requests service. Once seats are sufficiently limited, walk-in customers begin to

ration themselves and only ν (R)<Nw actually request service. If advance demand, n, is less than

K − ν (R) , walk-in demand will be insufficient to utilize capacity fully. Otherwise, only K − n
walk-ins can be served. Observe that if n>R, then K−R walk-ins are served since K−R< ν(R)

by Corollary 1. Letting Πw (R) be revenue from walk-in customers given the reservation level and

ν (R)<Nw, this yields

Πw (R) = πw

ν(R)Fa(K − ν(R)) +

R∫
K−ν(R)

(K −n)fa(n)dn+ F̄a(R)(K −R)


= πw (K −Sa (R))−πw

K−ν(R)∫
Na

(K − ν (R)−n)fa (n)dn. (3)

Recall that Sa(R) is expected sales to advance customers given a reservation level R. The first

term of (3) is then expected sales to walk-ins ignoring the strategic behavior of walk-in customers.

The second term thus represents the firm’s loss due to strategic customers.

The firm consequently faces a trade off. Raising the number of seats available via reservations

increases the expected number of (more profitable) advance customers that the firm serves. How-

ever, because ν (R) is decreasing, a higher reservation level also decreases walk-in demand.

Proposition 1. Suppose Nw >
V
T

(K −Sa (K)) . Let R∗ denote the optimal reservation level.

1. If πa ≥ πw
(
1 + V

T
Fa (K − ν (K))

)
, R∗ =K.

2. If πa <πw
(
1 + V

T
Fa (K − ν (K))

)
, R∗ <K and is found from

Fa (K − ν (R∗)) =
T (πa−πw)

V πw
. (4)

3. The optimal reservation level, R∗, is increasing in K.

If Nw <
V
T

(K −Sa (K)) , Lemma 1 gives that all walk-in customers attempt to get seats even if

advance customers can claim all of capacity. The naive solution of making all capacity available via

reservation is then obviously optimal. Proposition 1 shows that such a decision may also be optimal

even if walk-in customers self-ration as long as the margin on advance customers is sufficiently high.

When πa is low, it is optimal to hold back some capacity. Effectively, the firm commits to turning

away advance customers before reaching its capacity in order to assure walk-in customers a good

chance of getting a seat. It does this despite the fact that walk-ins are less valuable. Limiting sales

to advance customers, however, assures a relatively large amount of walk-in traffic which provides

a safety net if realized advance demand is low.

It follows from Corollary 1 that ν(R) > K −R for all R ≤K. Consequently, if the firm gives

out all available R reservations, there will be sufficient walk-in demand to fill up any remaining
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capacity. This does not mean that the service provider always has a full house. Fa (K − ν (R∗))

is the probability that the firm has some unused capacity. When there is little difference in the

segments’ margins (i.e., πa−πw is small), the firm severely restricts the number of reservations it

gives out in order to reduce the chance of not fully utilizing its capacity. This suggests an alternative

interpretation for the first part of the proposition: if πa is sufficiently large, the firm cannot achieve

an optimal probability of idle capacity even if it makes its entire capacity available to advance

customers.

Note that the optimal reservation level is increasing in K, implying that it is easier to get a

reservation at a firm with a larger capacity. This, however, does not come at the expense of walk-

in customers. The optimality condition (4) requires that the difference between capacity and the

number of customers actually walking in must be constant as K and R∗ are adjusted. Hence,

the increased reservation level (and subsequent increase in sales to advance customers) does not

completely absorb the increase in capacity, and the number of walk-in patrons requesting service

increases. We will examine how the firm would choose K in Section 6 below.

These results can be easily adjusted to accommodate advance customers who do not necessarily

keep their reservations. Assume each reservation holder fails to keep her reservation with probability

φ for 0≤ φ < 1. There are two possibilities to consider. First, suppose that the firm immediately

realizes that a reservation holder is a no show, and it is able to re-offer her seat. The expected

number of seats available for walk-in customers given R is

K −
∫ R

Na

(1−φ)nfa (n)dn− (1−φ)RF̄a (R)≥K −Sa (R) .

Thus walk-in customers expect more capacity to be available for a given reservation level and hence

more will actually request service. The firm can therefore afford to make more capacity available

to advance customers even though they are less reliable. Alternatively, suppose that the service

provider does not realize that a reservation holder is a no show until the end of the service period

when it is too late to re-offer her seat to a walk-in customer. The number of expected available seats

for walk-in customers remains K − Sa (R) so their behavior given R is unchanged. However, the

expected margin for each reservation given out falls to (1−φ)πa. The firm thus has an incentive to

(weakly) increase the number of seats saved for walk-in customers. This assumes (1− φ)πa > πw.

If the reverse holds, we have a setting in which walk-in customers are more valuable, a case which

we consider next.

4. Uncertain but more profitable walk-in demand

We now reverse the assumptions of the previous section. Fix the size of the advance segment at

Na >K, and assume πa < πw. The number of walk-in customers Nw is random with continuous
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distribution Fw (n) on support
[
Nw,Nw

]
. Nw > K > Nw ≥ 0. fw (n) denotes the density and

F̄w (n) = 1− Fw (n) . The distribution of Nw is common knowledge, but a walk-in customer does

not observe the realized value of Nw before deciding whether to request service. Let µw denoted

the expected value of Nw.

