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Abstract

We examine global dynamics under infinite-horizon learning in

New Keynesian models where the interest-rate rule is subject to the

zero lower bound. As in Evans, Guse and Honkapohja (2008), the

intended steady state is locally but not globally stable. Unstable de-

flationary paths emerge after large pessimistic shocks to expectations.

For large expectation shocks that push interest rates to the zero bound,

a temporary fiscal stimulus or a policy of fiscal austerity, appropriately

tailored in magnitude and duration, will insulate the economy from

deflation traps. However “fiscal switching rules” that automatically

kick in without discretionary fine tuning can be equally effective.
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1 Introduction

As is now recognized, a Taylor-type interest-rate rule, when combined with

the Fisher equation, necessarily leads to multiple equilibria. In addition to

the intended steady state at the targeted inflation rate  = ∗, there is a
low-inflation unintended steady state, which in fact is likely to be deflation-

ary. See Figure 1, which plots the Fisher equation  = , where  is

the inflation factor,  is the nominal interest rate factor and −1 is the real
interest-rate factor for discount factor 0    1. The steady state Fisher

equation arises from the usual household Euler equation for consumption,

when consumption is at a steady state. The interest-rate rule  = 1 + ()

is drawn so that it cuts the Fisher inflation from below at the targeted steady

state ∗, in accordance with the Taylor principle. The zero lower bound for
the net interest rate−1 then implies the unintended steady state at , pro-
vided that the interest rate rule is continuous. In fact, as shown by Benhabib,

Schmitt-Grohe, and Uribe (2001), there is a continuum of perfect foresight

paths, starting from an initial   ∗, which converge asymptotically to .
The multiple equilibria issue was emphasized in Benhabib, Schmitt-Grohe,

and Uribe (2001) and Benhabib, Schmitt-Grohe, and Uribe (2002), using

perfect foresight analysis, and was studied under adaptive learning in Evans

and Honkapohja (2005), Evans, Guse, and Honkapohja (2008) and Evans

and Honkapohja (2010).

R



π/β

1

π* L

1 + f(π)

Policy rule for R
Fisher equation

Figure 1: Multiple steady states under normal policy.
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The practical importance of the zero lower bound (ZLB) has become evident

in the US and Europe since the 2007-9 financial crisis, as well as in the US

during 2001-3 and in Japan since the mid 1990s.1 Recently Bullard (2010)

has stressed the risk of extended periods of deflation. These events have

led to extensive policy debates on the effectiveness of both fiscal policy and

quantitative easing when the economy is at the ZLB.

In principle the multiplicity problem can be eliminated by suitable mone-

tary or fiscal policies that ensures that inflation never falls below some value

  . For example, Benhabib, Schmitt-Grohe, and Uribe (2002) argue

that commitment to an aggressive fiscal rule at low inflation rates would

eliminate multiple equilibria via the transversality condition and ensure that

under perfect foresight the economy will necessarily be at the ∗ steady state.
They argue that in some cases a commitment to sufficient monetary expan-

sion at low inflation can also be effective. Similarly, Evans and Honkapohja

(2005) argue that in a flexible price economy a switch to a money growth rule,

if inflation threatens to fall below a threshold   , will ensure convergence

to ∗ under learning.2 Under perfect foresight this mechanism depends on

policy credibility and wealth effects to eliminate all equilibria except the ∗

steady state. There are however two problems with this approach: (i) it relies

too heavily on perfect foresight, and (ii) the mechanism is “too powerful”:

bad outcomes never happen.

In this paper we explore policies designed to avoid and escape the ZLB

in New Keynesian (NK) models with agents who form expectations using

adaptive learning rules. We focus on NK models because, from the policy

viewpoint the problem with deflation has been associated with declining out-

put, high unemployment and/or stagnation. As we will see, these outcomes

can arise under learning if pessimistic expectations lead the economy into

the “deflation trap.”

Under the learning approach a deflation trap is possible. This can most

easily be seen using the one-step ahead Euler-equation (EE) learning ap-

proach, but is also seen under infinite-horizon (IH) learning. Can wealth

effects, like the traditional Pigou effect, ensure an eventual return to the

steady state? Under EE learning there is no role for wealth effects, so we

1The Japanese experience sparked renewed interest in the liquidity trap, see Krugman

(1998), Eggertsson and Woodford (2003), and Svensson (2003).
2A discontinuous non-monotonic interest-rate rule, switching to    for  ≤

 would also eliminate the multiplicity. However, under learning this rule introduces

instabilities.

3



consider IH learning. In Evans and Honkapohja (2010) we still see deflation

traps under IH learning. The transversality condition (TVC) fails to rule

out deflationary spirals (lower and lower deflation rates) because the per-

ceived TVC is always met along these disequilibrium paths. What about

the direct wealth effects of real money and bonds? In Evans and Honkapo-

hja (2010) these effects also fail because households are assumed Ricardian.

Thus bonds and money are not perceived as net wealth. This raises the ques-

tion of whether wealth effects would be effective in avoiding deflation traps

if households do not have Ricardian consumption functions. We investigate

this issue in detail and find that wealth effects can eventually return the

economy to the ∗ steady state, but these mechanisms can be slow and in
some cases this effect fails.3

If wealth effects or lower bounds on inflation are not sufficient to avoid

the deflation trap then fiscal policy may be necessary. We therefore focus

on fiscal policies. We first consider policies that implement a temporary

fiscal stimulus or its converse, a policy of temporary fiscal austerity, under

the assumption that future taxes adjust to keep the government solvent in

the long-run. Under such policies government spending is increased or de-

creased for a fixed span of time. If designed carefully, these policies can yield

convergence of the economy to the intended steady state, and avoid getting

stuck in the liquidity trap. We show that a fiscal stimulus can be effective,

i.e. deliver convergence, if its magnitude is sufficient and its duration is suffi-

ciently short. Interestingly, a policy of fiscal austerity, i.e. a temporary cut in

government spending, can also be effective. This however requires the fiscal

austerity period to be sufficiently long, and the degree of initial pessimism

in expectations to be relatively mild. One disadvantage of fiscal stimulus

and fiscal austerity policies is that both their magnitude and duration have

to be tailored to the initial expectations, so they require swift and precise

discretionary action.

