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1 Introduction

The field of spectral geometry is a vibrant and active one. In these brief notes, we will
sketch some of the recent developments in this area. Our choice is somewhat idiosyncratic
and owing to constraints of space necessarily incomplete. It is impossible to give a com-
plete bibliography for such a survey. We refer Carslaw and Jaeger [41] for a comprehensive
discussion of problems associated with heat flow, to Gilkey [54] and to Melrose [91] for

a discussion of heat equation methods related to the index theorem, to Gilkey [56] and to
Kirsten [84] for a calculation of various heat trace and heat content asymptotic formulas,
to Gordon [66] for a survey of isospectral manifolds, to Grubb [73] for a discussion of
the pseudo-differential calculus relating to boundary problems, and to Seeley [116] for an
introduction to the pseudo-differential calculus. Throughout we shall work with smooth
manifolds and, if present, smooth boundaries. We have also given in each section a few ad-
ditional references to relevant works. The constraints of space have of necessity forced us
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to omit many more important references than it was possible to include and we apologize
in advance for that.

We adopt the following notational conventions. I(&f, g) be a compact Riemannian
manifold of dimensionn with smooth boundarg M. Let Greek indices:, v range from
1 to m and index a local system of coordinates= (z!,...,2™) on the interior ofM.
Expand the metric in the foras? = g, dz* odz” wereg,,, := 9(0x,,, 0., ) and where we
adopt theEinstein conventionf summing over repeated indices. Wedét be the inverse
matrix. The Riemannian measure is givenday:= g dz'...dz™ for g := /det(g, ).

Let V be the Levi-Civita connection. We expaNt, 0., = I',,70., wherel',,”
are theChristoffel symbolsThecurvature operatofR and correspondingurvature tensor
R are may then be given bR(X,Y) := VxVy — VyVx — V[xy] and given by
R(X,Y,Z, W) = g(R(X,Y)Z,W).

We shall let Latin indices, j range froml to m and index a local orthonormal frame
{e1,...,en } for the tangent bundle af/. Let R;;;; be the components of the curvature
tensor relative to this base; tRecci tensorp and thescalar curvaturer are then given by
settingp;; := Rikr; andt := p;; = Rixr;. We shall often have an auxiliary vector bundle
V' and an auxiliary connection given dn. We use this connection and the Levi-Civita
connection to covariantly differentiate tensors of all types and we shall let ‘;’ denote the
components of multiple covariant differentiation.

Let dy be the measure of the induced metric on the boun8afy We choose a local
orthonormal frame near the boundary/af so thate,, is the inward unit normal. We let
indicesa, b range froml tom — 1 and index the induced local frardey, ..., e,,—1 } for the
tangent bundle of the boundary. L&}, := ¢(V., e, e,,) denote thesecond fundamental
form. We sum over indices with the implicit range indicated. Thus the geodesic curvature
kg IS given byk, := L,,. We shall let .’ denote multiple tangential covariant differentia-
tion with respect to the Levi-Civita connection of the boundary; the difference between *;’
and “’ being, of course, measured by the second fundamental form.

2 The geometry of operators of Laplace and Dirac type

In this section, we shall establish basic definitions, discuss operators of Laplace and of
Dirac type, introduce the DeRham complex, and discuss the Bochner Laplacian and the
Weitzenltich formula; [55] provides a good reference for the material of this section.

Let D be a second order partial differential operator on the space of smooth sections
C*>(V') of avector bundlé” over M. ExpandD = —{a""0,, 0, +a”0,,+0b} where the
coefficients{a*”, a*, b} are smooth endomorphisms Bt we suppress the fiber indices.

We say thatD is anoperator of Laplace typd o*” = ¢g*”id. A first order operatord
on C>=(V) is said to be an operator @firac typeif A% is an operator of Laplace type.
If we expandA = ~70,, + ~,, then A is an operator of Dirac type if and only if the
endomorphisms” satisfy theClifford commutation relations”y* + y#~” = —2¢H¥ id.
Let A be an operator of Dirac type and let= ¢,dz” be a smoothl-form on M.
We lety(§) = €, define aClifford module structuren V; this is independent of the
particular coordinate system chosen. We can always choose a fiber melfis@thaty
is skew-adjoint. We can then construct a unitary connecti@n V' so thatV~ = 0. Such
a connection is calledompatible If V is compatible, we expand = 1"V, + 1 4; the



P. Gilkey 289

endomorphismy 4 is tensorial and does not depend on the particular coordinate system
chosen; it does, of course, depend on the particular compatible connection chosen.