R again denotes the amount of capacity made available to advance customers. In this setting,

however, all R units are certain to be given out while capacity saved for walk-in customers may go

unused. This is true even when walk-in customers do not behave strategically (equivalently, when

T = 0). In this case, the firm’s expected profit is

Π̂L (R) = πaR+πwSw (K −R) , (5)

where Sw (x) =
∫ x
Nw

nfw (n)dn + xF̄w (x) . This is the classic problem of Littlewood (1972). If

Fw (K)≤ πw−πa
πw

, the optimal reservation level RL is zero. Otherwise, RL solves

Fw (K −RL) =
πw−πa
πw

.

Of course, once walk-in customers incur a cost to request service, the Littlewood quantity RL

may not be optimal. Walking in is still risky, and how many walk-in customers actually attempt

to patronize the firm depends on the chance of getting a seat.

Lemma 2. Suppose that the service provider sets a reservation level of R and that walk-in cus-

tomers follow a symmetric equilibrium. Let Ẑ solve Sw

(
Ẑ
)

= µwT
V
.

1. If Ẑ ≤K −R, all walk-in customers request service, and the chance of being served exceeds

T/V .

2. Otherwise, each walk-in customer requests service with probability

λ̂ (R) =
K −R
Ẑ

,

and the chance of getting a seat is T/V .

When the firm saves a large amount of capacity for walk-ins, the distribution of customers who

actually walk in is simply Fw (n) . Once the amount of saved capacity K−R drops below the critical

level Ẑ, the number of walk-in patrons who request service falls to λ̂ (R)Nw. Hence, as the firm

gives out more reservations, the number of walk-ins patronizing the firm becomes stochastically

smaller. To understand the role Ẑ plays in the equilibrium, let ∆w (x) denote the fill rate when

the demand distribution is Fw (n) and the stocking level is x. By construction, ∆w

(
Ẑ
)

= T/V , the

equilibrium fill rate if walk-in customers self-ration. Thus when the number of seats saved for walk-

ins K −R equals Ẑ and all walk-in customers request service, each individual walk-in customer

has an expected utility of zero. Alternatively, when the number of saved seats falls below Ẑ, the
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Figure 1 Profit as a function of R with both strategic (the solid line) and non-strategic customers (the dashed

line). For all examples Fw (n) = (n/100)2 for 0 ≤ n≤ 100,K = 80, πa = 0.9, πw = 1, and V = 1. For (a),

T = 0.5. For (b), T = 0.7. For (c), T = 0.85.

distribution of walk-in demand is rescaled to Fw

(
n/λ̂ (R)

)
and the corresponding fill rate for a

stocking level of x is ∆w

(
x/λ̂ (R)

)
. Consequently, the stocking level needed for the equilibrium

fill rate would be λ̂ (R) Ẑ. The walk-in customers, of course, cannot adjust the number of saved

seats K −R; that is the firm’s prerogative. However, they can move to an equilibrium that scales

the available seats so that K−R
λ̂(R)

= Ẑ.

Turning to the service provider’s problem, if not all walk-ins request service, its profit from the

walk-in segment is

Πw (R) = πw (K −R)

 Ẑ∫
Nw

nfw (n)

Ẑ
dn+ F̄w

(
Ẑ
)= πw (K −R)Sw

(
Ẑ
)
/Ẑ.

Profits from walk-in customers are linear in R because the number of walk-in customers requesting

service is scaled by λ̂ (R) , which is linear in the reservation level. Sw

(
Ẑ
)
/Ẑ is always less than

one. It can be interpreted as the fraction of units sold when Ẑ units are stocked. Here, it is the

fraction of capacity saved for walk-in customers that is utilized on average.

The firm’s total profit as a function of the reservation level Π̂ (R) is then

Π̂ (R) =

{
Π̂L (R) if R≤K − Ẑ

πaR+ Πw (R) if R>K − Ẑ
. (6)

As shown in Figure 1, Π̂ (R) is kinked. (In the figure, Π̂ (R) is plotted as a solid line while Π̂L (R)

is plotted as a dashed line.) For reservation levels below K− Ẑ, walk-in customer do not self-ration;

Π̂ (R) follows the Littlewood objective and is strictly concave. Beyond K− Ẑ, not all walk-ins visit

the firm; Π̂ (R) is linear and can slope up or down. The optimal reservation level then depends on

two factors, the location of the Littlewood quantity RL relative to the kink in Π̂ (R) and the slope

beyond the kink.

Proposition 2. Let R̂ denote the optimal reservation level.
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1. If RL ≤K − Ẑ, R̂=RL.

2. If RL >K − Ẑ,

R̂=

 (K − Ẑ)+ if πa/πw ≤ Sw
(
Ẑ
)
/Ẑ

K if πa/πw >Sw

(
Ẑ
)
/Ẑ,

where (K − Ẑ)+ = max
{
K − Ẑ,0

}
.

When advance demand was uncertain but more profitable, the firm could disregard strategic

walk-in behavior as long as walk-in demand was sufficiently robust. Otherwise, reservations were

limited. Part of that logic carries over. If all walk-in customers come in over a large range of saved

capacity, the firm effectively lives in Littlewood’s world and can simply choose RL. See Figure 1(a).