Therefore we turn to a second more automatic fiscal policy, a “switching

fiscal rule,” that ensures a return to the intended steady state ∗. This policy
also eliminates the unintended steady state and ensures that the economy

does not get stuck in a regime of deflation and stagnation. An advantage

of this rule is that it is triggered automatically and does not require discre-

3Another mechanism that can prevent a deflationary spiral is a lower bound  on

inflation due to asymmetric costs of price adjustment. However, it still can lead to falling

output, to stagnation, or to a very slow return to the ∗ steady state. See Appendix.
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tionary fiscal fine tuning.

2 The Model

We start with the same economic framework as in Evans, Guse, and Honkapo-

hja (2008). There is a continuum of household-firms, which produce a dif-

ferentiated consumption good under monopolistic competition and price-

adjustment costs. There is also a government which uses both monetary

and fiscal policy and can issue public debt as described below.

The objective for agent  is to maximize expected, discounted utility

subject to a standard flow budget constraint:

 0

∞X
=0



µ


−1


 


−1
− 1
¶

(1)

  + +  +Υ = −1
−1
 +−1

−1
 −1 +





 (2)

where  is the Dixit-Stiglitz consumption aggregator,  and  denote

nominal and real money balances,  is the labor input into production,

 denotes the real quantity of risk-free one-period nominal bonds held by

the agent at the end of period , Υ is the lump-sum tax collected by the

government, −1 is the nominal interest rate factor between periods −1 and
,  is the price of consumption good ,  is output of good ,  is the

aggregate price level, and the inflation rate is  = −1. The subjective
discount factor is denoted by . The utility function has the parametric form

 =
1−1

1− 1
+



1− 2

µ
−1


¶1−2
− 1+

1 + 
− 

2

µ


−1
− 1
¶2



where 1 2    0. The final term parameterizes the cost of adjusting

prices in the spirit of Rotemberg (1982).4 The household decision problem

is also subject to the usual “no Ponzi game” condition.

Production function for good  is given by

 = 

4We use the Rotemberg formulation in preference to the Calvo model of price stickiness

because it enables us to study global dynamics in the nonlinear system. The linearizations

at the targeted steady state are identical for the two approaches.
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where 0    1. Output is differentiated and firms operate under monopo-

listic competition. Each firm faces a downward-sloping demand curve given

by

 =

µ




¶−1
 (3)

Here  is the profit maximizing price set by firm  consistent with its

production . The parameter  is the elasticity of substitution between

two goods and is assumed to be greater than one.  is aggregate output,

which is exogenous to the firm.

The government’s flow budget constraint is

 + +Υ =  +−1
−1
 +−1

−1
 −1 (4)

where  denotes government consumption of the aggregate good,  is the

real quantity of government debt, and Υ is the real lump-sum tax collected.

We assume that fiscal policy follows a linear tax rule for lump-sum taxes as

in Leeper (1991)

Υ = 0 + −1 (5)

where we will usually assume that −1 − 1    1. This restriction on

 means that fiscal policy is “passive” in the terminology of Leeper (1991)

and implies that an increase in real government debt leads to an increase in

taxes sufficient to cover the increased interest and at least some fraction of

the increased principal.

Initially we assume that  is constant and given by

 = ̄ (6)

From market clearing we have

 +  =  (7)

Monetary policy is assumed to follow a global interest rate rule

 − 1 = 
¡
+1 


+1

¢
 (8)

The function ( ) is taken to be positive and non-decreasing in each ar-

gument. The rule (8) is a nonlinear forward-looking Taylor rule, where the

nominal rate is set by the central bank as a function of expected inflation
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and expected output.5 We assume the existence of ∗ ∗ and ∗ such that
∗ = −1∗ and (∗ ∗) = ∗ − 1. Here ∗ can be viewed as the inflation
target of the Central Bank, and ∗ is the natural rate of output, i.e. the level
of output compatible with steady state inflation ∗We assume that ∗ ≥ 1.
In the numerical analysis we will use the functional form

( ) = (∗ − 1)
³ 

∗

´∗(∗−1)µ 

∗

¶

 (9)

which implies the existence steady state at (∗ ∗). Using ∗ = ∗−1 we
obtain ∗(

∗ ∗) = ∗∗ = −1 We assume that   1. Equations

(6), (5) and (8) constitute “normal policy”.

2.1 Optimal decisions for private sector

As in Evans, Guse, and Honkapohja (2008), the first-order conditions for an

optimum yield

0 = − +



( − 1) 1


(10)

+

µ
1− 1



¶

1



(1−1)



−1 −





1


(+1 − 1)+1

−1 = 

¡
−1+1

−1
+1

¢
and

 = ()
12

Ã¡
1−−1

¢
−1


2−1
+1

!−12


where +1 = +1. We now make use of the representative agent

assumption. In the representative-agent economy all agents  have the same

utility functions, initial money and debt holdings, and prices. We assume

also that they make the same forecasts +1 +1, +1, as well

as forecasts of other variables that will become relevant below. Under these

assumptions all agents make the same decisions at each point in time, so that

 = ,  = ,  =  and  = , and all agents make the same

5The main results below would also hold in the case of a contemporaneous-data Taylor

rule, which is used in Evans, Guse, and Honkapohja (2008).
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forecasts. Imposing the equilibrium condition  =  =   one obtains the

equations




( − 1) = 

µ
 − 

µ
1− 1



¶
−1 −1

¶
+ 




 [(+1 − 1)+1] 

−1 = 

¡
−1+1

−1
+1

¢


 = ()
12

Ã¡
1−−1

¢
−1


2−1
+1

!−12


For convenience we make the assumptions 1 = 2 = 1, i.e. utility of

consumption and of money is logarithmic. It is also assumed that agents

have point expectations, so that their decisions depend only on the mean of

their subjective forecasts. This allows us to write the system as

 = (1−−1 )
−1 (11)

−1 = +1(

+1)

−1, where +1 = 

+1, and (12)




( − 1)  = 

µ
 − 

µ
1− 1



¶
−1 −1

¶
+ 





£¡
+1 − 1

¢
+1

¤


(13)

Equation (13) is the nonlinear New Keynesian Phillips curve that describes

the optimal price-setting by firms. The term ( − 1) arises from the

quadratic form of the adjustment costs, and this expression is increasing

in  over the allowable range  ≥ 12 To interpret this equation, note

that the bracketed expression in the first term on the right-hand side is the

difference between the marginal disutility of labor and the product of the

marginal revenue from an extra unit of labor with the marginal utility of

consumption. The terms involving current and future inflation arise from

the price-adjustment costs resulting from marginal variations in labor sup-

ply. Equation (12) is the standard Euler equation giving the intertemporal

first-order condition for the consumption path. Equation (11) is the money

demand function resulting from the presence of real balances in the utility

function. Note that for our parameterization, the demand for real balances

becomes infinite as  → 1.

