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1 Introduction

The field of spectral geometry is a vibrant and active one. In these brief notes, we will
sketch some of the recent developments in this area. Our choice is somewhat idiosyncratic
and owing to constraints of space necessarily incomplete. It is impossible to give a com-
plete bibliography for such a survey. We refer Carslaw and Jaeger [41] for a comprehensive
discussion of problems associated with heat flow, to Gilkey [54] and to Melrose [91] for
a discussion of heat equation methods related to the index theorem, to Gilkey [56] and to
Kirsten [84] for a calculation of various heat trace and heat content asymptotic formulas,
to Gordon [66] for a survey of isospectral manifolds, to Grubb [73] for a discussion of
the pseudo-differential calculus relating to boundary problems, and to Seeley [116] for an
introduction to the pseudo-differential calculus. Throughout we shall work with smooth
manifolds and, if present, smooth boundaries. We have also given in each section a few ad-
ditional references to relevant works. The constraints of space have of necessity forced us
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to omit many more important references than it was possible to include and we apologize
in advance for that.

We adopt the following notational conventions. Let(M, g) be a compact Riemannian
manifold of dimensionm with smooth boundary∂M . Let Greek indicesµ, ν range from
1 to m and index a local system of coordinatesx = (x1, ..., xm) on the interior ofM .
Expand the metric in the formds2 = gµνdx

µ◦dxν weregµν := g(∂xµ
, ∂xν

) and where we
adopt theEinstein conventionof summing over repeated indices. We letgµν be the inverse
matrix. The Riemannian measure is given bydx := g dx1...dxm for g :=

√
det(gµν).

Let ∇ be the Levi-Civita connection. We expand∇∂xν
∂xµ

= Γνµσ∂xσ
whereΓνµσ

are theChristoffel symbols. Thecurvature operatorR and correspondingcurvature tensor
R are may then be given byR(X,Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ] and given by
R(X,Y, Z,W ) := g(R(X,Y )Z,W ).

We shall let Latin indicesi, j range from1 tom and index a local orthonormal frame
{e1, ..., em} for the tangent bundle ofM . Let Rijkl be the components of the curvature
tensor relative to this base; theRicci tensorρ and thescalar curvatureτ are then given by
settingρij := Rikkj andτ := ρii = Rikki. We shall often have an auxiliary vector bundle
V and an auxiliary connection given onV . We use this connection and the Levi-Civita
connection to covariantly differentiate tensors of all types and we shall let ‘;’ denote the
components of multiple covariant differentiation.

Let dy be the measure of the induced metric on the boundary∂M . We choose a local
orthonormal frame near the boundary ofM so thatem is the inward unit normal. We let
indicesa, b range from1 tom−1 and index the induced local frame{e1, ..., em−1} for the
tangent bundle of the boundary. LetLab := g(∇ea

eb, em) denote thesecond fundamental
form. We sum over indices with the implicit range indicated. Thus the geodesic curvature
κg is given byκg := Laa. We shall let ‘:’ denote multiple tangential covariant differentia-
tion with respect to the Levi-Civita connection of the boundary; the difference between ‘;’
and ‘:’ being, of course, measured by the second fundamental form.

2 The geometry of operators of Laplace and Dirac type

In this section, we shall establish basic definitions, discuss operators of Laplace and of
Dirac type, introduce the DeRham complex, and discuss the Bochner Laplacian and the
Weitzenb̈och formula; [55] provides a good reference for the material of this section.

Let D be a second order partial differential operator on the space of smooth sections
C∞(V ) of a vector bundleV overM . ExpandD = −{aµν∂xµ

∂xν
+aσ∂xσ

+b}where the
coefficients{aµν , aµ, b} are smooth endomorphisms ofV ; we suppress the fiber indices.
We say thatD is anoperator of Laplace typeif aµν = gµν id. A first order operatorA
on C∞(V ) is said to be an operator ofDirac type if A2 is an operator of Laplace type.
If we expandA = γν∂xν

+ γ0, thenA is an operator of Dirac type if and only if the
endomorphismsγν satisfy theClifford commutation relationsγνγµ + γµγν = −2gµν id.

Let A be an operator of Dirac type and letξ = ξνdx
ν be a smooth1-form onM .

We letγ(ξ) = ξνγ
ν define aClifford module structureon V ; this is independent of the

particular coordinate system chosen. We can always choose a fiber metric onV so thatγ
is skew-adjoint. We can then construct a unitary connection∇ onV so that∇γ = 0. Such
a connection is calledcompatible. If ∇ is compatible, we expandA = γν∇∂xν

+ ψA; the
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endomorphismψA is tensorial and does not depend on the particular coordinate system
chosen; it does, of course, depend on the particular compatible connection chosen.

2.1 The DeRham complex

The prototypical example is given by the exterior algebra. LetC∞(ΛpM) be the space
of smoothp forms. Letd : C∞(ΛpM) → C∞(Λp+1M) be exterior differentiationand
let δ = d∗ be the adjoint operator,interior differentiation. If ξ is a cotangent vector,
let ext(ξ) : ω → ξ ∧ ω denote exterior multiplication, and letint(ξ) be the dual, interior
multiplication. Letγ(ξ) := ext(ξ)−int(ξ) define a Clifford module on the exterior algebra
Λ(M). Sinced + δ = γ(dxν)∇∂xν

, d + δ is an operator of Diract type. The associated
Laplacian∆M := (d+ δ)2 = ∆0

M ⊕ ...⊕∆p
M ⊕ ...⊕∆m

M decomposes as the direct sum
of operators of Laplace type∆p

M on the space of smoothp formsC∞(ΛpM). One has
∆0
M = −g−1∂xµ

ggµν∂xν
.

It is possible to write thep-form valued Laplacian in an invariant form. Extend the
Levi-Civita connection to act on tensors of all types. Let∆̃Mω := −gµνω;µν define the
Bochneror reduced Laplacian. LetR give the associated action of the curvature tensor.
TheWeitzenb̈ock formula then permits us to express the ordinary Laplacian in terms of the
Bochner Laplacian in the form∆M = ∆̃M + 1

2γ(dx
µ)γ(dxν)Rµν . This formalism can

be applied more generally:

Lemma 2.1 Let D be an operator of Laplace type on a Riemannian manifold. There
exists a unique connection∇ onV and there exists a unique endomorphismE ofV so that
Dφ = −φ;ii −Eφ. If we expressD locally in the formD = −{gµν∂xν

∂xµ
+ aµ∂xµ

+ b}
then the connection1-formω of∇ and the endomorphismE are given by

ων = 1
2 (gνµaµ + gσεΓσεν id) and E = b− gνµ (∂xν

ωµ + ωνωµ − ωσΓνµσ) .

Let V be equipped with an auxiliary fiber metric. ThenD is self-adjoint if and only if
∇ is unitary andE is self-adjoint. We note that ifD is theSpin Laplacian, then∇ is the
spin connection on the spinor bundle and the Lichnerowicz formula [86] yields, with our
sign convention, thatE = − 1

4τ id whereτ is the scalar curvature.

3 Heat trace asymptotics for closed manifolds

Throughout this section, we shall assume thatD is an operator of Laplace type on a closed
Riemannian manifold(M, g). We shall discuss theL2 spectral resolution ifD is self-
adjoint, define the heat equation, introduce the heat trace and the heat trace asymptotics,
present the leading terms in the heat trace asymptotics, and discuss the form valued Lapla-
cian; [41, 54, 116] are good references for the material of this section and other references
will be cited as needed.

We suppose thatD is self-adjoint. There is then acomplete spectral resolutionofD on
L2(V ). This means that we can find a complete orthonormal basis{φn} for L2(V ) where
theφn are smooth sections toV which satisfy the equationDφn = λnφn. Let ||k denote
theCk-norm.

Theorem 3.1 Let φ ∈ L2(V ). Expandφ =
∑∞
n=1 cnφn in theL2 sense where one has

cn :=
∫
M

(φ, φn). If φ ∈ C∞(V ), then this series converges in theCk topology for any
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k; φ ∈ C∞(V ) if and only if limn→∞ nkcn < ∞ for any k. The set of eigenvalues
is discrete. Each eigenvalue appears with finite multiplicity and there are only a finite
number of negative eigenvalues. If we enumerate the eigenvalues so thatλ1 ≤ λ2 ≤ ...,
thenλn ∼ n2/m as n→∞. There exist constantsνk > 0 andCk > 0 so that one has
norm estimates||φn||k ≤ Cknνk for all k, n.

This yields the familiarWeyl asymptotic formula[127] giving the eigenvalue growth.
For example, ifD = −∂2

θ on the circle, then the eigenvalues grow quadratically since
the associated spectral resolution is given by{n2, 1√

2π
einθ}n∈Z. TheL2 expansion of

Theorem 3.1 in this setting then becomes the usual Fourier series expansion forφ and
one has the familiar result that a function on the circle is smooth if and only if its Fourier
coefficients are rapidly decreasing.

Let the initial temperature distribution be given byφ ∈ L2(V ). Impose the classical
time evolution for the subsequent temperature distribution without additional heat input:

(∂t +D)u = 0 for t > 0 and lim
t↓0

u(t, ·) = φ in L2 .

Thenu(t, ·) = e−tDφ wheree−tD is given by the functional calculus. This operator is
infinitely smoothing; we haveu(t, x) =

∫
M
K(t, x, x̃)φ(x̃)dx̃ for a smooth kernel function

K. If D is self-adjoint, let{λn, φn} be a spectral resolution ofD. Then

K(t, x, x̃) :=
∑
n

e−tλnφn(x)⊗ φn(x̃) : Vx̃ → Vx .

Theorem 3.1 implies this series converges uniformly in theCk topology fort ≥ ε > 0.
Let F ∈ C∞(End(V )) be an auxiliary endomorphism used for localizing;F is of-

ten referred to as asmearing endomorphism. The localized heat traceTrL2

{
Fe−tD

}
is

analytic fort > 0. As t ↓ 0, there is a complete asymptotic expansion [117]

TrL2

{
Fe−tD

}
∼
∞∑
n=0

an(F,D)t(n−m)/2 .

The coefficientsan(F,D) are theheat trace asymptotics; an(F,D) = 0 if n is odd.
In Section 5 we will consider manifolds with boundary and the corresponding invariants
are non-trivial forn both even and odd. There exist locally computable endomorphisms
eMn (D)(x) of V which are defined for allx ∈M so that

an(F,D) =
∫
M

Tr{FeMn (D)}(x)dx . (3.a)

The invariantseMn (D) are uniquely characterized by Equation (3.a).
We use Lemma 2.1 to expressD = D(g,∇, E) where∇ is a uniquely defined connec-

tion onV and whereE is a uniquely defined auxiliary endomorphism ofV . LetΩij be the
endomorphism valued components of the curvature defined by the connection∇.

Theorem 3.2 LetF ∈ C∞(End(V )) be a smearing endomorphism.

(1) a0(F,D) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a2(F,D) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ id)}dx.
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(3) a4(F,D) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2

+12τ ;kk id+5τ2 id−2|ρ|2 id+2|R|2 id+30ΩijΩij)}dx.

(4) a6(F,D) =
∫
M

Tr{F (( 18
7! τ ;iijj + 17

7! τ ;kτ ;k − 2
7!ρij;kρij;k −

4
7!ρjk;nρjn;k

+ 9
7!Rijkl;nRijkl;n+ 28

7! ττ ;nn− 8
7!ρjkρjk;nn+ 24

7! ρjkρjn;kn+ 12
7!RijklRijkl;nn

+ 35
9·7!τ

3 − 14
3·7!τ |ρ|

2 + 14
3·7!τ |R|

2 − 208
9·7!ρjkρjnρkn −

64
3·7!ρijρklRikjl

− 16
3·7!ρjkRjnliRknli −

44
9·7!RijknRijlpRknlp −

80
9·7!RijknRilkpRjlnp) id

+ 1
45Ωij;kΩij;k + 1

180Ωij;jΩik;k + 1
60Ωij;kkΩij + 1

60ΩijΩij;kk− 1
30ΩijΩjkΩki

− 1
60RijknΩijΩkn −

1
90ρjkΩjnΩkn + 1

72τΩknΩkn + 1
60E;iijj + 1

12EE;ii

+ 1
12E;iiE + 1

12E;iE;i + 1
6E

3 + 1
30EΩijΩij + 1

60ΩijEΩj + 1
30ΩijΩijE

+ 1
36τE;kk + 1

90ρjkE;jk + 1
30τ ;kE;k − 1

60E;jΩij;i + 1
60Ωij;iE;j + 1

12EEτ

+ 1
30Eτ ;kk + 1

72Eτ
2 − 1

180E|ρ|
2 + 1

180E|R|
2)}dx.

There are formulas available fora8 anda10; we refer to Amsterdamski, Berkin, and
O’Connor[1], to Avramidi [9], and to van de Ven [124] for further details.