This requires that Ẑ and RL be relatively small. That, in turn, implies that walk-in customers have

a high net utility (since Ẑ is decreasing in V/T ) and that walk-in customers are significantly more

profitable than advance customers (since RL is decreasing in πw−πa).

Once walk-in customers are rationing themselves, the firm does not necessarily save extra capac-

ity for them. The firm protects additional capacity for walk-ins when they are significantly more

profitable than advance customers. A unit of capacity saved for a walk-in garners πw when it sells

but the average return is only πwSw

(
Ẑ
)
/Ẑ. As the the margin on advance customers increases, the

optimal decision eventually tips to committing all capacity to advance customers. Thus although

Littlewood (1972) always holds back capacity for the more profitable segment, it may be best to

forego doing any business with this segment if they behave strategically.

5. On the robustness of saving fewer seats

The previous section had two surprising results. First, the service provider may save fewer seats

for high-value walk-in customers when they behave strategically than when they are not strategic.

Second, the optimal reservation policy has a bang-bang structure; the firm either sets aside enough

seats so that all walk-in customers request service or saves no seats for them. In this section we

examine the robustness of those conclusions to changes in model assumption. We first introduce

heterogeneity in how customers value the service and then consider having both advance and

walk-in demand be random. We show that either extension may make the bang-bang allocation of

capacity go away. However, the first insight remains: The firm may still prefer to save fewer seats

for strategic customers.

5.1. Heterogeneous customer valuations

We now examine how our results depend on having homogeneous customer valuations. Instead

of assuming that all walk-in customers have the same value V for the service, we now suppose
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each walk-in customer has a value of V (ε) = T + ε for the service where ε is a random variable

with distribution Φ(ε) on the support (0, ε̄) for 0 < ε̄ ≤∞. We assume that Φ(ε) is continuous.

Let Φ(ε) = 1− Φ(ε) . As before, all customers have a positive net utility for the service if they

are guaranteed access. However, because Nw >K, one cannot guarantee that all walk ins will be

served. Consequently, not all walk-in customers will request service. In particular if a customer

with realized shock ε̂ is indifferent between requesting service and staying home, all customers for

whom ε < ε̂ stay home while those for whom ε ≥ ε̂ walk in. This intuition is formalized in the

following lemma.

Lemma 3. Suppose the service provider sets a reservation level of R and walk-in customers follows

a symmetric equilibrium. Let ε̂(R) solve

Sw

(
K −R
Φ(ε)

)
=
Tµw
T + ε

, for any 0≤R≤K. (7)

1. If ε ≥ ε̂(R), a walk-in customer requests a seat, and the chance of getting a seat is T
T+ε̂(R)

.

Otherwise, she stays at home.

2. ε̂(R) is non-decreasing in the reservation level R.

3. ε̂(R)> 0 for any R.

The firm’s profit function can be written as

Π̂ε(R) = πaR+πwΦ(ε̂(R))Sw

(
K −R

Φ(ε̂(R))

)
(8)

= πaR+πw (K −R)Sw

(
Ẑ (R)

)
/Ẑ (R) ,

where Ẑ (R) = K−R
Φ(ε̂(R))

. In comparing (8) with (6), two points are worth making. First, because

not every walk-in customer will request service, Π̂ε(R) lies below the corresponding Littlewood

objective Π̂L(R). (See Figure 2.) There is never a range of reservation levels over which the firm can

safely ignore the strategic behavior of customers, and this behavior always costs the firm money.

Second, the fraction of saved seats that are on average utilized Sw

(
Ẑ (R)

)
/Ẑ (R) is no longer

constant. Indeed, the equilibrium between the walk-in customers results in Ẑ (R) being decreasing

in R so the fraction of saved seats that are utilized must increase. The expected return per saved

seat must consequently climb.

Of course, the fact that the profit function lies below the Littlewood function does not imply

that the optimal reservation level is less than the Littlewood quantity. However, there is a simple

sufficient condition for when the firm saves fewer seats for strategic walk-ins than for non-strategic

walk-ins. Specifically, the firm gives out more reservations than Littlewood would recommend if

πa
πw

>
Sw

(
Ẑ (RL)

)
Ẑ (RL)

.
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This condition is analogous to that in Proposition 2 except that we are looking specifically at

RL. Note that if the above condition holds, it is also true for all R < RL. Thus, the firm would

never choose a reservation level below RL because the expected return per seat saved for walk-in

customers would be less than the gain from accepting an extra reservation. The same does not

generally hold for all R>RL and we thus lose the bang-bang allocation of capacity between the

segments. However, we still have that it may be optimal to save fewer seats for strategic walk-ins.

This is seen in Figure 2. In this numerical example, RL = 63.28, and R̂ε = 79.2.

Figure 2 Firm profit with and without strategic customers. Φ(ε) = ε/10 for 0 ≤ ε ≤ 10, Fw(n) = (n/100)2 for

0 ≤ n≤ 100, K = 90, πr = 1, πw = 14/13, and T = 10
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The following proposition presents the above discussion formally.

Proposition 3. Let R̂ε denote the optimal reservation level.

1. Π̂ε(R)≤ Π̂L(R).

2. If πa
πw
>

Sw(Ẑ(RL))
Ẑ(RL)

, then RL < R̂ε.