We now proceed to rewrite the decision rules for  and  so that they

depend on forecasts of key variables over the infinite horizon. The IH learning

approach in New Keynesian models was first emphasized by Preston (2005)

and Preston (2006), and was used in Evans and Honkapohja (2010) to study

the properties of a liquidity trap.
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2.2 The infinite-horizon Phillips curve

We start with an infinite-horizon version of the Phillips curve (13). Let

 = ( − 1) (14)

The appropriate root for given  is  ≥ 1
2
and so we need to impose  ≥

−1
4
to have a meaningful model. Making use of the aggregate relationships

 = 
1
 and  =  −  we can rewrite (13) as

 =




(1+)
 −  − 1


( − )

−1 + 
+1

Solving this forward with  = ̄ we obtain

 =




(1+)
 −  − 1


( − ̄)−1 + (15)





∞X
=1

−1
¡
+

¢(1+) −  − 1


∞X
=1


µ

+

+ − ̄

¶


where government spending is assumed to be constant over time. The ex-

pectations are formed at time  and variables at time  are assumed to be in

the information set of the agents. We will treat (15), together with (14), as

the temporary equilibrium equations that determine  given expectations

{+}∞=1. Later, we will consider a case where  varies over time and then
+ − ̄ becomes + = (+ − +)

 in equation (15).

In the Phillip’s curve relationship (15) one might wonder why inflation

does not also depend directly on the expected future aggregate inflation rate.6

Equation (10) is obtained from the first-order conditions using (3) to elim-

inate relative prices. Because of the representative agent assumption, each

firm’s output equals average output in every period. Since firms can be as-

sumed to have learned this to be the case, we obtain (15). An alternative

procedure would be to start from (10), iterate it forward and use the demand

function to write the third term on the right-hand side of (10) in terms of

the relative price. This would lead to a modification of (15) in which future

relative prices also appear, but using the representative agent assumption

and assuming that firms have learned that all firms set the same price each

period, the relative price term would drop out.

6There is an indirect effect of expected inflation on current inflation via current output.
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2.3 The consumption function

To derive the consumption function from (12) we use the flow budget con-

straint and the NPG (no Ponzi game) to obtain an intertemporal budget

constraint. First, we define the asset wealth

 =  +

as the sum of holdings of real bonds and real money balances and write the

flow budget constraint as

 +  =  −Υ + −1 + −1 (1−−1)−1 (16)

where  = −1. Note that we assume () = , i.e. the rep-

resentative agent assumption is being invoked. Iterating (16) forward and

imposing

lim
→∞

(
+)

−1+ = 0 (17)

where


+ =

Y
=1

+

with + = +−1+, we obtain the life-time budget constraint of the
household

0 = −1 + Φ +

∞X
=1

(
+)

−1Φ
+ (18)

= −1 +  −  +

∞X
=1

(
+)

−1(+ − +) (19)

where

Φ
+ = + −Υ

+ − + + (

+)

−1(1−
+−1)


+−1 (20)

+ = Φ
+ + + = + −Υ

+ + (

+)

−1(1−
+−1)


+−1

Here all expectations are formed in period , which is indicated in the notation

for 
+ but is omitted from the other expectational variables.

Invoking the relations

+ = 


+ (21)

10



which is an implication of the consumption Euler equation (12) we obtain

(1−)−1 = −1+−Υ+
−1(1−−1)−1+

∞X
=1

(
+)

−1+ (22)

As we have + = + −Υ
+ + (


+)

−1(1−
+−1)


+−1, the final term

in (22) is

∞X
=1

(
+)

−1(+ −Υ
+) +

∞X
=1

(
+)

−1(+)
−1(1−

+−1)

+−1

and using (11) we have

∞X
=1

(
+)

−1(+)
−1(1−

+−1)

+−1

=

∞X
=1

(
+)

−1(+)
−1(−

+−1

+−1) = −



1− 


We obtain


1 + 

1− 
= −1 +

−1


+  −Υ +

∞X
=1

(
+)

−1(+ −Υ
+)

Finally, we invoke the flow budget identity ++Υ− = −1
−1
 +−1,

see (4), and obtain the consumption function



∙
1 + 

1− 
− 



 − 1
¸
=  +  −  +

∞X
=1

(
+)

−1(+) (23)

where + = + −Υ
+.

3 Temporary Equilibrium and Learning

3.1 Equilibrium Conditions

We now assume that agents form expectations using steady state learning,

which is formulated as follows. Steady-state learning with point expectations

is formalized as

+ =  for all  ≥ 1 and  = −1 + (−1 − −1) (24)
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for  =    . Here  is called the “gain sequence,” and measures

the extent of adjustment of estimates to the most recent forecast error. In

stochastic systems one often sets  = −1 and this “decreasing gain” learning
corresponds to least-squares updating. Also widely used is the case  = ,

for 0   ≤ 1, called “constant gain” learning. In this case it is usually

assumed that  is small.7 Stability of the steady states is examined below

using the simple learning rules just described.

The temporary equilibrium equations with steady state learning are:

1. The aggregate demand

 =  +

∙
1 + 

1− 
− 

1 +  ()

 ()

¸−1 "
 +  −  +

∞X
=1

(
+)

−1

#

=  +

∙
1 + 

1− 
− 

1 +  ()

 ()

¸−1 ∙
 +  −  +


1 +  ()− 



¸
≡  + (  


   ) (25)

where it is assumed that agents know the interest rate rule.