2.1 The DeRham complex

The prototypical example is given by the exterior algebra. €&t(A? M) be the space
of smoothp forms. Letd : C*°(APM) — C>(AP*1M) be exterior differentiationand

let 6 = d* be the adjoint operatointerior differentiation If £ is a cotangent vector,
letext(§) : w — & A w denote exterior multiplication, and lait(£) be the dual, interior
multiplication. Lety(¢) := ext(¢)—int(&) define a Clifford module on the exterior algebra
A(M). Sinced + § = y(dx")Vy, ,d+ ¢ is an operator of Diract type. The associated
LaplacianA s := (d+6)? =AY, & ... & AR, & ... & AT, decomposes as the direct sum
of operators of Laplace typA%, on the space of smoofhforms C*>°(AP?M). One has
ASy = —g7'0s, 99" Os, -

It is possible to write the-form valued Laplacian in an invariant form. Extend the
Levi-Civita connection to act on tensors of all types. Netyw = —g"w,,,, define the
Bochneror reduced LaplacianLet R give the associated action of the curvature tensor.
TheWeitzenbckformula then permits us to express the ordinary Laplacian in terms of the
Bochner Laplacian in the form,, = Ay, + $7v(dz*)y(dz")R .. This formalism can
be applied more generally:

Lemma 2.1 Let D be an operator of Laplace type on a Riemannian manifold. There
exists a unigue connectiovi on V' and there exists a uniqgue endomorphigf V' so that

D¢ = —¢.;; — E¢. If we expresd locally in the formD = —{¢""0,,0,, + a"0,, + b}

then the connectioi-formw of V and the endomorphisifi are given by

Wy, = % (guua” +9°Toepid) and E =0b— ¢"* (0w, + wow, —wel'y,7) .

Let V be equipped with an auxiliary fiber metric. Thénis self-adjoint if and only if
V is unitary andF is self-adjoint. We note that iD is theSpin LaplacianthenV is the
spin connection on the spinor bundle and the Lichnerowicz formula [86] yields, with our
sign convention, thakl = 7%7’id wherer is the scalar curvature.

3 Heat trace asymptotics for closed manifolds

Throughout this section, we shall assume thas an operator of Laplace type on a closed
Riemannian manifold M, g). We shall discuss thé? spectral resolution iD is self-
adjoint, define the heat equation, introduce the heat trace and the heat trace asymptotics,
present the leading terms in the heat trace asymptotics, and discuss the form valued Lapla-
cian; [41, 54, 116] are good references for the material of this section and other references
will be cited as needed.

We suppose thab is self-adjoint. There is then@mplete spectral resolutiasf D on
L?(V). This means that we can find a complete orthonormal Hasj$ for L?(V') where
the ¢,, are smooth sections # which satisfy the equatiob,, = \,,¢,,. Let||; denote
the C*-norm.

Theorem 3.1 Let¢ € L*(V). Expandp = > 7 | ¢,¢,, in the L? sense where one has
Cp = fM(qb, ¢,). If ¢ € C>=(V), then this series converges in th& topology for any
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k; ¢ € C>(V) if and only iflim, .., n*c, < oo for any k. The set of eigenvalues

is discrete. Each eigenvalue appears with finite multiplicity and there are only a finite
number of negative eigenvalues. If we enumerate the eigenvalues sq thaf, < ...,
then\,, ~n?/™ as n — oco. There exist constants, > 0 andC}, > 0 so that one has
norm estimatef¢,, || < Cpn** for all k, n.

This yields the familiaMeyl asymptotic formulfl27] giving the eigenvalue growth.
For example, ifD = —d2 on the circle, then the eigenvalues grow quadratically since
the associated spectral resolution is given{hy, ﬁeme}nez. The L? expansion of
Theorem 3.1 in this setting then becomes the usual Fourier series expansipm@ridr
one has the familiar result that a function on the circle is smooth if and only if its Fourier
coefficients are rapidly decreasing.