5.2. Uncertain advance demand

To this point our analysis of high-value walk-in demand has assumed that advance demand is

both ample and certain. Here we relax that assumption and suppose that the number of advance

customers Na is random with continuous distribution Fa (n) on support
[
Na,Na

]
. Na >K >Na ≥

0. fa (n) denotes the density of Fa, and F̄a (n) = 1−Fa (n) . We assume that the demand draws for

the two segments are independent. To highlight the role of demand uncertainty, we revert to the

setting in which all customers value the service at V.
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Intuitively, walk-in customers should expect more seats to be available for any given reservation

level and thus a greater number should be willing to request service. This reasoning is borne out

in the following lemma that characterizes the equilibrium behavior of walk-in customers.

Lemma 4. Suppose the service provider sets a reservation level of R and walk-in customers follows

a symmetric equilibrium. Let λu(R) solve

Ψ(λ,R) =
Tµw
V

, for any 0≤R≤K, (9)

where Ψ(λ,R) =
R∫
Na

Sw
(
K−n
λ

)
fa(n)dn+Sw

(
K−R
λ

)
F̄a (R).

1. λu(R) is decreasing in R and there exists R0
u such that λu(R0

u) = 1

2. λu(R)≥ λ̂(R) for any 0≤R≤K. Therefore, R0
u ≥K − Ẑ.

3. If R≤R0
u, all walk-in customers request a seat, and the chance of getting a seat exceeds T/V .

4. Otherwise, each walk-in customer visits the firm with probability λu(R), and the chance of

getting a seat is T/V .

The basic structure of the equilibrium is similar to what prevails when advance demand is

deterministic. There may exist a range of reservation levels over which all walk-in customers request

service, but once R increases sufficiently, walk-ins begin rationing themselves. There is, however,

an important difference. When advance demand was deterministic, the equilibrium probability of

walking in was proportional to the number of available seats. That is no longer true. Consequently,

the expected return per saved seat is not fixed at πwSw

(
Ẑ
)
/Ẑ and the service provider’s profit is no

longer linear over the range of reservation levels on which the walk-in customers ration themselves.

In fact, the expected return per saved seat is πw
Ψ(λu(R),R)

(K−R)/λu(R)
. Hence, the firm’s total profit as a

function of the reservation level is

Π̂u(R) =

πaSa (R) +πw

[
R∫
Na

Sw (K −n)fa (n)dn+Sw (K −R) F̄a (R)

]
if R≤R0

u

πaSa (R) +πw(K −R) Ψ(λu(R),R)

(K−R)/λu(R)
if R>R0

u.

As F̄a(K)→ 1, R0
u and (K −R)/λu(R) converge to K − Ẑ and Ẑ, respectively, and thus Π̂u(R)

converges to Π̂(R), the firm’s profit function in Section 4. Like Π̂(R), Π̂u(R) is kinked and strictly

concave for reservation levels below R0
u. However, unlike Π̂(R), Π̂u(R) is not linear for R≥R0

u and

may have an interior maximum over (R0
u,K). Furthermore, similar to Section 5.1, the fraction of

saved seats that are utilized, Ψ(λu(R),R)

(K−R)/λu(R)
, is increasing in R.

It is analytically intractable to find the optimal reservation policy over the range of reserva-

tion levels on which walk-in customers ration themselves. However, as in Section 5.1, we are able
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to present a sufficient condition for when the firm saves fewer seats for walk-in customers than

Littlewood’s suggestion, K −RL:

πa
πw

>
Ψ(λ̂(RL),RL)λ̂(RL)

F̄a(RL)[K −RL]
.

In words, the firm gives out more reservations than the Littlewood quantityRL when the marginal

gains from reservations exceed the expected return per seat saved for walk-ins. The intuition

is similar to that in Sections 4 and 5.1. We formally present this observation in the following

proposition:

Proposition 4. Let R̂ρ denote the optimal reservation level. If πa
πw
> Ψ(λ̂(RL),RL)λ̂(RL)

F̄a(RL)[K−RL]
, then RL <

R̂ρ.

Similar to Proposition 3, Proposition 4 establishes a sufficient condition for when it is optimal

to save fewer seats for more valuable walk-in customers if they act strategically. However, that

does not necessarily imply a reservations-only policy. As Figure 3 illustrates through a numerical

example, the firm may choose a reservation level that exceeds the Littlewood quantity but still

saves seats for walk-ins. In this numerical example, RL = 5, and the optimal reservation policy is

8.56.
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Figure 3 Firm profit when demand from each segment is random. Fa(n) = (n/60) for 0 ≤ n≤ 60, Fw(n) = (n/50)

for 0 ≤ n≤ 50, K = 15, πr = 0.8, πw = 1, V = 10 and T = 8.5.

6. Setting capacity

To this point we have shown that the strategic behavior of walk-in customers may induce the

service provider to alter its reservation policy. Whether and to what extent the firm alters its policy

depends on its capacity level. Regardless of whether walk-in customers are worth more or less than

advance customers, the firm can essentially ignore the strategic behavior of the walk-in segment
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if it has enough capacity. That leads to the question of whether the service provider would ever

choose a capacity level at which it must account for its customers behaving strategically.

Here we examine this issue numerically. We suppose that the marginal cost of building capacity is

c > 0 and that both πa and πw are greater than c. Thus both segments are profitable, and the lower

value segment is not just a means to salvage excess capacity. As in Section 5.2, we allow demand

from segment j to be random with continuous distribution Fj (n) on support
[
N j,N j

]
for j = a,w.