2. The nonlinear Phillips curve

 = −1[̃( 

+1 


+2)] (26)

≡ −1[( 

 )]

≡ 2( 

 )

where

() ≡ ( − 1) (27)

( 

 ) ≡





µ
−1(1+) − ¡1− −1

¢ 

( − )

¶
(28)

+




µ
(1− )−1

µ
−1( )

(1+) − ¡1− −1
¢ 


¶¶


and where until Section 4 we assume that  =  − ̄

7For discussion and analytical results concerning adaptive learning in a wide range of

macroeconomic models, see for example Sargent (1993), Evans and Honkapohja (2001),

Sargent (2008), and Evans and Honkapohja (2009).
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3. Bond dynamics

 + =  −Υ +
−1


−1 +
−1


 (29)

4. Money demand

 = 


 − 1 (30)

5. Interest rate rule

 = 1 +  (  

 ) .

The state variables are −1, −1, and −1. The system in general has

four expectational variables: output  , inflation  , income net of taxes 



and net output  . In cases where government spending is constant we

have  =  − ̄, so that it is not necessary to introduce expectations of

net output separately. The evolution of expectations is given by

 = −1 + (−1 − −1) (31)

 = −1 + (−1 − −1) (32)

 = −1 + (−1 − −1) (33)

 = −1 + (−1 − −1) (34)

We note that equation (33) is used below only in cases where the households

are Non-Ricardian.

3.2 The Case of Ricardian Consumers

The preceding derivation of the consumption function assumes households

that do not act in a Ricardian way, i.e. they do not impose the intertemporal

budget constraint (IBC) of the government. For Ricardian consumers we

modify the consumption function as in Evans and Honkapohja (2010).8 From

(4) one has

 + +Υ =  +−1
−1
 + −1 or

 = ∆ + −1 where

∆ =  −Υ − +−1
−1
 

8Evans, Honkapohja, and Mitra (2012) state the assumptions under which Ricardian

Equivalence holds along a path of temporary equilibria with learning if agents have an

infinite decision horizon.
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By forward substitution, and assuming

lim
→∞

+ + = 0 (35)

we get

0 = −1 +∆ +

∞X
=1

−1
+∆+ (36)

Note that ∆+ is the primary government deficit in + , measured as gov-

ernment purchases less lump-sum taxes and less seigniorage. Under the Ri-

cardian Equivalence assumption, we assume that agents at each time  expect

this constraint to be satisfied, i.e.

0 = −1 +∆ +

∞X
=1

(
+)

−1∆
+ where

∆
+ = + −Υ

+ −
+ +

+−1(

+)

−1 for  = 1 2 3    

A Ricardian consumer assumes that (35) holds. His flow budget con-

straint (16) can be written as:

 = −1 + , where

 =  −Υ − −  + −1 −1

The relevant transversality condition is now (35). Iterating forward and using

(21) together with (35) yields the consumption function

 = (1− )

Ã
 −  +

∞X
=1

(
+)

−1(+)

!
 (37)

For details see Evans and Honkapohja (2010).

We now consider the case where government spending is constant  = ̄.

In this case we can assume that + = + − ̄. For simplicity, in this

section we drop the dependence of the interest rate rule on expected output

so that  = 0 and  = 1+ () With steady state learning this leads to

the aggregate output equation

 = ̄ + (−1 − 1)( − ̄)

µ


1 + ()− 

¶
(38)

≡ 1(

  


)
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The temporary equilibrium is now given by the Phillips curve (26), the out-

put equation with Ricardian consumption function (38) and the independent

equation for the evolution of debt and money. Note that the Ricardian sys-

tem just depends on expectations of output and inflation, so that the paths

of inflation and output do not depend on the evolution of bonds and real

balances. The (small gain) dynamics can therefore be described by the E-

stability differential equation using a two-dimensional phase diagram. (See

Evans and Honkapohja (2001).)

The E-stability differential equations are given by




= 1(

 )−  (39)




= 2(

 )− 

where using (26) we define 2(
 ) = 2(1(

 ) ). The steady state

equations for   and  are

 =  − ̄

−1+ + 


(1− ) ( − 1) + 

µ
1− 1



¶
−1 = 0

1 + () = −1

Steady states are defined by  = 1 + () together with the the Fisher

relationship  = −1. For   1 there are two steady states, (∗ ∗) and
( ) with   ∗. Local E-stability results for the Ricardian case are
given by Proposition 2 of Evans and Honkapohja (2010): the ∗ steady state
is locally stable under learning, while for small , the  steady state is

locally unstable under learning, with the local learning dynamics taking the

form of a saddle.9

One can also look at the global learning dynamics using a phase diagram.

For typical parameter value the learning dynamics are as shown in Figure

2. The figure is constructed with the following parameter values  = 25,

∗ = 102,  = 099,  = 07,  = 350,  = 21,  = 1, and  = 02. While

 = 15 is the usual value for the interest rate rule, we choose  = 25 to

9Instability of the low inflation steady state under learning and the divergent paths were

earlier described in McCallum (2002), Eusepi (2007), and Evans, Guse, and Honkapohja

(2008). Bullard and Cho (2005) show the possibility of “escape paths” toward the low-

inflation outcome.
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clearly separate the intended and unintended steady states in the numerical

analysis. Our results are robust to using  = 15 The calibrations of the

target inflation rate ∗ the discount factor  the labor share  and the

approximate GDP share of government spending,  are standard. We set

the labor supply elasticity  = 1 The value of  = 21 was chosen so that the

implied markup of prices over marginal cost at the steady state is 5 percent,

which is consistent with the evidence presented by Basu and Fernald (1997).

Following Sbordone (2002), we set , the parameter governing the disutil-

ity of deviating from the inflation target, at  = −175(1 + ) = 350. We

also assume that interest rate expectations + = +−1+ revert to the
steady state value −1 for  ≥  . In Figure 2 we use  = 28 which under a

quarterly calibration corresponds to 7 years.10

0.98 1.00 1.02 1.04 pe

0.935

0.940

0.945

0.950

0.955

0.960

ye

Figure 2: Global learning dynamics — the Ricardian case.