There is also information available about the general form of the heat trace asymptotics
an for all values ofn; we refer to Avramidi [10] and to Branson et al. [36] for further
details. These formulas play an important role in the compactness results we shall discuss
presently in Theorem 4.6. LetD be an operator of Laplace type on a closed Riemannian
manifoldM . Let ∆E = −E;kk. Setεn = (−1)n/{2n+1 · 1 · 3 · ... · (2n+ 1)}.
Theorem 3.3 Let ‘+...’ denote lower order terms.

(1) If n ≥ 1, thena2n(F,D) = εn(4π)−m/2
∫
M

Tr{F (−(8n+ 4)∆n−1E

−2n∆n−1τ id+...}dx.

(2) If n ≥ 3, thena2n(D) = εn(4π)−m/2 Tr{(n2 − n− 1)|∇n−2τ |2 id

+2|∇n−2ρ|2 id +4(2n+ 1)(n− 1)∇n−2τ · ∇n−2E

+2(2n+ 1)∇n−2Ω · ∇n−2Ω +4(2n+ 1)(2n− 1)∇n−2E · ∇n−2E + ...}dx.

We note that Polterovich [109, 110] has introduced a formalism for computing in closed
form the heat trace asymptoticsan for all n.

If one specializes these formulas fora0, a2, anda4 to the case in whichD is the form
valued Laplacian, one has the following result of Patodi [106]. Introduce constants:

c(m, p) = m!
p!(m−p)! ,

c0(m, p) = c(m, p)− 6c(m− 2, p− 1),
c1(m, p) = 5c(m, p)− 60c(m− 2, p− 1) + 180c(m− 4, p− 2),
c2(m, p) = −2c(m, p) + 180c(m− 2, p− 1)− 720c(m− 4, p− 2),
c3(m, p) = 2c(m, p)− 30c(m− 2, p− 1) + 180c(m− 4, p− 2) .

Theorem 3.4 (1) a0(∆
p
M ) = (4π)−m/2c(m, p) Vol(M).

(2) a2(∆
p
M ) = (4π)−m/2 1

6c0(m, p)
∫
M
τdx.

(3) a4(∆
p
M ) = (4π)−m/2 1

360

∫
M
{c1(m, p)τ2 + c2(m, p)ρ2 + c3(m, p)R2}dx.
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Such formulas play an important role in the study of spectral geometry. There is a
long history involved in computing these invariants. Weyl [127] discovered the leading
term in the asymptotic expansion,a0. Minakshisundaram and Pleijel [93, 94] examined
the asymptotic expansion for the scalar Laplacian in some detail. Thea2 anda4 terms in
the asymptotic expansion were investigated by McKean and Singer [90] in the scalar case
and by Patodi [105] for the form valued Laplacian. Thea6 term for the scalar Laplacian
was determined by Sakai [111] and the general expression fora2, a4 anda6 for arbitrary
operators of Laplace type was worked out in [53]. As noted above, there are formulas for
a8 anda10. The literature is a vast one and we refer to [54, 56] more details and additional
references.

We now discuss the relationship between the heat trace asyptotics and the eta and zeta
functions in a quite general context. LetP be a positive, self-adjoint elliptic partial differ-
ential operator on a closed Riemannian manifoldM . Thene−tP is an infinitely smoothing
operator which is given by a smooth kernel function. LetQ be an auxiliary partial differ-
ential operator. ThenTrL2{Qe−tP } is analytic fort > 0 and ast ↓ 0, there is a complete
asymptotic expansion with locally computable coefficients:

TrL2{Qe−tP ) ∼
∞∑
n=0

an(P,Q)t(n−m−ord(Q))/ ord(P )

The generalized zeta function is given by:

ζ(s, P,Q) := TrL2(QP−s) for <(s) >> 0 .

The Mellin transform may be used to relate the zeta function to the heat kernel. LetΓ be
the classical Gamma function. We refer to Seeley [116, 117] for the proof of Assertions
(1) and (2) and to [50] for the proof of Assertion (3) in the following result. Assertion (2)
generalizes eigenvalue growth estimates of Weyl [127] given previously in Theorem 3.1.

Theorem 3.5 (1) If Re(s) >> 0, thenζ(s, P,Q) = Γ(s)−1
∫∞
0
ts−1 TrL2(Qe−tP )dt.

Γ(s)ζ(s, P,Q) has a meromorphic extension to the complex plane with isolated sim-
ple poles ats = (m+ ord(Q)− n)/ ord(P ) for n = 0, 1, ... and

Ress=(m+ord(Q)−n)/ ord(P ) Γ(s)ζ(s, P,Q) = an(P,Q).

(2) The leading heat trace coefficienta0(P ) is non-zero. Letλ1 ≤ ... ≤ λn ≤ ... be the
eigenvalues ofP . Thenlimn→∞ nλ−m/ ord(P )

n = Γ( m
ord(P ) )

−1a0(P ).

(3) LetA(t) andB(t) be polynomials of degreea ≥ 0 and b > 0 whereB is monic.
There are constants soan(B(P ), A(P )) = Σk≤k(n)c(k, n,m,A,B)ak(P ).

4 Hearing the shape of a drum

Let Spec(D) = {λ1 ≤ λ2 ≤ ...} denote the set of eigenvalues of a self-adjoint operator of
Laplace type, repeated according to multiplicity. One is interested in what geometric and
topological properties ofM are reflected by the spectrum. Good references for this section
are [26, 54, 66]; other references will be cited as appropriate.

One says thatM andM̃ are isospectralif Spec(∆0
M ) = Spec(∆0

M̃
); p-isospectral

refers to∆p. M. Kac [81] in his seminal article raised the question of determining the
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geometry, at least in part, of the underlying manifold from the spectrum of the scalar
Laplace operator∆0

M . It is not possible in general to completely determine the geome-
try:

Theorem 4.1 (1) Milnor [92]: There exist isospectral non isometric flat tori of dimen-
sion 16.

(2) Vigneras [125]: There exist isospectral non-isometric hyperbolic Riemann surfaces.
Furthermore, ifm ≥ 3, there exist isospectral hyperbolic manifolds with different
fundamental groups.

(3) Ikeda [79]: There exist isospectral non-isometric spherical space forms.

(4) Urakawa [123]: There exist regionsΩi in flat space form ≥ 4 which are isospectral
for the Laplacian with both Dirichlet and Neumann boundary conditions but which
are not isometric.

These examples listed above come in finite families. We say that a family of metricsgt
onM is a non-trivial family of isospectral manifolds if(M, gt) and(M, gs) are isospectral
for everys, t, but(M, gt) is not isometric to(M, gs) for s 6= t.

Theorem 4.2 (1) Gordon-Wilson [67]: There exists a non-trivial family of isospectral
metrics on a smooth manifoldM which are not conformally equivalent.

(2) Brooks-Gordon [37]: There exists a non-trivial family of isospectral metrics on a
smooth manifoldM which are conformally equivalent.

There is a vast literature in the subject. In particular, Sunada [121] gave a general
method for attacking the problem which has been exploited by many authors.

Despite this somewhat discouraging prospect, there are a number of positive results
available. For example Berger [27] and Tanno [122] showed that a sphere or projective
space is characterized by its spectral geometry, at least in low dimensions:

Theorem 4.3 LetMi andM2 be closed Riemannian manifolds of dimensionm ≤ 6
which are isospectral. IfM1 has constant sectional curvature c, so doesM2.

Patodi [106] showed additional geometrical properties are determined by the form val-
ued Laplacian. The following is an easy consequence of Theorem 3.4.

Theorem 4.4 LetM1 andM2 be closed Riemannian manifolds which arep-isospectral
for p = 0, 1, 2. Then:

(1) If M1 has constant scalar curvatureτ = c, then so doesM2.

(2) If M1 is Einstein, so isM2.

(3) If M1 has constant sectional curvaturec, then so doesM2.

For manifolds with boundary, suitable boundary conditions must be imposed. Formulas
that will be discussed presently in Section 5 have been used by Park [104] to show:

Theorem 4.5 LetM1 andM2 be compact Einstein Riemannian manifolds with smooth
boundaries with the same constant scalar curvaturesτM1 = τM2 . Also assume thatM1

andM2 are isospectral for both Neumann and Dirichlet boundary conditions. Then:

(1) IfM1 has totally geodesic boundary, then so doesM2.
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(2) IfM1 has minimal boundary, then so doesM2.

(3) IfM1 has totally umbillic boundary, then so doesM2.

(4) IfM1 has strongly totally umbillic boundary, then so doesM2.

There are also a number of compactness results. Theorem 3.3 plays a central role in
the following results:

Theorem 4.6 (1) Osgood, Phillips, and Sarnak [102]: Families of isospectral metrics
on Riemann surfaces are compact modulo gauge equivalence.

(2) Brooks, Perry, and Yang [39] and Chang and Yang [42]: Ifm = 3, then families of
isospectral metrics within a conformal class are compact modulo gauge equivalence.

(3) Brooks, Perry, and Petersen [38]: Isospectral negative curvature manifolds contain
only a finite number of topological types.

5 Heat trace asymptotics of manifolds with boundary

In previous sections, we have concentrated on closed Riemannian manifolds. LetD be an
operator of Laplace type on a compact Riemannian manifoldM with smooth boundary
∂M . Good basic references for the material of this section are [56, 73, 84]. Many authors
have contributed to the material discussed here; we refer in particular to the work of [40,
76, 78, 82, 83, 90, 93, 94, 96, 120, 127].

We impose suitable boundary conditionsB to have a well posed problem;B must
satisfy a condition called thestrong Lopatenski-Shapiro condition. We shall suppress tech-
nical details for the most part in the interests of simplicity. The boundary conditions we
shall consider have physical underpinnings. Dirichlet boundary conditions correspond to
immersing the boundary in ice water; Neumann boundary conditions correspond to an in-
sulated boundary. Robin boundary conditions are a generalization of Neumann boundary
conditions where the heat flow across the boundary is proportional to the temperature on
the boundary. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. Transfer boundary conditions arise in the
study of branes. Both these conditions reflect the heat flow between two inhomogeneous
mediums coupled along a common boundary or brane. Transmission boundary conditions
correspond to having the two components pressed tightly together. By contrast, heat trans-
fer boundary conditions correspond to a loose coupling between the two components. We
refer to Carslaw and Jaeger [41] for further details.

Through out the remainder of this section, we letF ∈ C∞(End(V )) define a localizing
or smearing endomorphism and letB denote a suitable boundary operator; in what follows,
we shall give a number of examples. LetDB be the realization of an operatorD of Laplace
type with respectB; the domain ofDB is then the set of all functionsφ in a suitable
Schwarz space so thatφ satisfies the appropriate boundary conditions, i.e. so thatBφ = 0.
Greiner [68, 69] and Seeley [118, 119] showed that there was a full asymptotic expansion
ast ↓ 0 of the form:

TrL2{Fe−tDB} ∼
∞∑
n=0

an(F,D,B)t(n−m)/2 .
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There are locally computable endomorphismsen(D)(x) defined on the interior and locally
computable endomorphismse∂Mn,k (D,B)(y) defined on the boundary so that

an(F,D,B) =
∫
M

Tr{FeMn (D)}(x)dx

+
n−1∑
k=0

∫
∂M

Tr{(∇kem
F )e∂Mn,k (D,B)}(y)dy .

The invariantseMn (D) ande∂Mn,k (D,B) are uniquely characterized by this identity; the in-
terior invariantseMn (D) are not sensitive to the boundary condition and agree with those
considered previously in Equation (3.a). The remainder of Section 5 is devoted to giving
explicit combinatorial formulas for these invariants.

A function φ satisfies Dirichlet boundary conditions ifφ vanishes on∂M . Thus the
Dirichlet boundary operator is defined by:

Bφ := φ|∂M . (5.a)

Theorem 5.1 [Dirichlet boundary conditions] LetF ∈ C∞(End(V )).

(1) a0(F,D,B) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a1(F,D,B) = −(4π)−(m−1)/2 1
4

∫
∂M

Tr{F}dy.

(3) a2(F,D,B) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ)}dx+ (4π)−m/2 1
6

∫
∂M

Tr{2FLaa
−3F;m}dy.

(4) a3(F,D,B) = − 1
384 (4π)−(m−1)/2

∫
∂M

Tr{96FE+F (16τ +8Ramam+7LaaLbb
−10LabLab)− 30F;mLaa + 24F;mm}dy.

(5) a4(F,D,B) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2 + 30Ω2 + 12τ ;kk

+5τ2 − 2|ρ2|+ 2|R2|)}dx+ (4π)−m/2 1
360

∫
∂M

Tr{F (−120E;m + 120ELaa
−18τ ;m + 20τLaa + 4RamamLbb − 12RambmLab + 4RabcbLac + 24Laa:bb
+ 40

21LaaLbbLcc −
88
7 LabLabLcc + 320

21 LabLbcLac) + F;m(−180E − 30τ

− 180
7 LaaLbb + 60

7 LabLab) + 24F;mmLaa − 30F;iim}dy.

Neumann boundary conditions are defined by the operatorBNφ := φ;m|∂M ; the asso-
ciated boundary conditions define a perfectly insulated boundary with no heat flow across
the boundary. It is convenient in many applications to consider slightly more general con-
ditions called Robin boundary conditions that permit the heat flow to be proportional to the
temperature. LetS be an auxiliary endomorphism ofV over∂M . The Robin boundary
operator is defined by:

BSφ := (φ;m + Sφ)|∂M . (5.b)

Theorem 5.2 [Robin boundary conditions] LetF ∈ C∞(End(V )).