This is necessary to have an interesting problem. If one segment’s demand were deterministic as we

assumed earlier, the firm could build adequate capacity for that segment and deal with the other

segment separately.

6.1. Non-Strategic Walk-in Customers

To establish a baseline, we first consider the firm’s optimal capacity choice and reservation policy

when walk-in customers do not behave strategically (i.e., when T = 0). For a fixed capacity K,

expected revenue from advance customers given a reservation level R is πaSa (R) . Given realized

advance sales n, there are K −min{R,n} seats available for walk-ins which yields an expected

revenue of πwSw (K −min{R,n}) . The service provider’s total expected revenue is then:

Π(R,K) = πaSa (R) +πw

R∫
Na

Sw (K −n)fa (n)dn+πwSw (K −R) F̄a (R)− cK.

The above revenue is increasing in R if πa > πw. For a given K, the firm would always set its

reservation level to K. When walk-in customers offer a higher margin, the provider’s expected

revenue given K is strictly concave in R, and is maximized at the Littlewood quantity RL.

Proposition 5. Let R∗ (K) denote the optimal reservation level for a given K when walk-in cus-

tomers do not behave strategically. Let K∗N be the corresponding optimal capacity choice.

1. If πa >πw, R
∗ (K) =K and K∗N solves

(
πw
∫ K
Na
F̄w (K −n)fa (n)dn

)
+πaF̄a (K) = c.

2. If πa <πw, R
∗ (K) =RL and K∗N solves

(
πw
∫ RL

Na
F̄w (K −n)fa (n)dn

)
+πaF̄a (RL) = c.

6.2. Strategic Walk-in Customers

We now consider walk-in customers with a positive travel cost T > 0 who thus behave strategically.

For a given K, the firm’s problem is equivalent to the problem in Section 5.2, and the equilibrium

behavior of walk-in customers is described as in Lemma 4. We assume demand for each segment j

is uniformly distributed on
(
0,N j

)
for j = a,w. In what follows, we vary the travel cost (and thus

manipulate the customers’ net utility) and examine how this impacts the service provider’s capacity

choice and reservation level. To this end, we search over the range of capacity levels between zero
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and Na +Nw to find the optimal capacity for a given T . At each capacity level K, we also search

over the reservation levels between zero and K to find the optimal reservation policy.

We first consider when advance customers are more valuable (See Figure 4(a)). As one would

expect, for low values of T, the walk-in segment does not behave strategically. K∗N and walk-in

net utility are sufficiently large that walk-in customers all request service. The firm’s capacity and

reservation level are fixed at K∗N . However, as T increases, walk-in customers would self-ration if

the firm stuck with a capacity of K∗N . The firm responds by increasing its capacity while making all

of that capacity available to advance customers. As the travel cost rises further, the firm continues

to increase capacity but also limits reservations – guaranteeing some seats will be available for

walk-in customers. These steps induce all walk-in customers to request service. That is, while the

firm never chooses a capacity that leads some walk-in customers not to request service, it does

alter its capacity and reservation policy from the non-strategic case. Note that even though the

firm has more capacity than the non-strategic case, it may limit reservations enough that it serves

on average fewer advance customers.
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Figure 4 Optimal capacity (the solid line) and optimal reservation policy (the dashed line) as a function of T .

For all examples Fw(n) = n
50

for 0 ≤ n ≤ 50, Fa(n) = n
60

for 0 ≤ n ≤ 60, πw = 1, and V = 10. In (a),

πa = 1.3, and c= 0.6. In (b), πa = 1.8, and c= 0.9.

Our first example has a relatively cheap capacity cost; the low value walk-in customers provide

the firm with a 67% mark up over the cost of capacity. Our second example (See Figure 4(b)) has

a higher capacity cost so walk-ins offer only a 11% mark up over the cost of capacity. Here, for

low values of T, the story is similar to what we had before. The firm first follows its strategy for

non-strategic customers and then expands capacity while (possibly) limiting reservations. However,
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for high values of the travel cost, the service provider gives up on inducing all walk-in customers

to request service. It shrinks the available capacity and although it still limits the number of

reservations, the firm saves fewer seats for walk-in customers. In this range, walk-in customers

self-ration, randomizing between requesting service and staying home. As the travel cost increases

further, the firm no longer does any business with the walk-ins. It sets its capacity as if it faced only

advance customers with no salvage opportunity and makes all of its capacity available to them. In

equilibrium, this is in fact the case as the walk-ins expect so few available seats that none request

service.

Figure 5 presents a complementary analysis for the setting when πw > πa. Figure 5(a) presents

the case of cheap capacity. There is again a range in which travel costs are low enough that customer

strategic behavior is not an issue; the firm uses K∗N and RL. However, as T increases, the firm

alters both its capacity and reservation policy. Adding capacity and restricting reservations keeps

all walk-in customers coming in. The story again changes when capacity costs increase (See Figure

5(b)). As in the previous case, when travel costs are sufficiently high, the firm stops trying to

accommodate walk-ins. Capacity is reduced and a greater fraction of capacity is made available to

advance customers. Eventually the firm stops dealing with the walk-in segment.