The main features that stand out are first, the local stability of the ∗

steady state. There is in fact a “corridor of stability” defined by a set of

expectations that converge to the ∗ steady state. (The term “corridor” is

due to Leijonhufvud (1973).) This corridor is defined by the region enclosed

within the stable manifold of the unintended steady state ( ). Second,

we see that convergence to ∗ is locally cyclical. Third, it can be seen that
there is a heteroclinic orbit connecting the  steady state with the 

∗ steady
state. Finally, we observe that for initial points outside the corridor of stabil-

ity the trajectory of expectations is (at least eventually) led into a deflation

10This choice is roughly in line with data on the aftermath of financial crises. See

Reinhart and Rogoff (2009).
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trap in which ( ) fall steadily over time. Along these paths we have

falling actual output and inflation, intensifying as deflation sets in. Even

though the financial wealth of agents is getting very large over time along

such a deflationary path, Ricardian agents do not respond by sufficiently in-

creasing consumption, as they expect that the increase in their wealth will

be offset by future growth in taxes.

3.3 Wealth Effects and Non-Ricardian Consumers

We next consider Non-Ricardian consumers. A traditional argument against

the liquidity trap dates back to Pigou (1943) and Patinkin (1965). In prin-

ciple, wealth effects could prevent a deflation trap: if declining prices lead

to higher perceived wealth, agents will increase their spending. This can be

investigated numerically. Our simulations indicate that wealth effects can

indeed stabilize the economy at ∗.
The dynamics under learning when consumers are not Ricardian are given

in sub-section 3.1. These describe the temporary equilibrium, and the adjust-

ment of expectations. Taken together they constitute the dynamic system

that determines the real-time evolution of the economy. Because government

bonds and real balances are state variables that affect consumption and out-

put, expectations   are no longer sufficient statistics for the economy

and it is now not possible to characterize the dynamics of the system using

a phase diagram as in (39) and Figure 2. We therefore directly simulate the

real-time dynamics of the system under learning.

To illustrate the possibility of wealth effects successfully leading the econ-

omy back to the targeted steady state we provide a numerical simulation.

Assume that initial expectations are pessimistic, with (0) = 09425 and

(0) = 09925. These expectations are below the low inflation steady state

values and therefore in the deflation trap region when households are Ricar-

dian. In the case of non-Ricardian households discussed in Section 2.3 the

evolution of output and inflation also depend on wealth dynamics. We are

interested in whether these wealth dynamics can lead the economy to the

targeted steady state. We find that this indeed is possible, but that there

is sensitivity to the tax policy parameters and to the initial wealth of the

households.
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In the non-Ricardian case we slightly change the interest-rate rule (9) to

( ) =  + (∗ − 1− )
³ 

∗

´∗(∗−1)µ 

∗

¶



for small   0 so that  is bounded above 1 + . This prevents money

demand from becoming unbounded for large deflation rates and low levels

of output. This issue is irrelevant in the Ricardian case but is important in

the non-Ricardian case because of perceived wealth effects. In the numerical

examples we set  = 0001, which corresponds to a floor on net interest rates

of one-tenth of one percent.

As an illustration consider the tax function (5) with 0 = 005 and  =

−1−1+0001, so that fiscal policy is passive in the sense of Leeper (1991).11
We set  = 003 to match the fraction of real balances to consumption in the

targeted steady state (see (30)), and we set the gain parameter  = 001 The

initial values of real balances and real bonds are(0) = 075 and (0) = 077,

which are close to the values of  and  at the targeted steady state for this

tax function. Figure 3 illustrates the dynamics of inflation and output from

this starting point.

1.00 1.02 1.04 1.06 1.08 1.10 1.12 p
0.92

0.93

0.94

0.95

0.96

0.97
y

Figure 3: Inflation, output dynamics with non-Ricardian consumers

11The other parameters are set at their previous values. We also set (0) = (0) and

(0) = (0). The value of  = 50 corresponds to the output coefficient of linearized

Taylor rule of 05 at the intended steady state.
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Figure 3 shows actual inflation and output on horizontal and vertical axes,

respectively. There is a wide clockwise cycle where inflation and output at

first overshoot (∗ ∗) then spiral below ( ) and finally follow a cyclical
convergent path to (∗ ∗). The time paths of money and bonds eventually
also converge to their steady state values. Thus, in this example wealth effects

do lead to eventual convergence to the targeted steady state, in contrast to

the divergent deflationary path that would arise with Ricardian consumers.

However, the path in Figure 3 is highly cyclical, and has extended periods of

low output and substantial deflation with big swings in inflation and output.

Convergence from pessimistic initial expectations to the targeted steady

state appears to be generally robust to starting points for expectations and

initial real bonds and real balances.12 This result however is sensitive to the

value of , in that If  is decreased, for example to  = −1 − 1 − 0001 ≈
00091, then the level of bonds eventually explodes. The reason is that now

fiscal policy is active in the sense of Leeper (1991). At the unintended steady

state, monetary policy is passive, and learning dynamics lead the economy

towards the intended steady state. However, at the intended steady state,

both fiscal and monetary policies are now necessarily active, and financial

wealth levels will diverge. For non-Ricardian consumers this leads to insta-

bility under learning: the economy appears to move around the targeted

steady state for a period but eventually bonds follow an explosive path and

the economy diverges.13

From a policy perspective, we see that it is indeed possible for wealth

effects to provide a mechanism for the economy to escape from a deflationary

situation and to return eventually to the targeted steady state. However, this

mechanism relies on consumers being non-Ricardian and on appropriate tax

policy. Furthermore, the path back to the targeted steady state is cyclical

with wide swings in inflation and output.