Let the initial temperature distribution be given byc L?(V'). Impose the classical
time evolution for the subsequent temperature distribution without additional heat input:

(0s + D)u=0fort >0 and hl%lu( ) =¢in L%,

Thenu(t,-) = e tP¢ wheree—fD is given by the functional calculus. This operator is
infinitely smoothing; we have(t, z) = [,, K(t, z, Z)¢(z)di for a smooth kernel function
K. If D is self-adjoint, Iet{An, ¢, bea spectral resolution @. Then

K(t,,7) Zet“ () @ 6, (3) : Vi — V.

Theorem 3.1 implies this series converges uniformly in@fiecopology fort > & > 0.

Let F € C*>(End(V)) be an auxiliary endomorphism used for localizirfg;is of-
ten referred to as amearing endomorphisniThe localized heat tracgr . { Fe="P} is
analytic fort > 0. Ast | 0, there is a complete asymptotic expansion [117]

Trpe {Fe P} ~ Z an(F, D)tn=m)/2,
n=0

The coefficients:, (F, D) are theheat trace asymptotics:, (F, D) = 0 if n is odd.
In Section 5 we will consider manifolds with boundary and the corresponding invariants
are non-trivial forn both even and odd. There exist locally computable endomorphisms
eM(D)(x) of V which are defined for alt € M so that

an(F,D) = /M Tr{FeM (D)} (z)dzx . (3.a)

The invariants:» (D) are uniquely characterized by Equation (3.a).

We use Lemma 2.1 to expreBs= D(g, V, E) whereV is a uniquely defined connec-
tion onV and where’ is a uniquely defined auxiliary endomorphismiof Let2;; be the
endomorphism valued components of the curvature defined by the conn@ction

Theorem 3.2 Let F' € C*°(End(V')) be a smearing endomorphism.
(1) ao(F, D) = (4m)=™/2 [, Te{F }da.

(2) as(F,D) = (4m)~™/2% [\ Te{F(6F + 7id)}dx.
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(3) ay(F, D) = (4m)~™/2 L [}, Tr{F(60E,; + 607 E + 180E>

127 1d 4572 1d —20p[? 1d +2| R|2 id 43002, ) V.

(4) a6(F,D) = fM Tr{F((lT?T;iijj + %T;kT;k - %pij;kpij;k - %ij;npjn;k
+ 2 Rijrion Rijhiin + 27T on — 51010 jknn + 21 PjPjnskn + 71 Rijhi Rijhiznn
+oor’ = gl + SR IR = SR kP inPhn — FarPisPrRikit
—%pijjnliRknli — o RijienRijip Rinip — 22 Rijin Ritkop Rjinp) id
+ 25 ik Qo + 185525 Qiksk + 55 gk i + 5525 Qigier — 552528 Qs
— 50 R2ijkn Qij Qn — 5505 jnQen + 75T Un Qe + 55 Biiizs + 15 EEii
+5EuE+ 55E:Ey + tB® + 35EQ5Q;5 + 55%;,BQ; + 55045,Q4F
3 TEgk + o506 Eijk + a5 T Bu — g5 B Qjsi + a5 By + 5 EET
+3—1OET;kk + %ET2 - ?10E|p|2 + ﬁE|R|2)}dx.

There are formulas available fag andaiq; we refer to Amsterdamski, Berkin, and
O’Connor[1], to Avramidi [9], and to van de Ven [124] for further details.

There is also information available about the general form of the heat trace asymptotics
a,, for all values ofn; we refer to Avramidi [10] and to Branson et al. [36] for further
details. These formulas play an important role in the compactness results we shall discuss
presently in Theorem 4.6. Lé? be an operator of Laplace type on a closed Riemannian
manifold M. Let AE = —E.j. Sete,, = (—1)"/{2"*1-1-3-...- (2n+ 1)}.

Theorem 3.3 Let ‘+... denote lower order terms.

(1) If n > 1, thenas, (F, D) = €, (4m)"™/2 [, Tt{F(—(8n + 4)A"'E
—2nA" trid +... }da.

(2) If n > 3, thenag, (D) = €, (47)~™/2 Tr{(n*> — n — 1)|V" 27 |?id
+2|V™"2p2id +4(2n + 1)(n — 1)V" 27 . V" 2E
+2(2n + 1)V 2Q - V" 2Q +4(2n + 1)(2n — 1)V 2E - V" 2E + ... }dz.
We note that Polterovich [109, 110] has introduced a formalism for computing in closed
form the heat trace asymptotiag for all n.