These examples have shown that it is optimal for the firm to account for strategic interactions

among the walk-in customers when setting its capacity. When capacity is cheap and the net utility

of the walk-in segment is relatively high, this means building additional capacity and possibly

reducing the reservation level. When the capacity is expensive and the net utility is low, less is

done to court walk-in customers. Some (and eventually all) of these customers stay home.

It is also worth noting that strategic walk-ins cost the service provider as soon as it deviates from

what it would do without strategic customers. It at best sees the same demand but incurs a greater

capacity cost. However, the firm always does better than selling only to the advance segment.

7. Conclusion

We have presented a simple model of a service provider selling to two segments. The first segment

attempts to reserve capacity in advance of service while the other demands service immediately.

The key assumptions are that the second, walk-in segment incurs a cost to request service but

cannot verify how much capacity is available relative to market demand. Our model thus addresses

settings such as restaurants or barber shops for which walk-in customers must be physically present

to request service but cannot verify whether the firm has available capacity without visiting the

firm. These assumptions make walking in a risky proposition; a customer may expend the cost of

getting to the service provider but be unable to get a seat. A customer’s decision to walk-in then

depends on how much capacity the firm holds back and the actions of other walk-in customers.
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Figure 5 Optimal capacity (the solid line) and optimal reservation policy (the dashed line) as a function of T .

For all examples Fw(n) = n
50

for 0 ≤ n ≤ 50, Fa(n) = n
60

for 0 ≤ n ≤ 60, πw = 1, and V = 10. In (a),

πa = 0.8, and c= 0.6. In (b), πa = 0.95, and c= 0.8.

We consider two cases that differ in whether advance or walk-in customers are more profitable. In

either setting, when sufficiently few seats are expected to be available, walk-in customers randomize

between walking in and staying home. As fewer and fewer seats are available, a smaller and smaller

share of walk-in customers actually attempts to patronize the firm.

This problem is mitigated when capacity is large. In either setting, a firm with sufficient capacity

can ignore any strategic behavior. When advance customers are more profitable, this implies making

all capacity available for reservations and counting on walk-in traffic to fill any empty seats. When

walk-ins are worth more, it implies solving a newsvendor problem to determine how much capacity

to hold back (Littlewood (1972)).

The service provider deviates from these policies when walk-in customers limit their patronage.

When advance demand is more profitable, the optimal response is to lower the reservation level.

The firm commits to potentially turning away some high-value advance customers in order to

bolster walk-in demand. The firm may have second thoughts on this policy if reservation demand

is strong, but it pays off if advance demand is low by assuring a base level of walk-in traffic to

compensate for low advance demand.

The policy of saving extra seats for walk-ins is intuitively appealing and may carry over to the

setting with more profitable walk-in demand. But it is not always the best policy. It is only optimal

when the margin on advance customers and the travel cost of walk-in customers are sufficiently

low. When these are high, the firm increases the reservation level and thus lowers the number of

seats available to walk-ins. Indeed, it may be optimal deal only with the advance-demand segment.
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We have imposed a number of simplifying assumptions. For example, it is assumed that asking

for a reservation is costless. If there is a fixed cost τ to requesting a reservation, a reservation

customer must weigh the cost of asking with the likelihood of success. (We have in mind a non-

monetary, inconvenience cost akin to the walk-in segment’s travel cost.) When advance demand is

random, the analysis would parallel Lemma 2. If τ is sufficiently low relative to the segment’s value

for the service U, everyone will still request a reservation and our results are unchanged. When the

cost of requesting a reservation is high, advance customers would play a mixed strategy and not all

advance customers would request a reservation. If advance demand is deterministic, the analysis

would mimic Lemma 1 but with a fixed number of seats R instead of an expected number of seats

K − Sa (R) . Advance customers would randomize between requesting a reservation and staying

home. Assuming staying home has a value of zero, they would ask for a reservation with probability

min
{

1, UR
τNa

}
and the number of reservation requests would exceed R. As all reservations will be

given out, our analysis is unchanged. Comparing this outcome with that of Section 3 shows that

uncertainty in the number of available seats is a key driver of the results in Proposition 1. If walk-in

customers could always verify the number of available seats, they would generate enough demand

to fill them all.

There are some obvious ways in which our model can be extended. First, competition is a natural

generalization. We conjecture that how the firms alter their reservation policies from the monopoly

case would depend on their relative capacities as well as how customers value the two firms.

One could also consider allowing advance customers who were denied a reservation to walk in. If

advance customers bring higher revenue, this should increase the range of capacity over which the

firm restricts the number of available reservations since having additional, high-value customers in

the walk-in pool increases the return on seats saved for walk-in customers. If walk-in customers

are worth more, the range of capacity over which the firm increases the reservation level should

increase since advance customers taking walk-in seats now dilutes the value of walk-in sales. More

generally, one could allow a continuum of customer types as opposed to two discrete segments.

Customers would then face the choice of whether to request a reservation or wait and walk in or

simply stay home. The firm’s reservation level would then be relevant even if all customers yield

the same revenue since it could affect the total number of customers who request service.

Finally, one can more fully explore the consequences of disregarding strategic behavior. This is

most pertinent when walk-ins are the more profitable segment. Ignoring strategic behavior, the

service provider would solve a newsvendor model but may then observe a pattern of demand that is

stochastically smaller than he had anticipated. In a repeated environment, one would have a system

similar to Cooper et al. (2006) in which a decision maker repeatedly recalibrates a mis-specified

model ignoring how his action impacts the observed data. If we assume that the firm starts with
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a correct estimate of walk-in demand, it would begin with the Littlewood quantity RL but then

pick higher and higher reservation levels as walk-in customer increasingly ration themselves.