(1) a0(F,D,BS) = (4π)−m/2
∫
M

Tr{F}dx.
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(2) a1(F,D,BS) = (4π)(1−m)/2 1
4

∫
∂M

Tr{F}dy.

(3) a2(F,D,BS) = (4π)−m/2 1
6

∫
M

Tr{F (6E+ τ)}dx+(4π)−m/2 1
6

∫
∂M

Tr{F (2Laa
+12S) + 3F;m}dy.

(4) a3(F,D,BS) = (4π)(1−m)/2 1
384

∫
∂M

Tr{F (96E + 16τ + 8Ramam + 13LaaLbb
+2LabLab + 96SLaa + 192S2 +F;m(6Laa + 96S) + 24F;mm}dy.

(5) a4(F,D,BS) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk+60τE+180E2 +30Ω2 +12τ ;kk

+5τ2 − 2|ρ|2 + 2|R|2)}dx+ (4π)−m/2 1
360

∫
∂M

Tr{F (240E;m + 42τ ;m

+24Laa:bb+120ELaa+20τLaa+4RamamLbb−12RambmLab+4RabcbLac
+ 40

3 LaaLbbLcc + 8LabLabLcc + 32
3 LabLbcLac + 360(SE + ES) + 120Sτ

+144SLaaLbb + 48SLabLab + 480S2Laa + 480S3 + 120S:aa) + F;m(180E

+30τ + 12LaaLbb + 12LabLab + 72SLaa + 240S2) +F;mm(24Laa + 120S)

+30F;iim}dy.

When discussing the Euler characteristic of a manifold with boundary in Section 6
subsequently, it will useful to consider absolute and relative boundary conditions. Letr be
the geodesic distance to the boundary. Near the boundary, decompose a differential form
ω ∈ C∞(Λ(M)) in the formω = ω1 + dr ∧ ω2 where theωi are tangential differential
forms. We define the relative boundary operatorBr and the absolute boundary operatorBa
for the operatord+ δ by setting:

Br(ω) = ω1|∂M andBa(ω) = ω2|∂M . (5.c)

There are induced boundary conditions for the associated Laplacian(d + δ)2. They are
defined by the operator̄Br/aφ := Br/aφ⊕ Br/a(d+ δ)φ.

The boundary conditions defined by the operatorsB̄r/a provide examples of a more
general boundary condition which are calledmixed boundary conditions. We can combine
Theorems 5.1 and 5.2 into a single result by using such boundary conditions. We assume
given a decompositionV |∂M = V+ ⊕ V−. Extend the bundlesV± to a collared neighbor-
hood of∂M by parallel translation along the inward unit geodesic rays. Setχ := Π+−Π−.
Let S be an auxiliary endomorphism ofV+ over∂M . Themixed boundary operatormay
then be defined by setting

Bχ,Sφ := Π+(φ;m + Sφ)|∂M ⊕Π−φ|∂M . (5.d)

One setsχ = id, Π+ = id, andΠ− = 0 to obtain the Robin boundary operator of Equation
(5.b); one setsχ = − id, Π+ = 0, andΠ− = id to obtain the Dirichlet boundary operator
of Equation (5.a). The formulas of Theorem 5.1 and Theorem 5.2 then be obtained by this
specialization.

Theorem 5.3 [Mixed boundary conditions] LetF = f id for f ∈ C∞(M). Then:

(1) a0(F,D,Bχ,S) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a1(F,D,Bχ,S) = (4π)−(m−1)/2 1
4

∫
∂M

Tr{Fχ}dy.
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(3) a2(F,D,Bχ,S) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ)}dx

+(4π)−m/2 1
6

∫
∂M

Tr{2FLaa + 3F;mχ+ 12FS}dy.

(4) a3(F,D,Bχ,S) = (4π)−(m−1)/2 1
384

∫
∂M

Tr{F (96χE + 16χτ + 8χRamam
+[13Π+ − 7Π−]LaaLbb + [2Π+ + 10Π−]LabLab + 96SLaa + 192S2

−12χ:aχ:a) + F;m([6Π+ + 30Π−]Laa + 96S) + 24χF;mm}dy.

(5) a4(F,D,Bχ,S) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2

+30Ω2 +12τ ;kk+5τ2−2|ρ|2 +2|R|2)}dx+(4π)−m/2 1
360

∫
M

Tr{F ([240Π+

−120Π−]E;m + [42Π+ − 18Π−]τ ;m + 120ELaa + 24Laa:bb + 20τLaa
+4RamamLbb − 12RambmLab + 4RabcbLac + 720ES + 120Sτ + [ 28021 Π+

+ 40
21Π−]LaaLbbLcc + [ 16821 Π+ − 264

21 Π−]LabLabLcc + [ 22421 Π+ + 320
21 Π−]

×LabLbcLac + 144SLaaLbb + 48SLabLab + 480S2Laa + 480S3 + 120S:aa

+60χχ:aΩam − 12χ:aχ:aLbb − 24χ:aχ:bLab − 120χ:aχ:aS) + F;m(180χE

+30χτ + [ 847 Π+ − 180
7 Π−]LaaLbb + 240S2 + [ 847 Π+ + 60

7 Π−]LabLab
+72SLaa − 18χ:aχ:a) + F;mm(24Laa + 120S) + 30F;iimχ}dy.

(6) a5(F,D,Bχ,S) = (4π)−(m−1)/2 1
5760

∫
∂M

Tr{F{360χE;mm + 1440E;mS

+720χE2 + 240χE:aa + 240χτE + 48χτ ;ii + 20χτ2 − 8χρijρij
+8χRijklRijkl − 120χρmmE − 20χρmmτ + 480τS2 + 12χτ ;mm

+24χρmm:aa + 15χρmm;mm + 270τ ;mS + 120ρmmS2 + 960SS:aa

+16χRammbρab − 17χρmmρmm − 10χRammbRammb + 2880ES2

+1440S4 + (90Π+ + 450Π−)LaaE;m + ( 111
2 Π+ + 42Π−)Laaτ ;m

+30Π+LabRammb;m + 240LaaS:bb + 420LabS:ab + 390Laa:bS:b

+480Lab:aS:b + 420Laa:bbS + 60Lab:abS + ( 487
16 Π+ + 413

16 Π−)Laa:bLcc:b
+(238Π+ − 58Π−)Lab:aLcc:b + ( 49

4 Π+ + 11
4 Π−)Lab:aLbc:c

+( 535
8 Π+ − 355

8 Π−)Lab:cLab:c + ( 151
4 Π+ + 29

4 Π−)Lab:cLac:b
+(111Π+ − 6Π−)Laa:bbLcc + (−15Π+ + 30Π−)Lab:abLcc
+(− 15

2 Π+ + 75
2 Π−)Lab:acLbc + ( 945

4 Π+ − 285
4 Π−)Laa:bcLbc

+(114Π+ − 54Π−)Lbc:aaLbc + 1440LaaSE + 30LaaSρmm + 240LaaSτ

−60LabρabS + 180LabSRammb + (195Π+ − 105Π−)LaaLbbE

+(30Π+ + 150Π−)LabLabE + ( 195
6 Π+ − 105

6 Π−)LaaLbbτ

+(5Π+ + 25Π−)LabLabτ + (− 275
16 Π+ + 215

16 Π−)LaaLbbρmm
+(− 275

8 Π+ + 215
8 Π−)LabLabρmm + (−Π+ − 14Π−)LccLabρab

+( 109
4 Π+ − 49

4 Π−)LccLabRammb + 16χLabLacρbc
+( 133

2 Π+ + 47
2 Π−)LabLacRbmmc − 32χLabLcdRacbd

+ 315
2 LccLabLabS + ( 2041

128 Π+ + 65
128Π−)LaaLbbLccLdd
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+150LabLbcLacS + ( 417
32 Π+ + 141

32 Π−)LccLddLabLab
+1080LaaLbbS2 + 360LabLabS2 + ( 375

32 Π+ − 777
32 Π−)LabLabLcdLcd

+ 885
4 LaaLbbLccS + (25Π+ − 17

2 Π−)LddLabLbcLac + 2160LaaS3

+( 231
8 Π+ + 327

8 Π−)LabLbcLcdLda − 180E2 + 180χEχE − 120S:aS:a

+720χS:aS:a − 105
4 ΩabΩab + 120χΩabΩab + 105

4 χΩabχΩab − 45ΩamΩam
+180χΩamΩam − 45χΩamχΩam + 360(ΩamχS:a − ΩamS:aχ)

+45χχ:aΩamLcc − 180χ:aχ:bΩab + 90χχ:aχ:bΩab + 90χχ:aΩam;m

+120χχ:aΩab:b+180χχ:aΩbmLab+300χ:aE:a−180χ:aχ:aE−90χχ:aχ:aE

+240χ:aaE−30χ:aχ:aτ−60χ:aχ:bρab+30χ:aχ:bRmabm− 675
32 χ:aχ:aLbbLcc

− 75
4 χ:aχ:bLacLbc − 195

16 χ:aχ:aLcdLcd − 675
8 χ:aχ:bLabLcc − 330χ:aS:aLcc

−300χ:aS:bLab+ 15
4 χ:aχ:aχ:bχ:b+

15
8 χ:aχ:bχ:aχ:b− 15

4 χ:aaχ:bb− 105
2 χ:abχ:ab

−15χ:aχ:aχ:bb− 135
2 χ:bχ:aab}+F;m{( 195

2 Π+−60Π−)τ ;m+240τS−90ρmmS

+270S:aa + (630Π+ − 450Π−)E;m + 1440ES + 720S3 + (90Π+ + 450Π−)

×LaaE+(− 165
8 Π+− 255

8 Π−)Laaρmm+(15Π+ +75Π−)Laaτ +600LaaS2

+( 1215
8 Π+− 315

8 Π−)Laa:bb− 45
4 χLab:ab+(15Π+−30Π−)Labρab+(− 165

4 Π+

+ 465
4 Π−)LabRammb + 705

4 LaaLbbS − 75
2 LabLabS + ( 459

32 Π+ + 495
32 Π−)

×LaaLbbLcc+( 267
16 Π+− 1485

16 Π−)LccLabLab+(−54Π++ 225
2 Π−)LabLbcLac

−210χ:aS:a− 165
16 χ:aχ:aLcc− 405

8 χ:aχ:bLab+135χχ:aΩam}+F;mm{30LaaS

+( 315
16 Π+− 1215

16 Π−)LaaLbb+(− 645
8 Π++ 945

8 Π−)LabLab+60χτ−90χρmm
+360χE + 360S2 − 30χ:aχ:a}+ F;mmm{180S + (−30Π+ + 105Π−)Laa}
+45χF;mmmm}dy.

We now consider transmission and transfer boundary conditions. LetM+ andM− be
two manifolds which are coupled along a common boundaryΣ := ∂M+ = ∂M−. We have
metricsg± and operatorsD± of Laplace type onM±. We have scalar smearing functions
f± overM±. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. We impose the compatibility conditions

g+|Σ = g−|Σ, V+|Σ = V−|Σ = VΣ, f+|Σ = f−|Σ .

No matching condition is assumed on the normal derivatives off or of g on the interface
Σ. Assume given an impedance matching endomorphismU defined on the hypersurface
Σ. Thetransmission boundary operatoris given by:

BUφ :=
{
φ+|Σ − φ−|Σ

}
⊕

{
∇ν+φ+|Σ +∇ν−φ−|Σ − Uφ+|Σ

}
, (5.e)

ωa := ∇+
a −∇

−
a .

Since the difference of two connections is tensorial,ωa is a well defined endomorphism of
VΣ. The tensorωa is chiral; it changes sign if the roles of+ and− are reversed. On the
other hand, the tensor fieldU is non-chiralas it is not sensitive to the roles of+ and−.
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The following result is due to Gilkey, Kirsten, and Vassilevich [62]; see also related
work by Bordag and Vassilevich [31] and by Moss [95]. Define:

Leven
ab := L+

ab + L−ab, Lodd
ab := L+

ab − L
−
ab,

Feven
;ν := f;ν+ + f;ν− , Fodd

;ν := f;ν+ − f;ν− ,
Feven

;νν := f;ν+ν+ + f;ν−ν− , Fodd
;νν := f;ν+ν+ − f;ν−ν− ,

Eeven := E+ + E−, Eodd := E+ − E−,
Eeven
;ν := E+

;ν+ + E−;ν− , Eodd
;ν := E+

;ν+ − E−;ν− ,
Reven
ijkl := R+

ijkl +R−ijkl, Rodd
ijkl := R+

ijkl −R
−
ijkl

Ωeven
ij := Ω+

ij + Ω−ij , Ωodd
ij := Ω+

ij − Ω−ij .