12For initial money and bond values (0) and (0) at levels that are very high, for

example 15 times tGDP or higher, we see an extensded period of cycling aroung the low

steady state before finally converging to the targeted steady state.
13These results are not surprising in view of the (flexible-price, short decision-horizon)

results in Evans and Honkapohja (2005). In that paper under steady state learning there is

convergence to ∗ but with debt exploding under active fiscal policy. In the current paper
with non-Ricardian households the explosive debt path eventually destabilizes inflation

and output as well.
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4 Fiscal Policy

We now examine the role of fiscal policy when large adverse expectation

shocks make deflation traps and stagnation a serious risk.14 We focus on

changes in government purchases of goods and services, rather than tax

changes with unchanged government spending, because in our set-up, if

households are Ricardian, then tax changes by themselves are neutral. In

practice, tax changes financed by changes in government debt can have

macroeconomic effects, e.g. if some households are liquidity constrained or

are non-Ricardian.15 However, our objective is to demonstrate that suitable

fiscal rules, based on temporary increases in government spending, can pre-

vent the economy from falling into or becoming stuck in the deflation trap

and can return the economy to the targeted steady state, even if tax changes

by themselves are neutral. Therefore in this section we focus on Ricardian

households. We will briefly return to the non-Ricardian consumers in the

next section.

4.1 Temporary Fiscal Stimulus

A traditional countercyclical policy for an economy facing deflation with

declining or stagnant output is a fiscal stimulus taking the form of increased

government expenditures above their normal levels for a finite time horizon,

after which they revert to lower levels. We want to study the effectiveness of

such a policy under the Ricardian assumption that the government remains

solvent in the long run, and that consumers know and expect this. In this IH

learning framework agents know the trajectory of government expenditures,

including the date at which the expenditures will return to lower levels,

and they incorporate this knowledge into their optimal consumption and

pricing decisions. Then the consumption function, aggregate demand and

the Phillips curve reflect these forward-looking expectations of the agents.

More explicitly, we consider a simple case of anticipated changes in gov-

ernment policy. Suppose that there is an initial pessimistic expectations

shock that lowers (0) and (0) sufficiently so that the economy is in the

14Evans and Honkapohja (2010) show that for some points within the deflation trap

region, even committing to zero net nominal interest rates forever may be insufficient for

escaping the inflation trap.
15There is empirical evidence of positive impacts of tax reductions on aggregate output

— see Romer and Romer (2010).
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deflation trap region. Under normal policy the economy will fail to return

to the targeted steady state. We therefore consider fiscal policies in which

there is a temporary increase in ̄ (from its initial steady state level ̄ = ̄1),

taking the form

 =

½
̄0 for  = 0  0
̄1 for  = 0 + 1 



where ̄0  ̄1. Here we assume that the policy is announced at  = 0 and is

credible. Thus agents understand that government spending will be contin-

ued at the higher level ̄0 through period 0 and that it will be reduced to its

previous level beginning at 0+1. We are here studying the economy under

adaptive learning, but with anticipated future policy changes, as discussed

in Evans, Honkapohja, and Mitra (2009).

For gross output agents are assumed to have expectations given by the

simple adaptive rules described in Section 3. For net output, however, ex-

pectations are given by

 =

½
 − ̄0 for  =   0
 − ̄1 for  = 0 + 1 

 (40)

so that agents incorporate the known future path of government spending

into their forecasts.

The variables  that appear in the Phillips curve (15), and in the

consumption function (37) are now defined according to (40). This requires

evaluating the weighted sums of  using the appropriate value of govern-

ment expenditures for each . The computations are straightforward, and

the consumption function is now given by:

 = (1− )

µ
 − ̄0 + (


 − ̄0)

1− ( )−0
( )− 1

+ ( − ̄1)
( )

−0

( )− 1
¶

For the interest rate rule (9) we set  = 25 and  = 50, a calibration

approximately consistent with the standard Taylor-rule parameters.
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Figure 4:  and  under a fiscal stimulus.

Given a specific fiscal stimulus, we can proceed as in Section 3.2, except

that we now report real-time dynamics based on the adaptive learning rules

of Section 3. Figure 4 illustrates one example of the dynamics of output and

inflation for 0 = 6, and with ̄0 = 021, ̄1 = 02. Thus there is a fiscal

stimulus, taking the form of a 5% increase in government spending for six

periods. We set initial expectations at [0] = 09425 and [0] = 0993.

These are in the deflation trap region, and without the fiscal stimulus there

would be falling inflation and output. Under the fiscal stimulus the economy

instead converges to the intended steady state, though after a wide swing

that takes inflation well above the intended steady state.

An important feature of the policy is that the length of the temporary

fiscal stimulus is crucial for its efficacy. For example, if, holding ̄0 = 021,

̄1 = 02, we set 0 = 1 2 or 0 ≥ 37 then the fiscal stimulus does not enable
the economy to return to the targeted steady state. In fact, the size of the

stimulus and the degree of pessimism of expectations also matter for the

efficacy of fiscal stimulus. We now examine this more systematically.16

We consider four different degrees of pessimism of expectations as follows:

Mild:  = 0993 and  = 09425.

Large:  = 0991 and  = 09425

Severe:  = 0985 and  = 09425

Extreme:  = 0985 and  = 09.

We find that a temporary fiscal stimulus always works for a range of govern-

16Also the parameter  describing statistical forecasting horizon affects the quantitative

results. Through period  +  agents use their forecasts (), whereas after  +  , they

assume that the real interest rate has reverted to normal and set +() = −1 for    .

We set  = 28 i.e. agents think it will take 7 years for real interest rates to return to

normal steady state.
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ment spending ̄0 and length of stimulus 0. For 0 = 1, a temporary fiscal

stimulus works for sufficiently large ̄0 Often, increasing length of stimulus

0 somewhat allow the use of a smaller value of ̄0 to achieve convergence to

the intended steady state.

Some specific results are as follows:

Mild pessimism: ̄0 = 0205 yields desired convergence for stimulus of

length 0 = 11     22, while with this 0, the policy fails if 0 is outside this

range. A smaller value of ̄0 = 0204 is never effective while ̄0 = 25 makes

the 0 range larger.

Large pessimism: A large value of spending ̄0 = 025 delivers desired

convergence for 0 = 1     37. A smaller value ̄0 = 021 fails.

Severe pessimism: With 0 = 1, ̄0 = 034 is effective.

Extreme pessimism: With 0 = 5, ̄0 = 08 is effective.