Appendix A: Proofs in Section 3

A.1. Proof of Lemma 1

Following Dana and Petruzzi (2001), the chance of getting a seat is given by the expected fill

rate. If walk-ins randomize with probability λ (R) , the chance any one customer gets a seat is

γ (R) = K−Sa(R)

λ(R)Nw
. If Nw <

V
T

(K −Sa (R)) and λ (R) = 1, γ (R) > T/V and every customer has a

positive expected utility from walking in; λ (R) = 1 is an equilibrium. If Nw >
V
T

(K −Sa (R)) ,

γ (R)≤ T/V if λ (R) = 1, and it cannot be an equilibrium for all customers to enter. For customers

to randomize between walking in and staying home, we must have γ (R) = T/V, which yields (2).

A.2. Proof of Corollary 1

Note that ν ′ (R) is either 0 or −V/TS′a (R). Thus, ν ′ (R)≤ 0 follows from the fact that S′a (R)≤ 0.

Moreover, we have that ν(R)>K −R because V > T and Sa(R)≤R.

A.3. Proof of Proposition 1

The firm’s profit given R is

Π(R) = πaSa (R) +πw (K −Sa (R))−πw

K−ν(R)∫
Na

(K − ν (R)−n)fa (n)dn.

We then have

Π′ (R) = S′a (R)

[
πa−πw−πw

V

T
Fa (K − ν (R))

]
, (10)

Equation (10) yields (4). It is straightforward to show that second order conditions are satisfied.

Note that R∗ ≤K. Hence, if Fa (K − ν (K))< πa−πw
πw

(
T
V

)
, it is optimal to have R∗ =K.

Regarding the monotonicity of R∗, the result is obvious when R∗ =K. For R∗ <K, note that

K−ν(R) = (V/T )Sa(R)− (V/T −1)K, which is increasing in R for a fixed K but decreasing in K

for a fixed R. Further, at optimality K− ν(R) is constant. Hence, an increase in K must be offset

with an increase in R∗.

Appendix B: Proofs in Section 4

B.1. Proof of Lemma 2

Suppose a given walk-in customer actually requests service with probability λ̂ (R) . Given K −
R available seats, expected walk-in sales are then λ̂(R)Sw

(
K−R
λ̂(R)

)
and mean walk-in demand is

λ̂(R)µw. The resulting fill rate is then

λ̂(R)Sw

(
K−R
λ̂(R)

)
λ̂(R)µw

=
Sw

(
K−R
λ̂(R)

)
µw

.
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Following Dana and Petruzzi (2001) (Deneckere and Peck (1995) have similar results), the equi-

librium fill rate must equal T/V . Let Sw(Ẑ) = Tµw
V

. If K −R ≥ Ẑ, the chance of getting a seat

exceeds T/V even if all the walk-in customers request service since Sw(x) is increasing in x, and

thus all walk-in customers request service. If K −R < Ẑ, walk-in customers randomize between

walking in and staying home. For indifference, we need K−R
λ̂(R)

= Ẑ.

B.2. Proof of Proposition 2

For RL ≤K − Ẑ, the firm’s profit is maximized by RL. Beyond RL profit is either decreasing or

maximized at πaK which is less than Π̂ (RL) by the optimality of RL. When RL >K− Ẑ, the firm’s

profit is increasing for R<K− Ẑ. For R between K− Ẑ and K, Π̂′ (R)=πa−πwSw
(
Ẑ
)
/Ẑ, which

yields the second part of the proposition.

Appendix C: Proofs in Section 5

C.1. Proof of Lemma 3

1. By construction, the chance of getting a seat is T
T+ε̂(R)

. Then, it is immediate that only the

walk-in customer with value greater than ε̂(R) will request a service.

2. Define ψ(R,ε) = Sw

(
K−R
Φ(ε)

)
(T + ε). Then, we have that ∂ψ(R,ε)

∂R
< 0 and ∂ψ(R,ε)

∂ε
> 0. Thus, by

the implicit function theorem, ε̂(R) is non-decreasing in the reservation level R.

3. Suppose ε̂(0) ≤ 0. Then, we have that Sw(K) ≥ µw which is a contradiction since Nw > K.

Therefore, 0< ε̂(0)≤ ε̂(R) for any R.

C.2. Proof of Proposition 3

1. Since Sw(R) is concave in R, we have that Sw(R)≥ αSw(R/α) for α≤ 1. Therefore,

Π̂ε(R) = πrR+πwΦ(ε̂(R))Sw

(
K −R

Φ(ε̂(R))

)
≤ πrR+πwSw(K −R) = Π̂L(R).

2. Let ξ(R) = Sw(Z(R))

Z(R)
. Since ε̂(R)) is increasing in R, Sw(Z(R)) is decreasing in R by the equilib-

rium condition 7. Therefore, Z(R) is decreasing in R since Sw(R) is increasing in R. We also have

that Sw(R)/R is decreasing in R. Then, by combining these two, we have that ξ(R) is increasing

in R.