Theorem 5.4 [Transmission boundary conditions]

(1) a0(f,D,BU ) = (4π)−m/2
∫
M
f Tr(id)dx.

(2) a1(f,D,BU ) = 0.

(3) a2(f,D,BU ) = (4π)−m/2 1
6

∫
M
f Tr{τ id+6E}dx

+(4π)−m/2 1
6

∫
Σ

2f Tr{Leven
aa id−6U}dy.

(4) a3(f,D,BU ) = (4π)(1−m)/2 1
384

∫
Σ

Tr{f [ 32L
even
aa Leven

bb + 3Leven
ab Leven

ab ] id

+9Leven
aa Feven

;ν id+48fU2 + 24fωaωa − 24fLeven
aa U − 24Feven

;ν U}dy.

(5) a4(f,D,BU ) = (4π)−m/2 1
360

∫
M
f Tr{60E;kk + 60RijjiE + 180E2

+30ΩijΩij + [12τ ;kk + 5τ2 − 2|ρ|2 + 2|R|2] id}dx
+(4π)−m/2 1

360

∫
Σ

Tr{[−5Rodd
ijjiFodd

;ν + 2Rodd
aνaνFodd

;ν

−5Lodd
aa Leven

bb Fodd
;ν − Lodd

ab Leven
ab Fodd

;ν + 18
7 L

even
ab Leven

ab Feven
;ν

− 12
7 L

even
aa Leven

bb Feven
;ν + 12Leven

aa Feven
;νν ] id+f [−Lodd

ab Lodd
ab Leven

cc

−Leven
ab Lodd

ab Lodd
cc + 2Lodd

ab Lodd
bc Leven

ac + 2Rodd
abcbLodd

ac + 12Reven
ijji;ν

+ 40
21L

even
aa Leven

bb Leven
cc − 4

7L
even
ab Leven

ab Leven
cc + 68

21L
even
ab Leven

bc Leven
ac

+24Leven
aa:bb + 10Reven

ijji Leven
aa + 2Reven

aνaνLeven
aa − 6Reven

aνbνLeven
ab

+2Reven
abcbLeven

ac ] id+18ω2
aFeven

;ν − 30EoddFodd
;ν + 15ULodd

aa Fodd
;ν

−30UFeven
;νν − 9ULeven

aa Feven
;ν + 30U2Feven

;ν + f [12ω2
aLeven

bb

+24ωaωbLeven
ab + 60Eeven

;ν − 60ωaΩoddaν + 60EevenLeven
aa − 60U3

−30UReven
ijji − 180UEeven − 60U:aa − 18ULeven

aa Leven
bb

−6ULeven
ab Leven

ab + 60U2Leven
aa − 60Uω2

a]}dy.

We now examine transfer boundary conditions. As previously, we take structures
(M, g, V,D) = ((M+, g+, V+, D+), (M−, g−, V−, D−)). We now assume the compat-
ibility conditions

∂M+ = ∂M− = Σ and g+|Σ = g−|Σ .
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We no longer assume an identification ofV+|Σ with V−|Σ. Let F± be smooth smearing
endomorphisms ofV±; there is no assumed relation betweenF+ andF−. Let Tr± denote
the fiber trace onV±. We suppose given auxiliary impedance matching endomorphisms
S := {S±±} from V± to V±. Thetransfer boundary operatoris defined by setting:

BSφ :=
{(
∇+
ν+

+ S++ S+−
S−+ ∇−ν− + S−−

)(
φ+

φ−

)} ∣∣∣∣
Σ

. (5.f)

We setS+− = S−+ = 0 to introduce the associated decoupled Robin boundary conditions

BR(S++)φ+ := (∇+
ν+

+ S++)φ+|Σ, and

BR(S−−)φ− := (∇−ν− + S−−)φ−|Σ .

Define the correction terman(F,D, S)(y) by means of the identity

an(F,D,BS) =
∫
M

an(F,D)(x)dx+
∫

Σ

an(F+, D+,BR(S++))dy

+
∫

Σ

an(F−, D−,BR(S−−))dy +
∫

Σ

an(F,D, S)(y)dy .

As the interior invariantsan(F,D) are discussed in Theorem 3.4 and as the Robin invari-
antsan(F,D,BR(S++)) andan(F,D,BR(S−−)) are discussed in Theorem 5.2, we must
only determine the invariantan(F,D, S) which measures the new interactions that arise
from S+− andS−+. We refer to [63] for the proof of the following result:

Theorem 5.5 [Transfer boundary conditions]

(1) an(F,D,BS)(y) = 0 for n ≤ 2.

(2) a3(F,D,BS)(y) = (4π)(1−m)/2 1
2

{
Tr+(F+S+−S−+) + Tr−(F−S−+S+−)

}
.

(3) a4(F,D,BS)(y) = (4π)−m/2 1
360

{
Tr+{480(F+S++ + S++F+)S+−S−+

+480F+S+−S−−S−+

+(288F+L
+
aa + 192F+L

−
aa + 240F+;ν+)S+−S−+}

+Tr−{480(F−S−− + S−−F−)S−+S+− + 480F−S−+S++S+−

+(288F−L−aa + 192F−L+
aa + 240F−;ν−)S−+S+−}

}
.

We now take upspectral asymmetry. We refer to [33, 34] for the material of this
section. LetM be a compact Riemannian manifold. LetA be an operator of Dirac type and
letD = A2 be the associated operator of Laplace type. Instead of studyingTrL2(e−tD),
we studyTrL2(Ae−tD); this provides a measure of the spectral asymmetry ofA.

Let∇ be a compatible connection; this means that∇γ = 0 and that if there is a fiber
metric onV that∇ is unitary. ExpandA = γν∇∂xν

+ ψA. If ∂M is non-empty, we
shall use local boundary conditions; we postpone until a subsequent section the question
of spectral boundary conditions. Let{e1, ..., em} be a local orthonormal frame for the
tangent bundle near∂M which is normalized soem is the inward unit geodesic normal
vector field. Suppose there exists an endomorphismχ of V |∂M so thatχ is self-adjoint
and so that

χ2 = 1, χγm + γmχ = 0, and χγa = γaχ for 1 ≤ a ≤ m− 1 .
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Such aχ always exists ifM is orientable and ifm is even as, for example, one could take
χ = εγ1...γm−1 whereε is a suitable4th root of unity. There are topological obstructions
to the existence ofχ if m is odd; if ∂M is empty,χ plays no role. LetΠ±χ := 1

2 (id±χ)
be orthonormal projection on the±1 eigenspaces ofχ. We letBφ := Π−χφ|∂M . The
associated boundary condition forD := A2 is defined by the operatorB1φ := Bφ⊕ BAφ
and is equivalent to a mixed boundary operatorBχ,S where

S = 1
2Π+(γmψA − ψAγm − Laaχ)Π+ .

As t ↓ 0, there is an asymptotic expansion

TrL2(FAe−tA
2
B) ∼

∞∑
n=0

aηn(F,A,B)t(n−m−1)/2 .

These invariants measure the spectral asymmetry ofA; aηn(F,A,B) = −aηn(F,−A,B).
Theorem 5.6 LetWij := Ωij − 1

4Rijklγkγl whereΩ is the curvature of∇. LetF = f id
for f ∈ C∞(M).

(1) aη0(f,A,B) = 0.

(2) aη1(f,A,B) = −(4π)−m/2(m− 1)
∫
M
f Tr{ψA}dx.

(3) aη2(f,A,B) = 1
4 (4π)−(m−1)/2

∫
∂M

(2−m)f Tr{ψAχ}dy.

(4) aη3(f,A,B) = − 1
12 (4π)−m/2

∫
M
f
{

Tr{2(m− 1)∇ei
ψA + 3(4−m)ψAγiψA

+3γjψAγjγiψA};i + (m− 3) Tr{−τψA − 6γiγjWijψA + 6γiψA∇ei
ψA

+(m− 4)ψ3
A − 3ψ2

AγjψAγj}
}
dx− 1

12 (4π)−m/2
∫
∂M

Tr{6(m− 2)f;mχψA
+f [(6m− 18)χ∇emψA + 2(m− 1)∇emψA + 6χγmγa∇eaψA

+6(2−m)χψALaa+2(3−m)ψALaa+6(3−m)χγmψ
2
A+3γmψAγaψAγa

+3(3−m)χγmψAχψA + 6χγaWam]}dy.

6 Heat trace asymptotics and index theory

We refer to [54] for a more exhaustive treatment; the classical results may be found in
[2, 3, 4, 7, 8]. In this section, we only present a brief introduction to the subject as it relates
to heat trace asymptotics. LetP : C∞(V1) → C∞(V2) be a first order partial differential
operator on a closed Riemannian manifoldM . We assumeV1 andV2 are equipped with
fiber metrics. We say that the tripleC := (P, V1, V2) is anelliptic complex of Dirac typeif
the associated second order operatorsD1 := P ∗P andD2 := PP ∗ are of Laplace type.
One may then defineIndex(C) := dim ker(D1)− dim ker(D2)

Bott noted thatTrL2{e−tD1} − TrL2{e−tD2} = Index(C) was independent of the
parametert. He then used the asymptotic expansion of the heat equation to obtain a lo-
cal formula for the index in terms of heat trace asymptotics. Following the notation of
Equation (3.a), one may define the heat trace asymptotics ofP by setting:

aMn (P )(x) :=
{

Tr{eMn (D1)} − Tr{eMn (D2)}}(x) .

One then has a local formula for the index:



302 Spectral geometry

Theorem 6.1 LetC be an elliptic complex of Dirac type over a closed Riemannian mani-
foldM . Then:∫

M

aMn (P )(x)dx =
{

Index(C) if n = m,
0 if n 6= m.

The critical termaMm (P )(x)dx is often referred to as theindex density. The other
terms are in divergence form since they integrate to zero. They need not, however, vanish
identically.

The existence of a local formula for the index implies the index is constant under defor-
mations. It also yields, less trivially, that the index is multiplicative under finite coverings
and additive with respect to connected sums. In the next section, we shall see that the
index of the DeRham complex is the Euler-Poincare characteristicχ(M) of the manifold.
Thus if F → M1 → M2 is a finite covering, thenχ(M1) = |F | · χ(M2). Similarly, if
M = M1#M2 is a connected sum, thenχ(M) + χ(Sm) = χ(M1) + χ(M2). Analogous
formulas hold for the Hirzebruch signature of a manifold.

We define DeRham complex as follows. Letd : C∞(ΛpM) → C∞(Λp+1M) be
exterior differentiation and letδ : C∞(ΛpM) → C∞(Λp−1M) be the dual, interior mul-
tiplication. We may then define a2-term elliptic complex of Dirac type:

(d+ δ) : C∞(ΛeM)→ C∞(ΛoM) where (6.a)

Λe(M) := ⊕nΛ2n(M) and Λo(M) := ⊕nΛ2n+1(M) .

Let Rijkl be the curvature tensor. Letm = 2m̄ be even. Let{e1, ..., em} be a local
orthonormal frame for the tangent bundle. We sum over repeated indices to define the
Pfaffian

PFm : =
g(ei1 ∧ ... ∧ eim , ej1 ∧ ... ∧ ejm)

πm̄8m̄m̄!
Ri1i2j1j2 ...Rim−1imjm−1jm .

SetPFm = 0 if m is odd. The following result of Patodi [105] recovers the classical
Gauss-Bonnet theoremof Chern [43]:

Theorem 6.2 LetM be a closed even dimensional Riemannian manifold. Then

(1) aMn (d+ δ)(x) = 0 for n < m.

(2) aMm (d+ δ)(x) = PFm(x).

(3) χ(M) =
∫
M
PFm(x)dx.

One can discuss Gauss-Bonnet theorem for manifolds with boundary similarly. On
the boundary, normalize the orthonormal frame soem is the inward unit normal and let
indicesa, b range from1 to m − 1 and index the induced frame for the tangent bundle
of the boundary. LetLab be the components of the second fundamental form. Define the
transgressionof the Pfaffian by setting:

TPFm : =
∑
k

g(ea1 ∧ ... ∧ eam−1 , eb1 ∧ ... ∧ ebm−1)
πk8kk!(m− 1− 2k)! vol(Sm−1−2k)

× Ra1a2b1b2 ...Ra2k−1a2kb2k−1b2k
La2k+1b2k+1 ...Lam−1bm−1 .
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If we impose absolute boundary conditions as discussed in Equation (5.c) to define the el-
liptic complex, we recover the Chern-Gauss-Bonnet theorem for manifolds with boundary
[44]. Let ∆e

M and∆o
M denote the Laplacians on the space of smooth differential forms of

even and odd degrees, respectively. Let

a∂Mn (d+ δ)(y) =
{

Tr{e∂Mn (∆e
M ,Ba)} − Tr{e∂Mn (∆0

M ,Ba)}
}
(y) .

Theorem 6.1 extends to this setting to become:∫
M

aMn (d+ δ)(x)dx+
∫
∂M

a∂Mn (d+ δ)(y)dy =
{

0 if n 6= m,
χ(M) if n = m.

Theorem 6.2 then extends to this setting to yield:

Theorem 6.3 (1) a∂M
n (d+ δ)(y) = 0 for n < m.