Thus, the fiscal stimulus must be adequate in size and length to push

the economy out of the deflation trap region. The intuition for these results

is that the demand stimulus from a temporary increase in  outweighs the

partially offsetting reduced consumption from the higher present value of

taxes, which for Ricardian households equals the present value of government

spending. A permanent increase in ̄ in this set-up does not lift the economy

out of the deflation trap, because the permanently higher taxes exactly offset

the increase in government spending. In contrast, a large enough increase in

government spending for a limited period will add enough stimulus to lead

the economy back to the targeted steady state.

4.2 Fiscal Austerity

Perhaps surprisingly, it turns out that a carefully designed restrictive fiscal

policy can in certain cases lift the economy out of the liquidity trap, provided

it is applied for a sufficient long period of time. We now examine this pos-

sibility for the different degrees of pessimism of expectations.17 The results

are as follows:

Mild pessimism: cutting government spending to ̄0 = 019 is effective in

moving the economy out of the deflation trap when the length of the policy

is in the range 0 ≥ 33 but this policy fails for smaller values of 0 A more
severe policy ̄0 = 015 is effective also for 0 ≥ 28.
17In this section the forecasting horizon is set at  = 60 For shorter horizons, for

example for  = 28 fiscal austerity seems to be ineffective. On the other hand, temporary

fiscal stimuli continue to be effective for large values of 
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Large pessimism: ̄0 = 019 is effective for length 0 ≥ 67.
Severe pessimism: ̄0 = 015 is effective for length 0 ≥ 100
Extreme pessimism: Fiscal austerity is never effective.

We remark that in terms of the length of policy 0 stimulus and austerity

policies have an interesting contrast. The efficacy of the former requires a

limited duration whereas a very long period of the latter is necessary. In

all our examples the efficacy of stimulus policies imply that the austerity

policies of same absolute magnitude and duration are not effective and vice

versa. However, there are also cases for which neither policy is effective for

certain intermediate durations. As an example consider the stimulus policy

̄0 = 025 under mild pessimism for a forecasting horizon  = 60 A stimulus

policy with 0 ≥ 25 is ineffective in lifting the economy out of the deflation
trap as is an austerity policy of ̄0 = 015 for 0  28.

In general, we note that efficacy of austerity policies is more sensitive to

the degree of pessimism of expectations as suggested by the following subtle

intuition. If the economy is in a region in which the ex-ante real interest rate

factor is less than −1 then the consumption function dictates an increase
in consumption flow stemming from a fixed permanent decrease in taxes,

which is larger than the decrease in . The present value is the same when

measured by , but because   −1, households will substitute toward
current consumption. Formally consider a permanent change in government

spending to ̄0  ̄1 Then actual output, for given expectations, is given by

 = ̄0 + (
−1 − 1)( − ̄0)(


 − 1)  ̄1 + (

−1 − 1)( − ̄1)(

 − 1)

provided −1    This effect only holds for a range of 
 in which monetary

policy delivers a low . For larger deflation rates, however, i.e.   0985,

this policy cannot work for initial expectations in which () falls over time

under normal policy. Thus for sufficiently pessimistic initial expectations we

would expect permanent or very long cuts in government spending to fail as

a policy that takes the economy to a steady state.

The above analysis also implies that under adaptive learning, whether

households are Ricardian or not, a fiscal stimulus can give rise to a “fiscal

multiplier” quite different than a policy of fiscal austerity, depending on the

magnitude and duration of the policy and on the initial expectations. This

suggests that in an adaptive learning context, results of empirical studies

of the fiscal multiplier will be sensitive to initial expectations and to the

duration and magnitude of policies.
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In this section we have shown that the success of the temporary fiscal pol-

icy in general depends on fine tuning the magnitude, direction and duration

of the policy. We next look at an endogenous switching rule for government

spending that eliminates deflation and stagnation and that also appears to

have reasonable performance overall.

5 Fiscal Switching Rules

To prevent deflationary spirals, or deflation with declining or stagnant out-

put, we now explore government spending policies designed to ensure that

expected inflation eventually exceeds some threshold ̃  . Specifically, if

  ̃ the government sets  ≥ ̄ as needed to achieve an output level 
such that realized inflation  exceeds expected inflation  . In addition, if

 ≥ ̃, the government sets  ≥ ̄ as needed to ensure that  exceeds the

threshold ̃.18

To implement this fiscal switching policy, we assume that the government

monitors expectations. Given expectations, from equation (25) it can set 

to achieve a level of 19 From equations (26), (27) and (28) it is apparent

that  can be chosen to attain the required level of inflation. This procedure

ensures that eventually  ≥ ̃ We simulate this economy using the same

parameters used in Figure 4 above for Ricardian consumers, except that we

now use the fiscal switching rule.20 For the numerical results in this Section

we set ̃ =  + 0005 = 09981

Two points should be noted about this form of fiscal policy. First, it is

not necessary to decide in advance the magnitude and duration of the fiscal

stimulus. Second, in contrast to the preceding section we now do not assume

that agents know the future path of government spending. Instead agents use

adaptive learning to forecast the future values of their net income in addition

to forecasts of inflation and output.

18If   ̃ we set  to ensure that  ≥  + and if 

 ≥ ̃ we set  to ensure that

 ≥ ̃ + , for some small   0. Numerically we set  = 0005. Note that if 

 ≥ ̃

and if  ≥ ̃ for  = ̄ then the rule sets  = ̄.
19In effect the government observes inflation monthly, and would be able to adjust

spending in order to maintain ̃   on a quarterly basis. Aggressive automatic stabilizers

may be useful for this purpose.
20In the section we use net rather than gross output in the interest-rate rule, because

of the potential large variation in gross output due to government spending. The results

presented here are not significantly affected by this issue.
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Figure 5:  and  under a fiscal switching rule, Ricardian households

We start with the case in which consumers are Ricardian. In contrast

to the economy depicted in Figure 2, the fiscal switching rule eliminates the

unintended steady state with the inflation rate : the path starting in the

vicinity of  converges to the intended steady state. This is illustrated in

Figure 5. A strong fiscal stimulus generates a steep rise in output and lifts

the economy out of the deflation trap and the economy eventually converges

to the intended steady state. For initial expectations in Figure 5, which are

the same as in Figure 4, the dynamics would be unstable without the fiscal

switching rule. Compared to the policy used in Figure 4, the main difference

is that there is a stronger but shorter fiscal stimulus under the fiscal switching

rule. There is a also a brief small fiscal stimulus used at a later date when

inflation again is a low values.