If one specializes these formulas fay, a2, anday to the case in whiclD is the form
valued Laplacian, one has the following result of Patodi [106]. Introduce constants:

c(m,p) = pg(,;nip)!;

CO(m7p) = c(m,p) - GC(m - 2ap - l)a

c1(m, p) = 5¢(m,p) — 60c(m — 2,p — 1) + 180c(m — 4,p — 2),
ca(m,p) = —2c(m, p) + 180c(m — 2,p — 1) — 720c(m — 4,p — 2),
cs(m,p) = 2¢(m, p) —30c(m — 2,p — 1) + 180c(m — 4,p — 2).

Theorem 3.4 (1) ao(A%,) = (47)~™/2¢c(m, p) Vol(M).
(2) aa(A%)) = (4m)=™/ 24 co(m, p) [, Tda.

() as(AL)) = (4m) "2 s [ er(m, p)T2 + ca(m, p)p? + c3(m, p) R*}da.
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Such formulas play an important role in the study of spectral geometry. There is a
long history involved in computing these invariants. Weyl [127] discovered the leading
term in the asymptotic expansiosg. Minakshisundaram and Pleijel [93, 94] examined
the asymptotic expansion for the scalar Laplacian in some detailaJBada, terms in
the asymptotic expansion were investigated by McKean and Singer [90] in the scalar case
and by Patodi [105] for the form valued Laplacian. Tdeterm for the scalar Laplacian
was determined by Sakai [111] and the general expressiaiyfar, andag for arbitrary
operators of Laplace type was worked out in [53]. As noted above, there are formulas for
ag andayg. The literature is a vast one and we refer to [54, 56] more details and additional
references.

We now discuss the relationship between the heat trace asyptotics and the eta and zeta
functions in a quite general context. LBtbe a positive, self-adjoint elliptic partial differ-
ential operator on a closed Riemannian manifold Thene—** is an infinitely smoothing
operator which is given by a smooth kernel function. {ebe an auxiliary partial differ-
ential operator. Thefir;»{Qe~*"'} is analytic fort > 0 and ag | 0, there is a complete
asymptotic expansion with locally computable coefficients:

Trye {Qe—tP) ~ Z an(P, Q)t(n—m—ord(Q))/ord(P)

n=0

The generalized zeta function is given by:
(s, P,Q) :=Trr2(QP~%) for R(s)>>0.

The Mellin transform may be used to relate the zeta function to the heat kerndl. deet

the classical Gamma function. We refer to Seeley [116, 117] for the proof of Assertions

(1) and (2) and to [50] for the proof of Assertion (3) in the following result. Assertion (2)

generalizes eigenvalue growth estimates of Weyl [127] given previously in Theorem 3.1.

Theorem 3.5 (1) If Re(s) >> 0, then((s, P,Q) = I'(s)~! [ ¢°7! Trr2(Qe~*F)dt.
I'(s)¢(s, P, Q) has a meromorphic extension to the complex plane with isolated sim-
ple poles ats = (m + ord(Q) — n)/ ord(P) forn =0, 1, ... and

Ress:(erord(Q)fn)/ord(P) F(S)C(Sa P, Q) = a'n,(Pv Q)

(2) The leading heat trace coefficien(P) is non-zero. Lep; < ... < A, < ... be the

eigenvalues oP. Thenlim,, o, nA, "™ ") = T(es) ~Lag(P).

(3) Let A(t) and B(t) be polynomials of degree > 0 andb > 0 whereB is monic.
There are constants sg,(B(P), A(P)) = Xy<km)c(k,n,m, A, B)ax(P).

4 Hearing the shape of a drum

Let Spec(D) = {A; < A2 < ...} denote the set of eigenvalues of a self-adjoint operator of
Laplace type, repeated according to multiplicity. One is interested in what geometric and
topological properties aff are reflected by the spectrum. Good references for this section
are [26, 54, 66]; other references will be cited as appropriate.