(2) a∂M
m (d+ δ)(y) = TPFm.

(3) χ(M) =
∫
M
PFm(x)dx+

∫
∂M

TPFm(y)dy.

The local index invariantsaMm+2(d + δ)(x) are in divergence form but do not vanish
identically. Set

Φm =
m̄

πm̄8m̄m̄!
{Ri1i2j1k;kRi3i4j3j4 ...Rim−1imjm−1jm};j2

× g(ei1 ∧ ... ∧ eim , ej1 ∧ ... ∧ ejm) .

Theorem 6.4 If M is even, thenaMm+2(d+ δ) = 1
12PFm;kk + 1

6Φm.

Spectral boundary conditions plan an important role in index theory. We suppose given
an elliptic complex of Dirac typeP : C∞(V1) → C∞(V2). Let γ be the leading symbol
of P . Then(

0 γ∗

γ 0

)
defines aunitary Clifford module structureonV1⊕V2. We may choose a unitary connection
∇ on V1 ⊕ V2 which is compatible with respect to this Clifford module structure and
which respects the splitting and induces connections∇1 and∇2 on the bundlesV1 andV2,
respectively. DecomposeP = γi∇ei

+ ψ. Near the boundary, the structures depend on
the normal variable. We set the normal variablexm to zero to define a tangential operator
of Dirac type

B(y) := γm(y, 0)−1 (γa(y, 0)∇ea + ψ(y, 0)) onC∞(V1|∂M ) .

LetB∗ be the adjoint ofB onL2(V1|∂M );

B∗ = γm(y, 0)−1γa(y, 0)∇ea + ψ∗B

whereψB := γm(y, 0)−1ψ(y, 0). Let Θ be an auxiliary self-adjoint endomorphism ofV1.
We set

A := 1
2 (B +B∗) + Θ on C∞(V1|∂M ),

A# := −γmA(γm)−1 on C∞(V2|∂M ) .
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The leading symbol ofA is then given byγTa := γ−1
m γa which is a unitary Clifford mod-

ule structure onV1|∂M . ThusA is a self-adjoint operator of Dirac type onC∞(V1|∂M );
similarlyA# is a self-adjoint operator of Dirac type onC∞(V2|∂M ).

Let Π+
A (resp.Π+

A# ) be spectral projection on the eigenspaces ofA (resp.A#) corre-
sponding to the positive (resp. non-negative) eigenvalues; there is always a bit of technical
fuss concerning the harmonic eigenspaces that we will ignore as it does not affect the heat
trace asymptotic coefficients that we shall be considering. Introduce the associated spectral
boundary operators by

B1φ1 := Π+
A(φ1|∂M ) for φ1 ∈ C∞(V1),

B2φ2 := Π+
A#(φ2|∂M ) for φ2 ∈ C∞(V2),

BΘφ1 := B1φ1 ⊕ B2(Pφ1) for φ1 ∈ C∞(V1) .

If PB1 , P ∗B2
, andD1,B are the realizations ofP , of P ∗, and ofD1 with respect to the

boundary conditionsB1,B2, andBΘ, respectively, then

(PB1)
∗ = P ∗B2

and D1,BΘ = P ∗B1
PB1 .

We will discuss these boundary conditions in further detail in Section 10.
The local index density for the twisted signature and for the twisted spin complex has

been identified using methods of invariance theory; see, for example, the discussion in
Atiyah, Bott, and Patodi [5]. This identification of the local index density has been used to
give a heat equation proof of the Atiyah-Singer index theorem in complete generality and
has led to the proof of the index theorem for manifolds with boundary of Atiyah, Patodi,
and Singer [6]. Unlike the DeRham complex, a salient feature of these complexes is the
necessity to introduce spectral boundary conditions for the twisted signature and twisted
spin complexes – there is a topological obstruction which prevents using local boundary
conditions. The eta invariant plays an essential role in this development. We also refer to
N. Berline, N. Getzler, and M. Vergne [28], to Bismut [30], and to Melrose [91] for other
treatments of the local index theorem.

The Dolbeault complex is a bit different. Patodi [106] showed the heat trace invariants
agreed with the classical Riemann-Roch invariant for a Kaehler manifold; it should be
noted that this is not the case for an arbitrary Hermitian manifold. The Lefschetz fixed
point formulas can also be established using heat equation methods.

7 Heat content asymptotics

We refer to [41, 56] for further details concerning the material of this section; we note that
the asymptotic series for the heat content function is established by van den Berg et al [24]
in a very general setting. LetD be an operator of Laplace type on a smooth vector bundle
V over a smooth Riemannian manifold. Let〈·, ·〉 denote the natural pairing betweenV and
the dual bundlẽV . Let ρ ∈ C∞(Ṽ ) be the specific heat and letφ ∈ C∞(V ) be the initial
heat temperature distribution of the manifold. Impose suitable boundary conditionsB; we
shall denote the dual boundary conditions for the dual operatorD̃ onC∞(Ṽ ) by B̃. Let
∇ be the connection determined byD andE the associated endomorphism. Then the dual
connection∇̃ and the dual endomorphism̃E are the connection and the endomorphism
determined bỹD.
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The total heat energy content of the manifold is given by:

β(φ, ρ,D,B)(t) = β(ρ, φ, D̃, B̃)(t) :=
∫
M

〈ρ, e−tDφ〉dx .

As t ↓ 0, there is a complete asymptotic expansion of the form

β(φ, ρ,D,B)(t) ∼
∞∑
n=0

βn(φ, ρ,D,B)tn/2 .

There are local interior invariantsβMn and boundary invariantsβ∂Mn so that

βn(φ, ρ,D,B) =
∫
M

βMn (φ, ρ,D)(x)dx+
∫
∂M

β∂Mn (φ, ρ,D,B)(y)dy .

These invariants are not uniquely characterized by this formula; divergence terms in the
interior can be compensated by corresponding boundary terms.

We now study the heat content asymptotics of the diskDm in Rm and the hemisphere
Hm in Sm. We letD be the scalar Laplacian,φ = ρ = 1, and impose Dirichlet boundary
conditions to defineβn(M) := βn(1, 1,∆0

M ,BD). One has [16, 17] that:

Theorem 7.1 LetDm be the unit disk inRm. Then:

(1) β0(Dm) = πm/2

Γ(
(2+m)

2 )
.

(2) β1(Dm) = −4π
(m−1)/2

Γ(
m
2 )

.

(3) β2(Dm) = πm/2

Γ(
m
2 )

(m− 1).

(4) β3(Dm) = −π
(m−1)/2

3Γ(
m
2 )

(m− 1)(m− 3).

(5) β4(Dm) = − πm/2

8Γ(
m
2 )

(m− 1)(m− 3).

(6) β5(Dm) = π(m−1)/2

120Γ(
m
2 )

(m− 1)(m− 3)(m+ 3)(m− 7).

(7) β6(Dm) = πm/2

96Γ(
m
2 )

(m− 1)(m− 3)(m2 − 4m− 9).

(8) β7(Dm) = − π(m−1)/2

3360Γ(
m
2 )

(m− 1)(m− 3)(m4 − 8m3 − 90m2 + 424m+ 633).

Theorem 7.2 LetHm be the upper hemisphere of the unit sphereSm. Then

(1) β2k(Hm) = 0 for anym if k > 0.

(2) β2k+1(H3) = 8π1/2

k!(2k−1)(2k+1) .

(3) β2k+1(H5) = π3/222k+3(2−k)
3k!(2k−1)(2k+1) .
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(4) β2k+1(H7) = π5/2

30

{ (67−54k)9k

k!(2k−1)(2k+1) +
∑k
`=0

3·23`

`!(k−`)!(2k−2`+1)

}
.

We now study the heat content asymptotics with Dirichlet boundary conditions. Let
BD be the Dirichlet boundary operator of Equation (5.a). We refer to [16, 19] for the proof
of:

Theorem 7.3 [Dirichlet boundary conditions]

(1) β0(φ, ρ,D,BD) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BD) = − 2√
π

∫
∂M
〈φ, ρ〉dy.

(3) β2(φ, ρ,D,BD) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{〈 12Laaφ, ρ〉 − 〈φ, ρ;m〉}dy.

(4) β3(φ, ρ,D,BD) = − 2√
π

∫
∂M
{ 2

3 〈φ;mm, ρ〉+ 2
3 〈φ, ρ;mm〉 − 〈φ:a, ρ:a〉+ 〈Eφ, ρ〉

− 2
3Laa〈φ, ρ〉;m + 〈( 1

12LaaLbb −
1
6LabLab −

1
6Ramma)φ, ρ〉}dy.

(5) β4(φ, ρ,D,BD) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{ 1

2 〈(Dφ);m, ρ〉+ 1
2 〈φ, (D̃ρ);m〉

− 1
4 〈LaaDφ, ρ〉 −

1
4 〈Laaφ, D̃ρ〉+ 〈(

1
8E;m − 1

16LabLabLcc + 1
8LabLacLbc

− 1
16RambmLab + 1

16RabcbLac + 1
32τ ;m + 1

16Lab:ab)φ, ρ〉
− 1

4Lab〈φ:a, ρ:b〉 − 1
8 〈Ωamφ:a, ρ〉+ 1

8 〈Ωamφ, ρ:a〉}dy.

We may computeβn(M) for n ≤ 4 by settingφ = ρ = 1 andE = Ω = 0 in Theorem
7.3. One has a formula [18] forβ5(M); β5(φ, ρ,D,BD) is not known in full generality.

Theorem 7.4 β5(M) = − 1
240
√
π

∫
∂M
{8ρmm;mm − 8Laaρmm;m + 16LabRammb;m

−4ρ2
mm+16RammbRammb−4LaaLbbρmm−8LabLabρmm+64LabLacRmbcm

−16LaaLbcRmbcm − 8LabLacRbddc − 8LabLcdRacbd + 4RabcmRabcm
+8RabbmRaccm − 16Laa:bRbccm − 8Lab:cLab:c + LaaLbbLccLdd
−4LaaLbbLcdLcd+4LabLabLcdLcd−24LaaLbcLcdLdb+48LabLbcLcdLda}dy.

The invariantsβ0(M), β1(M), and β2(M) were computed by van den Berg and
Davies [20] and by van den Berg and Le Gall [21] for domains inRm. The invariants
β0(M), β1(M), andβ2(M) were computed by van den Berg [14] for the upper hemi-
sphere of the unit sphere. The general case whereD is an arbitrary operator of Laplace
type and whereφ andρ are arbitrary was studied in [16, 19]. Savo [112, 113, 114, 115] has
given a closed formula for all the heat content asymptoticsβk(M) that is combinatorially
quite different in nature from the formulas we have presented here. There is also impor-
tant related work of McAvity [87, 88], of McDonald and Meyers [89], and of Phillips and
Jansons [108].

We now study heat content asymptotics for Robin boundary conditions. LetBS be the
Robin boundary operator of Equation (5.b); the dual boundary condition is then given by
B̃Sρ = BS̃ρ = (ρ;m + S̃ρ)|∂M where, of course, we use the dual connection onṼ to
defineρ;m. The following result is proved in [19, 45]:

Theorem 7.5 [Robin boundary conditions]

(1) β0(φ, ρ,D,BS) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BS) = 0.
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(3) β2(φ, ρ,D,BS) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
〈BSφ, ρ〉dy.

(4) β3(φ, ρ,D,BS) = 2
3 ·

2√
π

∫
∂M
〈BSφ,BS̃ρ〉dy.

(5) β4(φ, ρ,D,BS) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{− 1

2 〈BSφ, D̃ρ〉 −
1
2 〈Dφ,BS̃ρ〉

+〈( 1
2S + 1

4Laa)BSφ,BS̃ρ〉}dy.

(6) β5(φ, ρ,D,BS) = 2√
π

∫
∂M
{− 4

15 (〈BSDφ,BS̃ρ〉+ 〈BSφ,BS̃D̃ρ〉)

− 2
15 〈(BSφ):a, (BS̃ρ):a〉+ 〈(

2
15E + 4

15S
2 + 4

15SLaa + 1
30LaaLbb

+ 1
15LabLab −

1
15Ramam)BSφ,BS̃ρ〉}dy.

(7) β6(φ, ρ,D,BS) = − 1
6

∫
M
〈D2φ, D̃ρ〉dx+

∫
∂M
{ 1

6 〈BSDφ, D̃ρ〉+
1
6 〈D

2φ, B̃Sρ〉

+ 1
6 〈BSφ, D̃

2ρ〉− 1
6 〈SBSDφ, B̃Sρ〉−

1
6 〈SBSφ, B̃SD̃ρ〉−

1
12 〈LaaBSDφ, B̃Sρ〉

− 1
12 〈LaaBSφ, B̃SD̃ρ〉+ 〈(

1
24E;m+ 1

12ELaa+ 1
48LabLabLcc+ 1

24LabLacLbc

− 1
48RambmLab + 1

48RabcbLac −
1
24RamamLbb + 1

96τ ;m + 1
48Lab:ab +

1
12SLaaLbb

+ 1
12SLabLab −

1
12SRamam + 1

12 (SE + ES) + 1
4S

2Laa + 1
6S

3

+ 1
6S:aa)BSφ, B̃Sρ〉 − 1

12Laa〈(BSφ):b, (B̃Sρ):b〉 − 1
12Lab〈(BSφ):a, (B̃Sρ):b〉

− 1
6 〈S(BSφ):a, (B̃Sρ):a〉 − 1

24 〈Ωam(BSφ):a, B̃Sρ〉

+ 1
24 〈ΩamBSφ, (B̃Sρ):a〉}dy.