In all four cases of pessimism illustrated in Section 4 our switching rule

generates paths that converge to the targeted steady state, and the perfor-

mance of these rules is comparable or somewhat better. The main advantage

of the fiscal switching rule is that it provides a robust policy for ensuring that

the economy does not get stuck in the deflation trap, and it does so using

an “automatic” fiscal policy that does not require tuning to the economic

situation.

The results with non-Ricardian consumers are similar: the fiscal switching

rule eliminates the unintended steady state  and ensures convergence to
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the targeted steady state. Although in the non-Ricardian case, both paths

with and without policy show cyclical convergence, the path without policy

is more volatile. Table 1 illustrates these results for the case of extreme

pessimism, i.e. :  = 0985 and  = 09.

Table 1: Non-Ricardian Households

Without policy With policy

maximum inflation,  1.371 1.140

minimum output,  0.805 0.900

Thus, even in the non-Ricardian case in which wealth effects do eventually

return the economy to the intended steady states, the fiscal switching policy

improves performance.

As illustrated for both the Ricardian and Non-Ricardian cases examined,

the fiscal switching rule, together with our interest rate rule, yields conver-

gence to the targeted steady state after an initial overshooting of inflation

and output. The overshooting arises from the necessary big initial policy

responses that are needed to counteract the initial pessimistic expectations.

We also checked that with this combination of rules there is convergence to

the targeted steady state from even more pessimistic initial expectations.

In summary, our analysis suggests that one policy that might be used

to combat stagnation and deflation, in the face of pessimistic expectations,

would consist of a fiscal switching rule combined with a Taylor-type rule for

monetary policy. The fiscal switching rule applies when expected or actual

inflation falls below a critical value. The rule specifies increased government

spending in a way that ensures that expected inflation eventually exceeds the

critical threshold. This part of the policy eliminates the unintended steady

state and makes sure that the economy does not get stuck in a regime of

deflation and stagnation. Furthermore, unlike the temporary fiscal policies

discussed in the previous section, the switching rules do not require fine

tuning and are triggered automatically. Remarkably, our simulations indi-

cate that this combination of policies is successful regardless of whether the

households are Ricardian or non-Ricardian.

6 Conclusion

We have studied how the an economy can fall into a deflation or low inflation

trap with declining or stagnant output, and explored the design of policies
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to avoid such outcomes. Under the perfect foresight view, announced money

growth and/or fiscal policies can in principle avoid low inflation. The ef-

fectiveness of such policies however depends on the assumption of perfect

foresight, on policy credibility, and on wealth effects to eliminate all equilib-

ria except the targeted ∗ steady state. Furthermore such policies are “too
powerful” under perfect foresight: bad outcomes never happen.

If we adopt a more plausible adaptive learning view, outcomes with low

inflation and output are still possible. We find that policies of temporary

fiscal stimulus, and in some cases fiscal austerity, can eliminate liquidity traps

and can lead the economy back to its intended steady state. However, such

policies require careful fine tuning of the magnitude, direction and duration of

the policy. A “fiscal switching rule” that automatically triggers a stimulus of

high government expenditures when inflation falls below a critical threshold is

equally effective in stabilizing the economy, but does not require complicated

and discretionary fine tuning, and therefore seems preferable.

7 Appendix: Asymmetric Price Adjustment

If the costs of price adjustment are asymmetric and are higher for reductions

in prices, then this can provide a lower bound on deflation.21 Consider for

example the case where the cost of price adjustment in the utility function

takes the form

 =

½


2
( − 1)2 for  ≥ 

+∞ for   

where  = −1. To examine the implications of asymmetric price-
adjustment costs, we return to the case of Ricardian consumers discussed in

Section 3.2. The temporary equilibrium map for inflation is modified to

 =

½
2( 


 ) for 2( 


 ) ≥ 

 for 2( 

 )  

Because the Ricardian case is a forward-looking two-dimensional system with

adaptive learning, one can illustrate the possible results using phase diagrams

showing the expectational learning dynamics. There are three cases:

1.   . In this case 
∗ is globally stable, since    is no longer

possible.

21See Evans (2012) for the stagnation regime.
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2.    The deflation trap continues to exist. If  −  is small,

however, in the region      there is gradually falling output.

3.  = . The stagnation regime. In this case there can be convergence

to any 0     with  = .

Figures 6 illustrates the phase diagram for the E-stability differential

equations in ( )-space for the case    in which a deflation trap

continues to exist. In this case the targeted steady state ∗ is locally stable
and, as can be seen, the basin of attraction can be fairly large. However,

if output expectations are low, the economy may converge to the trap even

if initially inflation expectations are low but above . The main difference

from the symmetric price-adjustment cost set-up examined in the paper is

that deflation is now bounded from below at rate . Thus, in this case,

persistently low and falling output is compatible with steady deflation at low

levels.
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Figure 6: asymmetric cost adjustment with   

We briefly describe the other two cases of asymmetric adjustment costs.

In all cases the targeted steady state is locally stable under learning. If

 = , there is also a locally stable continuum of steady states at  =

 =  and   , where  is the level of output associated with the

29



usual  steady state. E-stability dynamics indicate that under learning the

economy can converge to any point on the continuum from initial conditions

(0) &  and (0) sufficiently low. Similar convergence to the continuum

can happen for initial (0) .  and (0) sufficiently low. In the case   
the economy under learning is globally stable at the targeted steady state

∗. However, for  only slightly above , pessimistic initial expectations
((0) (0)) can lead to extended periods of low output and mild deflation

before inflation expectations are pulled up towards  and a recovery begins.

As noted, for example, by Bullard (2010), we do observe economies ex-

hibiting extended periods of very low inflation or mild deflation. The cases

 =  and    show that steady mild deflation is consistent with a de-

flation trap region that leads to persistently falling or persistently low levels

of output. The analysis of fiscal policy provided in this paper could easily be

extended to the various cases of asymmetric price adjustment.
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