One says thaf\/ and M areisospectralif Spec(A9,) = SpeC(A?\Z); p-isospectral
refers toAP. M. Kac [81] in his seminal article raised the question of determining the
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geometry, at least in part, of the underlying manifold from the spectrum of the scalar

Laplace operatol},. It is not possible in general to completely determine the geome-

try:

Theorem 4.1 (1) Milnor [92]: There exist isospectral non isometric flat tori of dimen-
sion 16.

(2) Vigneras [125]: There exist isospectral non-isometric hyperbolic Riemann surfaces.
Furthermore, ifm > 3, there exist isospectral hyperbolic manifolds with different
fundamental groups.

(3) lkeda [79]: There exist isospectral non-isometric spherical space forms.

(4) Urakawa [123]: There exist regior@; in flat space form > 4 which are isospectral
for the Laplacian with both Dirichlet and Neumann boundary conditions but which
are not isometric.

These examples listed above come in finite families. We say that a family of mgtrics
on M is a non-trivial family of isospectral manifolds(f/, ;) and(}M, ¢,) are isospectral
for everys, ¢, but(M, g;) is not isometric td M, g,) for s # t.

Theorem 4.2 (1) Gordon-Wilson [67]: There exists a non-trivial family of isospectral
metrics on a smooth manifoll which are not conformally equivalent.

(2) Brooks-Gordon [37]: There exists a non-trivial family of isospectral metrics on a
smooth manifold// which are conformally equivalent.
There is a vast literature in the subject. In particular, Sunada [121] gave a general
method for attacking the problem which has been exploited by many authors.
Despite this somewhat discouraging prospect, there are a number of positive results
available. For example Berger [27] and Tanno [122] showed that a sphere or projective
space is characterized by its spectral geometry, at least in low dimensions:

Theorem 4.3 Let M, and My be closed Riemannian manifolds of dimension< 6
which are isospectral. I/, has constant sectional curvature c, so ddés.

Patodi [106] showed additional geometrical properties are determined by the form val-
ued Laplacian. The following is an easy consequence of Theorem 3.4.

Theorem 4.4 Let M, and M- be closed Riemannian manifolds which aresospectral
forp =0,1,2. Then:

(1) If M, has constant scalar curvature= ¢, then so doed/,.
(2) If M, is Einstein, so id\/,.
(3) If M, has constant sectional curvatusethen so doed/s.

For manifolds with boundary, suitable boundary conditions must be imposed. Formulas
that will be discussed presently in Section 5 have been used by Park [104] to show:

Theorem 4.5 Let M; and M, be compact Einstein Riemannian manifolds with smooth
boundaries with the same constant scalar curvatutgg = 74,. AlSo assume thai1,
and M, are isospectral for both Neumann and Dirichlet boundary conditions. Then:

(1) If M; has totally geodesic boundary, then so ddds.
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(2) If My has minimal boundary, then so dog4.
(3) If M1 has totally umbillic boundary, then so dogs..
(4) If M1 has strongly totally umbillic boundary, then so does;.

There are also a number of compactness results. Theorem 3.3 plays a central role in
the following results:

Theorem 4.6 (1) Osgood, Phillips, and Sarnak [102]: Families of isospectral metrics
on Riemann surfaces are compact modulo gauge equivalence.

(2) Brooks, Perry, and Yang [39] and Chang and Yang [42]nif= 3, then families of
isospectral metrics within a conformal class are compact modulo gauge equivalence.

(3) Brooks, Perry, and Petersen [38]: Isospectral negative curvature manifolds contain
only a finite number of topological types.

5 Heat trace asymptotics of manifolds with boundary

In previous sections, we have concentrated on closed Riemannian manifolds .blesin
operator of Laplace type on a compact Riemannian manifélavith smooth boundary
OM . Good basic references for the material of this section are [56, 73, 84]. Many authors
have contributed to the material discussed here; we refer in particular to the work of [40,
76, 78, 82, 83, 90, 93, 94, 96, 120, 127].

We impose suitable boundary conditioisto have a well posed problenfi must
satisfy a condition called th&trong Lopatenski-Shapiro conditiowe shall suppress tech-
nical details for the most part in the interests of simplicity. The boundary conditions we
shall consider have physical underpinnings. Dirichlet boundary conditions correspond to
immersing the boundary in ice water; Neumann boundary conditions correspond to an in-
sulated boundary. Robin boundary conditions are a generalization of Neumann boundary
conditions where the heat flow across the boundary is proportional to the temperature on
the boundary. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. Transfer boundary conditions arise in the
study of branes. Both these conditions reflect the heat flow between two inhomogeneous
mediums coupled along a common boundary or brane. Transmission boundary conditions
correspond to having the two components pressed tightly together. By contrast, heat trans-
fer boundary conditions correspond to a loose coupling between the two components. We
refer to Carslaw and Jaeger [41] for further details.