One can rewrite the profit function as follows

Π̂ε(R) = πrR+πwξ(R)(K −R),

and by taking the derivative of that, we have

dΠ̂ε(R)

dR
= [πr−πwξ(r)] +πw

dξ(R)

dR
(K −R).

Note that if πr > πwξ(RL), we have that πr > πwξ(RL) for any R<RL since ξ(R) is increasing

in R. Then, it is clear that dΠ̂ε(R)

dR
> 0 for any R<RL, and thus RL < R̂ε.



Çil and Lariviere: Saving Seats for Strategic Customers 23

C.3. Proof of Lemma 4

1. Define Ψ(R,λ) =
R∫
Na

Sw
(
K−n
λ

)
fa(n)dn+Sw

(
K−R
λ

)
F̄a (R). Then, we have that ∂Ψ(R,λ)

∂R
< 0 and

∂Ψ(R,λ)

∂λ
< 0. Thus, by the implicit function theorem, λu(R) is decreasing in R. Moreover, let R0

u solve

Ψ(R,1) = Tµw
V

. Then, by construction λρ(R0
u) = 1. We want to note that R0

u < 0 if Ψ(0,1)< Tµw
V

and R0
u >K if Ψ(K,1)> Tµw

V
.

2. Using the equilibrium conditions, we have that Sw

(
K−R
λ̂(R)

)
≥ Sw

(
K−R
λu(R)

)
. And this implies that

λu(R)≥ λ̂(R) since Sw(R) is increasing in R.

3. and 4. The proof of the characteristic of the equilibrium is very similar to the proof of Lemma

2.

C.4. Proof of Proposition 4

Using the fact that Sw(x)≥ xF̄w(x) and the equilibrium condition in Lemma 4, we have

F̄w

(
K −RL
λρ(RL)

)
≤ λρ(RL)

K −RL
Sw

(
K −RL
λρ(RL)

)
≤ Ψ(λρ(RL),RL)λρ(RL)

F̄a(RL)[K −RL]
≤ πa
πw

= F̄w(K −RL).

Then, RL should be greater than R0
u because the above inequality implies that λρ(RL)≤ 1. Note

that dΠ̂u(R)

dR
= F̄a(R)

[
πa−πwF̄w(K −R)

]
≥ F̄a(R)

[
πa−πwF̄w(K −RL)

]
= 0 for any R≤R0

u. There-

fore, the firm’s profit is increasing for any R ≤ R0
u. Furthermore, for any R0

u < R ≤ RL, we have

that

dΠ̂u(R)

dR
= πaF̄a(R)−πw

Ψ(λu(R),R)λu(R)

K −R
+πw(K −R)

d

dR

(
λu(R)

K −R

)
≥ F̄a(R)

[
πa−πw

Ψ(λu(R),R)λu(R)

F̄a(R)[K −R]

]
≥ F̄a(R)

[
πa−πw

Ψ(λρ(RL),RL)λρ(RL)

F̄a(RL)[K −RL]

]
≥ 0.

The first two inequalities holds because K−R
λu(R)

and F̄a(R) are decreasing in R while the last one

holds by our assumption. Thus, the profit of the firm is increasing for any R≤RL, which implies

that RL < R̂ρ.

Monotonicity of K−R
λu(R)

: Note that the equilibrium condition in Lemma 4 can be written as
Na∫
Na

max
{
Sw

(
K−n
λu(R)

)
, Sw

(
K−R
λu(R)

)}
fa(n)dn = Tµw

V
. Furthermore, we have that λu(R) is decreasing

in R. Then, K−R
λu(R)

should be decreasing in R because otherwise the left-hand side of the equilibrium

equation would be increasing in R, which is a contradiction.

Appendix D: Proofs in Section 6

D.1. Proof of Proposition 5

1. Let Π(K) be the profit of the firm given the capacity K. Using the optimal reservation policy

of the firm for any K, we have that
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Π(K) =

K∫
0

[πan+πwSw(K −n)]fa(n)dn+πaKF̄a(K)− cK,

when πa >πw. Taking the derivative of the above profit function, we have that

Π′(K) =

 K∫
0

πwF̄w(K −n)fa(n)dn

+πaF̄a(K)− c.

Hence, the results follows by setting Π′(K) = 0.

2. In this case, again using the optimal reservation policy of the firm for any K, we have that

Π(K) =

R∗
N (K)∫
0

[πan+πwSw(K −n)]fa(n)dn+ (πaR
∗
N(K) +πwSw(K −R∗N(K))) F̄a(R

∗
N(K))− cK.

Note that for any K such that Fw(K)≤ πw−πa
πw

, the above profit function can be written as follows:

Π′(K) = πwSw(K)− cK.

Taking the derivative of this profit function, we have that

Π′(K) = πwF̄w(K)− c≥ πa− c > 0,

where the first inequality holds since Fw(K)≤ πw−πa
πw

. Therefore, the firm never chooses a K such

that Fw(K)≤ πw−πa
πw

.

On the other hand, when Fw(K)> πw−πa
πw

, the derivative of the firm’s profit function is:

Π′(K) =

 R∗
N (K)∫
0

πwF̄w(K −n)fa(n)dn

+πaF̄a(R
∗
N(K))− c,

since
dR∗

N (K)

dK
= 1. Then, the result follows by setting Π′(K) = 0.
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