We now turn our attention to mixed boundary conditions. We use Equation (5.d) to
defined the mixed boundary operatorBχ,S . The dual boundary operator oñV is given by
B̃χ,Sρ := Π̃+(ρ;m + S̃ρ)|∂M ⊕ Π̃−ρ|∂M . Extendχ to a collared neighborhood ofM to
be parallel along the inward normal geodesic rays. Thenχ;m = 0. Let φ± := Π±φ and

ρ± := Π±ρ. Sinceχ;m = 0, φ±;m = Π±(φ;m) andρ±;m = Π̃±(φ;m). As χ:a need not
vanish in general, we need not have equality betweenφ±:a andΠ±(φ:a) or betweenρ±:a

andΠ̃±(ρ:a). We refer to [45] for the proof of:

Theorem 7.6 [Mixed boundary conditions]

(1) β0(φ, ρ,D,Bχ,S) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,Bχ,S) = − 2√
π

∫
∂M
〈φ−, ρ−〉dy.

(3) β2(φ, ρ,D,Bχ,S) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{〈φ+;m + Sφ+, ρ+〉

+〈 12Laaφ−, ρ−〉 − 〈φ−, ρ−;m〉}dy.

(4) β3(φ, ρ,D,Bχ,S) = 2√
π

∫
∂M
{− 2

3 〈φ−;mm, ρ−〉 − 2
3 〈φ−, ρ−;mm〉 +

2
3Laa〈φ−, ρ−〉;m

+〈(− 1
12LaaLbb+

1
6LabLab+

1
6Ramma)φ−, ρ−〉+

2
3 〈φ+;m+Sφ+, ρ+;m+S̃ρ+〉

−〈Eφ−, ρ−〉+ 〈φ−:a, ρ−:a〉+ 2
3 〈φ+:a, ρ−:a〉+ 2

3 〈φ−:a, ρ+:a〉
− 2

3 〈Eφ−, ρ+〉 − 2
3 〈Eφ+, ρ−〉}dy.
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We adopt the notation of Equation (5.e) to define the transmission boundary operator
BU and the tensorω.

Theorem 7.7 [Transmission boundary conditions]

(1) β0(φ, ρ,D,BU ) =
∫
M+
〈φ+, ρ+〉dx+ +

∫
M−
〈φ−, ρ−〉dx−.

(2) β1(φ, ρ,D,BU ) = − 1√
π

∫
Σ
〈φ+ − φ−, ρ+ − ρ−〉dy.

(3) β2(φ, ρ,D,BU ) = −
∫
M+
〈D+φ+, ρ+〉dx+ −

∫
M−
〈D−φ−, ρ−〉dx−

+
∫
Σ

{
1
8 (L+

aa + L−aa)(〈φ+, ρ+〉+ 〈φ−, ρ−〉)
− 1

8 (L+
aa+L

−
aa)(〈φ+, ρ−〉+〈φ−, ρ+〉)+ 1

2 (〈φ+;ν , ρ+〉+〈φ−;νρ−〉+〈φ+;ν , ρ−〉
+〈φ−;ν , ρ+〉)− 1

2 (〈φ+, ρ+;ν〉+ 〈φ−, ρ−;ν〉) + 1
2 (〈φ+, ρ−;ν〉+ 〈φ−, ρ+;ν〉)

− 1
4 (〈Uφ+, ρ+〉+ 〈Uφ−, ρ−〉+ 〈Uφ+, ρ−〉+ 〈Uφ−, ρ+〉)

}
dy.

(4) β3(φ, ρ,D,BU ) = 1
6
√
π

∫
Σ
{4(〈D+φ+, ρ+〉+ 〈φ+, D̃+ρ+〉+ 〈D−φ−, ρ−〉

+〈φ−, D̃−ρ−〉)−4(〈D+φ+, ρ−〉+〈φ+, D̃−ρ−〉+〈D−φ−, ρ+〉+〈φ−, D̃+ρ+〉)
−(〈ωaφ+;a, ρ+〉 − 〈ωaφ−;a, ρ−〉 − 〈ωaφ+, ρ+;a〉+ 〈ωaφ−, ρ−;a〉)
−(〈ωaφ+;a, ρ−〉 − 〈ωaφ−;a, ρ+〉+ 〈ωaφ+, ρ−;a〉 − 〈ωaφ−, ρ+;a〉)
+4(〈φ+;ν , ρ+;ν〉+〈φ−;ν , ρ−;ν〉+〈φ+;ν , ρ−;ν〉+〈φ−;ν , ρ+;ν〉)−2(〈φ+;a, ρ+;a〉
+〈φ−;a, ρ−;a〉) +2(〈φ+;a, ρ−;a〉+ 〈φ−;a, ρ+;a〉)− 2(〈Uφ+;ν , ρ+〉
+〈Uφ+, ρ+;ν〉+〈Uφ−;ν , ρ−〉+〈Uφ−, ρ−;ν〉)−2(〈Uφ−;ν , ρ+〉+〈Uφ−, ρ+;ν〉
+〈Uφ+;ν , ρ−〉+ 〈Uφ+, ρ−;ν〉) + (L−aa − L+

aa)(ν+〈φ+, ρ+〉 − ν−〈φ−, ρ−〉)
+L+

aa(〈φ+;ν , ρ−〉+ 〈φ−, ρ+;ν〉) + L−aa(〈φ−;ν , ρ+〉+ 〈φ+, ρ−;ν〉)
−(L−aa(〈φ+;ν , ρ−〉+ 〈φ−, ρ+;ν〉) + L+

aa(〈φ−;ν , ρ+〉+ 〈φ+, ρ−;ν〉))
+〈ωaωaφ+, ρ+〉+ 〈ωaωaφ−, ρ−〉 − 1

2L
+
aaL

−
bb(〈φ+, ρ+〉+ 〈φ−, ρ−〉)

+ 1
2L

+
aaL

−
bb(〈φ+, ρ−〉+ 〈φ−, ρ+〉) + 1

2 (L+
abL

+
ab〈φ+, ρ+〉+ L−abL

−
ab〈φ−, ρ−〉)

+ 1
2 (L−abL

−
ab〈φ+, ρ+〉+ L+

abL
+
ab〈φ−, ρ−〉)−

1
2 (L+

abL
+
ab + L−abL

−
ab)(〈φ+, ρ−〉

+〈φ−, ρ+〉) + L+
aa〈Uφ+, ρ+〉+ L−aa〈Uφ−, ρ−〉 − L−aa〈Uφ+, ρ+〉

−L+
aa〈Uφ−, ρ−〉+ 〈U2φ+, ρ+〉+ 〈U2φ−, ρ−〉+ 〈U2φ+, ρ−〉+ 〈U2φ−, ρ+〉

+〈E+φ+, ρ+〉+ 〈E−φ−, ρ−〉+ 〈E−φ+, ρ+〉+ 〈E+φ−, ρ−〉
−〈(E++E−)φ+, ρ−〉−〈(E++E−)φ−, ρ+〉+ 1

2 (R+
amma+R

−
amma)(〈φ+, ρ+〉

+〈φ−, ρ−〉)− 1
2 (R+

amma +R−amma)(〈φ+, ρ−〉+ 〈φ−, ρ+〉)}dy.

We continue our studies by examining the heat content asymptotics for transfer bound-
ary conditions Adopt the Equation (5.f) to define the transfer boundary operatorBS. Let
B̃S be the dual boundary operator

B̃Sρ :=

{(
∇̃+

ν+
+ S̃++ S̃−+

S̃+− ∇̃−ν− + S̃−−

)(
ρ+

ρ−

)} ∣∣∣∣
Σ

.

We refer to [57] for the proof of the following result:
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Theorem 7.8 [Transfer boundary conditions]

(1) β0(φ, ρ,D,BS) =
∫
M+
〈φ+, ρ+〉dx+ +

∫
M−
〈φ−, ρ−〉dx−.

(2) β1(φ, ρ,D,BS) = 0.

(3) β2(φ, ρ,D,BS) = −
∫
M+
〈D+φ+, ρ+〉dx+ −

∫
M−
〈D−φ−, ρ−〉dx−

+
∫
Σ
〈BSφ, ρ〉dy.

(4) β3(φ, ρ,D,BS) = 4
3
√
π

∫
Σ
〈BSφ, B̃Sρ〉)dy.

Oblique boundary conditions are of particular interest. LetD be an operator of Laplace
type on a bundleV overM . LetBT be a tangential first order partial differential operator
on V |∂M and letB̃T be the dual operator oñV |∂M . The associatedoblique boundary
conditionsonV and dual boundary conditions oñV are defined by:

BOφ := (φ;m + BTφ)|∂M and B̃Oρ := (ρ;m + B̃T ρ)|∂M .

Note that we recover Robin boundary conditions by takingBT to be a0th order operator.
We refer to [59] for the proof of the following result:

Theorem 7.9 [Oblique boundary conditions]

(1) β0(φ, ρ,D,BO) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BO) = 0.

(3) β2(φ, ρ,D,BO) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
〈BOφ, ρ〉dy.

(4) β3(φ, ρ,D,BO) = 4
3
√
π

∫
∂M
〈BOφ, B̃Oρ〉dy.

(5) β4(φ, ρ,D,BO) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{− 1

2 〈BOφ, D̃ρ〉

− 1
2 〈Dφ, B̃ρ〉+ 〈(

1
2BT + 1

4Laa)BOφ, B̃Oρ〉}dy.

We refer to [24] for further details concerningZaremba boundary conditions. We as-
sume given a decomposition∂M = CR ∪ CD as the union of two closed submanifolds
with common smooth boundaryCR ∩CD = Σ. Letφ;m denote the covariant derivative of
φ with respect to the inward unit normal on∂M . Let S be an auxiliary endomorphism of
V |CR

. We take Robin boundary conditions onCR and Dirichlet boundary conditions on
CD arising from the boundary operator:

BZφ := (φ;m + Sφ)|{CR−Σ} ⊕ φ|CD
.

We refer to related work of Avramidi [11], of Dowker [46, 47], and of Jakobson et al. [80]
concerning the heat trace asymptotics.

There is some additional technical fuss concerned with choosing a boundary condition
on the interfaceCD ∩CR that we will suppress in the interests of brevity. Instead, we shall
simply give a classical formulation of the problem. SupposeD = ∆ is the Laplacian and
thatS = 0. LetW 1,2(M) be the closure ofC∞(M) with respect to the Sobolev norm

||φ||21 =
∫
M

{|∇φ|2 + |φ|2}dx.
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LetW 1,2
0,CD

(M) be the closure of the set{φ ∈W 1,2(M) : supp(φ) ∩ CD = ∅}. Let

N(M,CD, λ) = sup(dimEλ) for λ > 0

where the supremum is taken over all subspacesEλ ⊂W 1,2
0,CD

(M) such that

||∇φ||L2(M) < λ||φ||L2(M), ∀φ ∈ Eλ .

This is the spectral counting function for the Zaremba problem described above.
On Σ, we choose an orthonormal frame soem is the inward unit normal of∂M in M

and so thatem−1 is the inward unit normal ofΣ in CD.

Theorem 7.10 [Zaremba boundary conditions] There exist universal constantsc1 andc2
so that:

(1) β0(φ, ρ,D,B) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,B) = − 2√
π

∫
CD
〈φ, ρ〉dy.

(3) β2(φ, ρ,D,B) = −
∫
M
〈Dφ, ρ〉dx+

∫
CR
{〈φ;m + Sφ, ρ〉}dy

+
∫
CD
{ 1

2Laa〈φ, ρ〉 − 〈φ, ρ;m〉}dy − 1
2

∫
Σ
〈φ, ρ〉dz.

(4) β3(φ, ρ,D,B) = 4
3
√
π

∫
CR
〈φ;m + Sφ, ρ;m + S̃ρ〉dy − 2√

π

∫
CD
{ 2

3 〈φ;mm, ρ〉

+ 2
3 〈φ, ρ;mm〉 − 〈φ:a, ρ:a〉+ 〈Eφ, ρ〉 − 2

3Laa〈φ, ρ〉;m + 〈( 1
12LaaLbb

− 1
6LabLab + 1

6Ramam)φ, ρ〉}dy +
∫
Σ
{〈(c1Lm−1,m−1 + ( 1

2c2 + 2
3
√
π
)Luu

+ 1
2
√
π
L̃uu + c2S)φ, ρ〉+ 1

2
√
π
〈φ, ρ〉;m−1 − 2

3
√
π
〈φ, ρ〉;m}dz.