Through out the remainder of this section, weflet C*°(End(V)) define alocalizing
or smearing endomorphism and ketlenote a suitable boundary operator; in what follows,
we shall give a number of examples. Ligg be the realization of an operatbrof Laplace
type with respect3; the domain ofDj is then the set of all functions in a suitable
Schwarz space so thatsatisfies the appropriate boundary conditions, i.e. soihat 0.
Greiner [68, 69] and Seeley [118, 119] showed that there was a full asymptotic expansion
ast | 0 of the form:

Trpa{Fe P2} ~ > " a,(F, D, B)t"—m)/2,

n=0
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There are locally computable endomorphisméD)(z) defined on the interior and locally
computable endomorphlsme” (D, B)(y) defined on the boundary so that

0 (FD.B) = [ TP (D)}(e)ds
+ Z/ Te{(VE F)edN (D, B)}(y)dy.

The invariants (D) andeﬁ%(D, B) are uniquely characterized by this identity; the in-

terior invariantse} (D) are not sensitive to the boundary condition and agree with those
considered previously in Equation (3.a). The remainder of Section 5 is devoted to giving
explicit combinatorial formulas for these invariants.

A function ¢ satisfies Dirichlet boundary conditionsdgfvanishes ordM. Thus the
Dirichlet boundary operator is defined by:

B¢ = ¢lom - (5.a)
Theorem 5.1 [Dirichlet boundary conditions] LeF' € C*°(End(V)).
(1) ao(F,D,B) = (4m)~™/2 [, Tr{F}dz.
(2) a1(F,D,B) = —(4m)~"=D/24 [ Tr{F}dy.
() az(F,D,B) = (4m)~™/2L [, Ti{ F(6E + 7)}dx + (47)~™/2% [\ Tr{2F L,
—3F.,, }dy.

(4) a3(F,D,B) = — g (4m)=(m=V/2 [ Tr{96FE + F(167 + 8 Ramam + "LaaLus
—~10LapLap) — 30F . Lag + 24F.m }dy.

(5) as(F,D,B) = (4m)~™/2 ks [\ Tr{F(60E; + 607E + 180E? + 3002 + 127,
+57% — 2|p%| + 2| R?|) Y + (4m) =™/ 2 5ks [, Te{F(—120E,, + 120E Lyq
_187—;171 + 207Laa + 4Ramameb - 12Rambm ab t+ 4Rabchac + 24Laa:bb
+%LaaLbchc - LabLachc + 20 L(LbLbCL(LC) + Fm(_18OE — 307
_i;OLaaLbb + TLabLab) + 24EmmLaa - 30-F,17,m}dy
Neumann boundary conditions are defined by the opet#ar := ¢.,,|a1s; the asso-

ciated boundary conditions define a perfectly insulated boundary with no heat flow across

the boundary. It is convenient in many applications to consider slightly more general con-

ditions called Robin boundary conditions that permit the heat flow to be proportional to the

temperature. Leb be an auxiliary endomorphism &f overoM. The Robin boundary
operator is defined by:

Bs¢ := (¢, + 5¢)lons - (5.b)
Theorem 5.2 [Robin boundary conditions] Lef' € C>°(End(V)).
(1) ao(F,D,Bs) = (4m)~™/2 [, Tr{F}dz.
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(2) a1(F,D,Bg) = (4m)(t=m/2L [ Tr{F}dy.

() as(F,D,Bs) = (4m)~™/2L [\ Tr{F(6E +7)}dx+ (4m)~™/?% [\ Tr{F(2Laqa
+125) + 3F., }dy.

(4) a3(F,D,Bs) = (4m)1=m/2 L [ Tr{F(96E + 167 + 8 Ramam + 13LaaLus
+2LapLap + 96SLaq + 19252 +F.,, (6 Lag + 96S) + 24F.,, Hdy.