We conclude this section with a brief description of the non-smooth setting. We refer
to van den Berg and Srisatkunarajah [25] for a discussion of the heat content asymptotics
of polygonal regions in the plane. The fractal setting also an important one and we refer to
van den Berg [15], to Fleckinger et al. [51], to Griffith and Lapidus [70], to Lapidus and
Pang [85], and to Neuberger et al. [100] for a discussion of some asymptotic results for
heat problems on the von Koch snowflake.

8 Heat content with source terms

We follow the discussion in [18, 22, 23, 56] throughout this section. LetD be an operator
of Laplace type. Assume∂M = CD ∪ CR decomposes as a disjoint union of two closed,
possibly empty, disjoint subsets; in contrast to the Zaremba problem, we emphasize that
CD∩CR is empty. LetB be the Dirichlet boundary operator onCD and the Robin boundary
operator onCR. Let φ be the initial temperature of the manifold, letρ = ρ(x; t) be a
variable specific heat, letp = p(x; t) be an auxiliary smooth internal heat source and let
ψ = ψ(y; t) be the temperature of the boundary. We assume, for the sake of simplicity, that
the underlying geometry is fixed. Letu(x; t) = uφ,p,ψ(x; t) be the subsequent temperature
distribution which is defined by the relations:

(∂t +D)u(x; t) = p(x; t) for t > 0,



P. Gilkey 311

Bu(y; t) = ψ(y; t) for t > 0, y ∈ ∂M,

lim
t↓0

u(·; t) = φ(·) in L2 .

The associated heat content function has a complete asymptotic series ast ↓ 0:

β(φ, ρ,D,B, p, ψ)(t) : =
∫
M

〈uφ,p,ψ(x; t), ρ(x; t)〉dx

∼
∞∑
n=0

βn(φ, ρ,D,B, p, ψ)tn/2 .

Assertions (1)-(4) in the following result are valid for quite general boundary condi-
tions. Assertion (5) refers to the particular problem under consideration. This result when
combined with the results of Theorems 7.3 and 7.4 permits evaluation of this invariant for
n ≤ 4. Assertion (1) reduces to the caseρ is static and Assertion (2) decouples the in-
variants as a sum of 3 different invariants. Assertion (3) evaluates the invariant which is
independent of{p, ψ}, Assertion (4) evaluates invariant which depends onp, and Assertion
(5) evaluates the invariant which depends onψ.

Theorem 8.1 (1) Expand the specific heatρ(x; t) ∼
∑
k≥0 t

kρk(x) in a Taylor series.
Thenβn(φ, ρ,D,B, p, ψ) =

∑
2k≤n βn−2k(φ, ρk, D,B, p, ψ).

(2) If the specific heatρ is static, thenβn(φ, ρ,D,B, p, ψ) = βn(φ, ρ,D,B, 0, 0)
+βn(0, ρ,D,B, p, 0) + βn(0, ρ,D,B, 0, ψ).

(3) If the specific heatρ is static, thenβn(φ, ρ,D,B, 0, 0) = βn(φ, ρ,D,B).

(4) Let cij :=
∫ 1

0
(1− s)isj/2ds. Expandp(x; t) ∼

∑
k≥0 t

kpk(x) in a Taylor series. If
the specific heat is static, then:

a) β0(0, ρ,D,B, p, 0) = 0.

b) If n > 0, thenβn(0, ρ,D,B, p, 0) =
∑

2i+j+2=n cijβj(pi, ρ,D,B).

(5) Expand the boundary source termψ(x, t) ∼
∑
k≥0 t

kψk(x) in a Taylor series. As-
sume the specific heatρ is static. Then:

a) β0(0, ρ,D,B, 0, ψ) = 0.

b) β1(0, ρ,D,B, 0, ψ) = 2√
π

∫
CD
〈ψ0, ρ〉dy.

c) β2(0, ρ,D,B, 0, ψ) = −
∫
CD
{〈 12Laaψ0, ρ〉 − 〈ψ0, ρ;m〉}dy −

∫
CR
〈ψ0, ρ〉dy.

d) β3(0, ρ,D,B, 0, ψ) = 2√
π

∫
CD
{ 2

3 〈ψ0, ρ;mm〉+ 1
3 〈ψ0, ρ:aa〉+ 〈 13Eψ, ρ〉

− 2
3Laa〈ψ0, ρ;m〉+ 〈( 1

12LaaLbb −
1
6LabLab −

1
6Ramma)ψ0, ρ〉}dy

− 4
3
√
π

∫
CR
〈ψ0, B̃ρ〉dy + 4

3
√
π

∫
CD
〈ψ1, ρ〉dy.

e) β4(0, ρ,D,B, 0, ψ) = −
∫
CD
{ 1

2 〈ψ0, (D̃ρ);m〉 − 1
4 〈Laaψ0, D̃ρ〉+ 〈( 1

8E;m

− 1
16LabLabLcc + 1

8LabLacLbc −
1
16RambmLab + 1

16RabcbLac
+ 1

32τ ;m + 1
16Lab:ab)ψ0, ρ〉 − 1

4Lab〈ψ0:a, ρ:b〉 − 1
8 〈Ωamψ0:a, ρ〉

+ 1
8 〈Ωamψ0, ρ:a〉+ 1

4Laa〈ψ1, ρ〉 − 1
2 〈ψ1, ρ;m〉}dy

−
∫
CR
{− 1

2 〈ψ0, D̃ρ〉+ 〈( 1
2S + 1

4Laa)ψ0, B̃ρ〉+ 1
2 〈ψ1, ρ〉}dy.
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9 Time dependent phenomena

We refer to [56] for proofs of the assertions in this section and also for a more complete
historical discussion. LetD = {Dt} be a time-dependent family of operators of Laplace
type. We expandD in a Taylor series expansion

Dtu := Du+
∞∑
r=1

tr
{
Gr,iju;ij + Fr,iu;i + Eru

}
.

We use the initial operatorD := D0 to define a reference metricg0. Choose local frames
{ei} for the tangent bundle ofM and local frames{ea} for the tangent bundle of the
boundary which are orthonormal with respect to the initial metricg0. Useg0 to define
the measuresdx on M and dy on ∂M . The metricg0 defines the curvature tensorR
and the second fundamental formL. We also useD to define a background connection
∇0 that we use to multiply covariantly differentiate tensors of all types and to define the
endomorphismE.

As in Section 8, we again assume∂M = CD ∪ CR decomposes as a disjoint union of
two closed, possibly empty, disjoint subsets. We consider a1 parameter familyB = {Bt}
of boundary operators which we expand formally in a Taylor series

Btφ := φ

∣∣∣∣
CD

⊕

{
φ;m + Sφ+

∑
r>0

tr(Γr,aφ;a + Srφ)

}∣∣∣∣
CR

.

The reason for including a dependence on time in the boundary condition comes, for ex-
ample, by considering the dynamical Casimir effect. Slowly moving boundaries give rise
to such boundary conditions. We letu be the solution of the time-dependent heat equation

(∂t +Dt)u = 0, Btu = 0, lim
t↓0

u(·; t) = φ(·) in L2 .

There is a smooth kernel function so thatu(x; t) =
∫
M
K(t, x, x̄,D,B)φ(x̄)dx̄ . The

analogue of the heat trace expansion in this setting and of the heat content asymptotic
expansion are given, respectively, by∫

M

f(x)TrVx

{
K(t, x, x,D,B)

}
dx ∼

∞∑
n=0

an(f,D,B)t(n−m)/2,

∫
M

〈K(t, x, x̄,D,B)φ(x), ρ(x̄)〉dxdx̄ ∼
∞∑
n=0

βn(φ, ρ,D,B)tn/2 .

By assumption, the operatorsGr,ij are scalar. The following theorem describes the
additional terms in the heat trace asymptotics which arise from the structures described by
Gr,ij , Fr,i, Er, Γr,a, andSr given above.

Theorem 9.1 [Varying geometries]

(1) a0(F,D,B) = a0(F,D,B).

(2) a1(F,D,B) = a1(F,D,B).

(3) a2(F,D,B) = a2(F,D,B) + (4π)−m/2 1
6

∫
M

Tr{ 3
2FG1,ii}dx.
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(4) a3(F,D,B) = a3(F,D,B) + (4π)(1−m)/2 1
384

∫
CD

Tr{−24FG1,aa}dy

+(4π)(1−m)/2 1
384

∫
CR

Tr{24FG1,aa}dy.

(5) a4(F,D,B) = a4(F,D,B) + (4π)−m/2 1
360

∫
M

Tr{F ( 45
4 G1,iiG1,jj + 45

2 G1,ijG1,ij

+60G2,ii − 180E1 + 15G1,iiτ − 30G1,ijρij + 90G1,iiE + 60F1,i;i + 15G1,ii;jj

−30G1,ij;ij)}dx+ (4π)−m/2 1
360

∫
CD

Tr{f(30G1,aaLbb − 60G1,mmLbb

+30G1,abLab + 30G1,mm;m − 30G1,aa;m − 30F1,m) + F;m(−45G1,aa

+45G1,mm)}dy + (4π)−m/2 1
360

∫
CR

Tr{F (30G1,aaLbb + 120G1,mmLbb

−150G1,abLab−60G1,mm;m+60G1,aa;m+150F1,m+180SG1,aa−180SG1,mm

+360S1) + F;m(45G1,aa − 45G1,mm)}dy.

Next we study the heat content asymptotics for variable geometries. We have the fol-
lowing formulas for Dirichlet and for Robin boundary conditions. LetB := B0.

Theorem 9.2 [Dirichlet boundary conditions]

(1) βn(φ, ρ,D,B) = βn(φ, ρ,D0,B) for n = 0, 1, 2.

(2) β3(φ, ρ,D,B) = β3(φ, ρ,D0,B) + 1
2
√
π

∫
CD
〈G1,mmφ, ρ〉dy.

(3) β4(φ, ρ,D,B) = β4(φ, ρ,D0,B)− 1
2

∫
M
〈G1,ijφ;ij + F1,iφ;i + E1φ, ρ〉dx

+
∫
CD
{ 7

16 〈G1,mm;mφ, ρ〉 − 9
16Laa〈G1,mmφ, ρ〉 − 5

16 〈F1,mφ, ρ〉

+ 5
16Lab〈G1,abφ, ρ〉 − 5

8 〈G1,amφ:a, ρ〉+ 1
2 〈G1,mmφ, ρ;m〉}dy

+
∫
CR
{− 1

2 〈G1,mmB0φ, ρ〉+ 1
2 〈(S1 + Γa∇ea)φ, ρ〉}dy.

10 Spectral boundary conditions

We adopt the notation used to discuss spectral boundary conditions in Section 6. Let
P : C∞(V1) → C∞(V2) be an elliptic complex of Dirac type. LetD = P ∗P and letBΘ

be the spectral boundary conditions defined by the auxiliary self-adjoint endomorphismΘ
of V1. Let∇ be a compatible connection. ExpandP = γi∇ei + ψ.

We begin by studying the heat trace asymptotics with spectral boundary conditions.
There is an asymptotic series

TrL2(fe−tDBΘ ) ∼
m−1∑
k=0

ak(f,DBΘ ,BΘ)t(k−m)/2 +O(t−1/8) .

Continuing further introduces non-local terms; we refer to Atiyah et al. [6], to Grubb
[71, 72], and to Grubb and Seeley [74, 75] for further details. DefineγTa := γ−1

m γa,
ψ̂ := γ−1

m ψ, andβ(m) := Γ(m2 )Γ( 1
2 )−1Γ(m+1

2 )−1. We refer to [48] for the proof of the
following result:

Theorem 10.1 [Spectral boundary conditions] Letf ∈ C∞(M). Then:

(1) a0(f,D,BΘ) = (4π)−m/2
∫
M

Tr(f id)dx.



314 Spectral geometry

(2) If m ≥ 2, thena1(f,D,BΘ) = 1
4 [β(m)− 1](4π)−(m−1)/2

∫
∂M

Tr(f id)dy.

(3) If m ≥ 3, thena2(f,D,BΘ) = (4π)−m/2
∫
M

1
6 Tr{f(τ id+6E)}dx

+(4π)−m/2
∫
∂M

Tr{ 1
2 [ψ̂ + ψ̂

∗
]f + 1

3 [1− 3
4πβ(m)]Laaf id

− m−1
2(m−2) [1−

1
2πβ(m)]f;m id}dy.

(4) If m ≥ 4, thena3(f,D,BΘ) = (4π)−(m−1)/2
∫
∂M

Tr{ 1
32 (1− β(m)

m−2 )f(ψ̂ψ̂+ ψ̂
∗
ψ̂
∗
)

+ 1
16 (5− 2m+ 7−8m+2m2

m−2 β(m))fψ̂ψ̂
∗
− 1

48 (m−1
m−2β(m)− 1)fτ id

+ 1
32(m−1) (2m− 3− 2m2−6m+5

m−2 β(m))f(γTa ψ̂γ
T
a ψ̂ + γTa ψ̂

∗
γTa ψ̂

∗
)

+ 1
16(m−1) (1 + 3−2m

m−2 β(m))fγTa ψ̂γ
T
a ψ̂
∗

+ 1
48 (1− 4m−10

m−2 β(m))fρmm id

+ 1
48(m+1) (

17+5m
4 + 23−2m−4m2

m−2 β(m))fLabLab id

+ 1
48(m2−1) (−

17+7m2

8 + 4m3−11m2+5m−1
m−2 β(m))fLaaLbb id

+ 1
8(m−2)β(m)f(ΘΘ + 1

m−1γ
T
aΘγTaΘ)}+ m−1

16(m−3) (2β(m)− 1)f;mm id

+ 1
8(m−3) (

5m−7
8 − 5m−9

3 β(m))Laaf;m id}dy.

We now study heat content asymptotics with spectral boundary conditions. To simplify
the discussion, we supposeP is formally self-adjoint. We refer to [60, 61] for the proof of:

Theorem 10.2 (1) β0(φ, ρ,D,BΘ) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BΘ) = − 2√
π

∫
∂M
〈Π+

Aφ,Π
+
A#ρ〉dy.

(3) β2(φ, ρ,D,BΘ) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{−〈γmΠ+

APφ, ρ〉 − 〈γmΠ+
Aφ, P̃ ρ〉

+ 1
2 〈(Laa +A+ Ã# − γmψP + ψP γm − ψA − ψ̃

#

A)Π+
Aφ,Π

+
A#ρ〉}dy.

11 Operators which are not of Laplace type

We follow Avramidi and Branson [12], Branson et al. [32], Fulling [52], Gusynin [77],
and Ørsted and Pierzchalski [101] to discuss the heat trace asymptotics ofnon-minimal
operators. Let M be a compact Riemannian manifold with smooth boundary and letB
define either absolute or relative boundary conditions. LetE ∈ C∞(End(ΛpM)) be an
auxiliary endomorphism and letA andB be positive constants. Let

Dp
E := Adδ +Bδd− E on C∞(Λp(M)),

cm,p(A,B) := B−m + (B−m −A−m)
∑
k<p

(−1)k+p
(
m

p

)−1(
m

k

)
.

Theorem 11.1 (1) If E = 0, thenan(1, Dp,B) = B(n−m)/2an(1,∆
p
M ,B)

+(B(n−m)/2 −A(n−m)/2)
∑
k<p(−1)k+pan(1,∆

p
M ,B).

(2) For generalE one has:
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a) a0(1, D
p
E ,B) = a0(1, Dp,B).

b) a1(1, D
p
E ,B) = a1(1, Dp,B).

c) a2(1, D
p
E ,B) = a2(1, Dp,B) + (4π)−m/2cm,p(A,B)

∫
M

Tr(E)dx.

We follow the discussion in [56] to study the heat content asymptotics of the non-
minimal operatorD := Adδ+Bδd−E onC∞(Λ1(M)). Letφ andρ be smooth1 forms;
expandφ = φiei andρ = ρiei whereem is the inward geodesic normal.

Theorem 11.2 (1) LetB define absolute boundary conditions. Then:

a) β0(φ, ρ,D,B) =
∫
M

(φ, ρ)dx.

b) β1(φ, ρ,D,B) = − 2√
π

√
A
∫
∂M

φmρmdy.

c) β2(φ, ρ,D,B) = −
∫
M
{A(δφ, δρ) +B(dφ, dρ)− E(φ, ρ)}dx

+
∫
∂M

A{−φmρa:a − φa:aρm − φm;mρm − φmρm;m

+ 3
2Laaφmρm}dy.

(2) LetB define relative boundary conditions. Then

a) β0(φ, ρ,D,B) =
∫
M

(φ, ρ)dx.

b) β1(φ, ρ,D,B) = − 2√
π

√
B
∫
∂M

φaρady.

c) β2(φ, ρ,D,B) = −
∫
M
{A(δφ, δρ) +B(dφ, dρ)− E(φ, ρ)}dx

+
∫
∂M

B{−φa:aρm − φmρa:a − φa;mρa − φaρa;m
+Labφbρa + 1

2Laaφbρb}dy.

We now turn our attention to fourth order operators. LetM be a closed Riemannian
manifold. Let∇ be a connection on a vector bundleV over a closed Riemannian manifold
M . Set

Γ(m−n2 )−1Γ(m−n4 ) := lim
s→n
{Γ(m−s2 )−1Γ(m−s4 )} .

Theorem 11.3 LetPu = u;iijj+p2,iju;ij+p1,iu;i+p0 on a closed Riemannian manifold
wherep2,ij = p2,ji and where{p2,ij , p1,i, p0} are endomorphism valued. . Then:

(1) a0(1, P ) = 1
2 (4π)−m/2Γ(m2 )−1Γ(m4 )

∫
M

Tr(id)dx.

(2) a2(1, P ) = 1
2 (4π)−m/2Γ(m−2

2 )−1Γ(m−2
4 ) 1

6

∫
M

Tr{τ id+ 3
mp2,ii}dx.

(3) a4(1, P ) = 1
2 (4π)−m/2Γ(m2 )−1Γ(m4 ) 1

360

∫
M

Tr{ 90
m+2p2,ijp2,ij + 45

m+2p2,iip2,jj

+(m− 2)(5τ2 id−2|ρ|2 id+2|R|2 id+30ΩijΩij) + 30τp2,ii − 60ρijp2,ij

−360p0}dx.
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12 The spectral geometry of Riemannian submersions

We refer to [64] for further details concerning the material of this section; additionally
see Bergery and Bourguignon[13], Besson and Bordoni [29], Goldberg and Ishihara [65]
and Watson [126]. Letπ : Z → Y be a smooth map whereZ andY are connected
closed Riemannian manifolds. We say thatπ is a submersion ifπ is surjective and if
π∗ : TzZ → TπzY is surjective for everyz ∈ Z.

Submersions are fiber bundles. LetF := π−1(y0) be the fiber over some pointy0 ∈ Y .
If O is a contractable open subset ofY , thenπ−1(O) is homeomorphic toO × F and
under this homeomorphism,π is projection on the first factor. The vertical distribution
V := ker(π∗) is a smooth subbundle ofTZ. The horizontal distribution is defined by
H := V⊥. One says thatπ is a Riemannian submersion ifπ∗ : Hz → TπzY is an isometry
for every pointz in Z.

The fundamental tensors may be introduced as follows. Letπ : Z → Y be a Rie-
mannian submersion. We use indicesa, b, c to index local orthonormal frames{fa}, {fa},
{Fa}, and{F a} forH,H∗, TY , andT ∗, respectively. We use indicesi, j, k to index local
orthonormal frames{ei} and{ei} for V andV∗, respectively. There are two fundamental
tensors which arise naturally in this setting. The unnormalized mean curvature vectorθ
and the integrability tensorω are defined by:

θ := −gZ([ei, fa], ei)fa = ZΓiiafa ∈ C∞(H),
ω := ωabi = 1

2gZ(ei, [fa, fb]) = 1
2 (ZΓabi − ZΓbai) .

Lemma 12.1 Letπ : Z → Y be a Riemannian submersion.

(1) The following assertions are equivalent:
a) The fibers ofπ are minimal. b)π is a harmonic map. c)θ = 0.

(2) The following assertions are equivalent:
a) The distributionH is integrable. b)ω = 0.

(3) Let Θ := π∗θ be the integration ofθ along the fiber, and letV (y) be the volume of
the fiber. ThenΘ = −dY ln(V ). Thus in particular, ifθ = 0, then the fibers have
constant volume.

By naturalityπ∗dY = dZπ
∗. The intertwining formulas for the coderivatives and for

the Laplacians are more complicated. LetE := ωabi extZ(ei) intZ(fa) intZ(f b) and let
Ξ := intZ(θ) + E .

Lemma 12.2 Letπ : Z → Y be a Riemannian submersion. ThenδZπ∗ − π∗δY = Ξπ∗

and∆p
Zπ
∗ − π∗∆p

Y = {ΞdZ + dZΞ}π∗.
One is interested in relating the spectrum on the base to the spectrum on the total space.

The situation is particularly simple ifp = 0:

Theorem 12.3 Letπ : Z → Y be a Riemannian submersion.

(1) If Φ ∈ E(λ,∆0
Y ) is nontrivial and ifπ∗Φ ∈ E(µ,∆0

Z), thenλ = µ.

(2) The following conditions are equivalent:
a) ∆0

Zπ
∗ = π∗∆0

Y . b) For all λ, π∗E(λ,∆0
Y ) ⊂ E(λ,∆0

Z). c) θ = 0.
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Muto [97, 98, 99] has given examples of Riemannian principalS1 bundles where eigen-
values can change. The study of homogeneous space also provides examples. This leads
to the result:

Theorem 12.4 (1) LetY be a homogeneous manifold withH2(Y ; R) 6= 0. There exists
a complex line bundleL overY with associated circle fibrationπS : S(L) → Y ,
and there exists a unitary connectionL∇ on L so that the curvatureF of L∇ is
harmonic and has constant normε 6= 0 and so thatπ∗SF ∈ E(ε,∆2

S).

(2) Let 0 ≤ λ ≤ µ and letp ≥ 2 be given. There exists a principal circle bundle
π : P → Y over some manifoldY , and there exists0 6= Φ ∈ E(λ,∆p

Y ) so that
π∗Φ ∈ E(µ,∆p

Z).
The casep = 1 is unsettled; it is not known if eigenvalues can change ifp = 1. On the

other hand, one can show that eigenvalue can never decrease.

Theorem 12.5 Letπ : Z → Y be a Riemannian submersion of closed smooth manifolds.
Let 1 ≤ p ≤ dim(Y ). If 0 6= Φ ∈ E(λ,∆p

Y ) and if π∗Φ ∈ E(µ,∆p
Z), thenλ ≤ µ. The

following conditions are equivalent:
a) We have∆p

Zπ
∗ = π∗∆p

Y .
b) For all λ, we haveπ∗E(λ,∆p

Y ) ⊂ E(λ,∆p
Z).

c) For all λ, there existsµ = µ(λ) soπ∗E(λ,∆p
Y ) ⊂ E(µ,∆p

Z).
d) We haveθ = 0 andω = 0.

Results of Park [103] show this if Neumann boundary conditions are imposed on a
manifolds with boundary, then eigenvalues can decrease.

There are results related to finite Fourier series. We haveL2(ΛpM) = ⊕λE(λ,∆p
M ).

Thus if φ is a smoothp-form, we may decomposeφ =
∑
λ φλ for φλ ∈ E(λ,∆p

M ).
Let ν(φ) be the number ofλ so thatφλ 6= 0. We say thatφ hasfinite Fourier seriesif
ν(φ) < ∞. For example, ifM = S1, thenφ has finite Fourier series if and only ifφ
is a trignometric polynomial. The first assertion in the following result is an immediate
consequence of the Peter-Weyl theorem; the second result follows from [49].

Theorem 12.6 (1) Letπ : G→ G/H be a homogeneous space whereG/H is equipped
with aG invariant metric and whereG is equipped with a left invariant metric. If
φ is a smoothp-form onG/H with finite Fourier series, thenπ∗φ has finite Fourier
series onG.

(2) Let1 ≤ p, 0 < λ, and2 ≤ µ0 be given. There existsπ : G→ G/H and there exists
φ ∈ E(λ,∆p

G/H) so thatµG(π∗φ) = ν0.

In general, there is no relation between the heat trace asymptotics on the base, fiber,
and total space of a Riemannian submersion. McKean and Singer [90] have determined
the heat equation asymptotics for the sphereSn. Let

Z(M, t) :=
(4πt)m/2

Vol(M)
TrL2 e−t∆

0
M ∼

∑
n≥0

(4πt)m/2

Vol(M)
an(∆0

M )tn/2

be the normalized heat trace; with this normalization,Z(M, t) is regular at the origin and
has leading coefficient1. Their results (see page 63 of McKean and Singer [90]) show that

Z(S1, t) = 1 +O(tk) for any k
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Z(S2, t) = et/4
√
πt

∫ 1

0
e−x/t

sin
√
x
dx = 1 + t

3 + t2

15 + ...

Z(S1 × S2, t) = Z(S2, t)Z(S1, t) = 1 + t
3 + t2

15 + ...

Z(S3, t) = et = 1 + t+ 1
2 t

2 + .... .

The two fibrationsπ : S1 × S2 → S2 andπ : S3 → S2 have baseS2 and minimal fibers
S1. However, the heat trace asymptotics are entirely different.

On the other hand, the following result shows that the heat content asymptotics onZ
are determined by the heat content asymptotics of the base and by the volume of the fiber
if θ = 0; Lemma 12.1 shows the volumeV of the fiber is independent of the point in
question in this setting.

Theorem 12.7 Let π : Z → Y be a Riemannian submersion of compact manifolds with
smooth boundary. LetρZ := π∗ρY and letφZ := π∗φY . If θ = 0 and if B = BD or
B = BN , thenβn(ρZ , φZ ,∆0

Z ,B) = βn(ρY , φY ,∆0
Y ,B) · V .
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