(5) au(F, D, Bs) = (4m)~™/2 Lo [\ Tr{F(60E. 1, +607 E+180E2 + 3002 + 127,

+57% — 2|p|? + 2|R[*) Yz + (4m) "™/ 225 [, Tr{F(240E,,, 4 4271,
+24 L g + 120E Lag + 207 Lo 4+ 4R amam Lo — 12 Rambm Lab +4Rapeb Lac
+29 LaaLppLee + 8LayLap Lee + 22 Loy LyeLac + 360(SE + ES) + 12087
+144S Lo Lip + 48S Lap Loy + 480S% Lo + 480S° +1208.4,) + F., (180F
+307 4+ 12Laq Ly + 12LapLap + 725 Lag + 24052) + Foppm (24 Laq + 12085)
+30F iim bdy.

When discussing the Euler characteristic of a manifold with boundary in Section 6
subsequently, it will useful to consider absolute and relative boundary conditionsbkeet
the geodesic distance to the boundary. Near the boundary, decompose a differential form
w € C*(A(M)) in the formw = wy + dr A wy Where thew; are tangential differential
forms. We define the relative boundary operdpiand the absolute boundary operafqr
for the operatorl + § by setting:

Br(w) = w1|aM andBa(w) = wgl(')]w. (50)

There are induced boundary conditions for the associated Laplatians)?. They are
defined by the operatd, ,¢ := B,./o¢ ® B;/q(d + 0)¢.

The boundary conditions defined by the operafygs, provide examples of a more
general boundary condition which are callatked boundary condition$Ve can combine
Theorems 5.1 and 5.2 into a single result by using such boundary conditions. We assume
given a decompositiof’ |5y = V. @ V_. Extend the bundleE.. to a collared neighbor-
hood ofo M by parallel translation along the inward unit geodesic raysySet 11, —II_.

Let S be an auxiliary endomorphism &f. overoM. Themixed boundary operatanay
then be defined by setting

By s¢ :=T111(,,, + Sb)lor ©_¢lons - (5.d)

One sety = id, I1 = id, andII_ = 0 to obtain the Robin boundary operator of Equation
(5.b); one sety = —id, I1; = 0, andII_ = id to obtain the Dirichlet boundary operator

of Equation (5.a). The formulas of Theorem 5.1 and Theorem 5.2 then be obtained by this
specialization.

Theorem 5.3 [Mixed boundary conditions] LeF’ = fid for f € C*°(M). Then:
(1) ao(F, D, By,s) = (4m)~™/2 [}, Tr{F}dXx.

(2) a1(F, D, By.g) = (4m)~(m=1/2% [ Tr{Fx}dy.
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(3) az(F,D,By.s) = (4m)~™/2% [, Te{F(6E + 7)}dx
+(4m)=™2% [0 TH{2F Laa + 3Fmx + 12FS}dy.

(4) a3(F,D,By.s) = (4m)~m=D/2 L [ Tr{F(96xE + 16x7 + 8XRamam
+[1310y — 7T ] Lo Ly 4 [2T14 + 1011 ] Loy Lap + 965 Lag + 19252
—12X.uX:a) + Eon (6114 + 30I1_]Lyq + 96S) + 24X F.pm }dy.

(5) as(F,D,By.s) = (4m)~™/2 L [, Tr{F(60E,4), + 607 E + 180E?
+3002 + 1274, +57% — 2| p|> + 2| R[?) b + (4m) ~™/2 2 [, Tr{ F([24011,
—12011_]E.,,, + [4211 — 18T1_]7., + 120E Lo + 24Lgapp + 207 Lag
+4Ramam Loy — 12RampmLab + 4Rapes Lac + T20ES + 12057 + 2011,
+%H—]LaaLbchc + [168H+ - #H—]LabLachc + [224H+ + 3201_[ ]

X LabLiveLac + 1445 Lo Ly + 485 Lap Lap + 48052 Laa + 48053 4+ 120S.44
+60XX;aQam - 12X aX:a Lbb - 24X:ax:bLab - 120X:aX:aS) + Em(180XE
+30x7 + [T — BOI_]Loq Ly + 24052 + [$ 114 4 S| Loy Las
+725Laa — 18X.0X.0) + Fimm(24Laq + 1208) + 30F .45, x }dy.

(6) as(F,D,By.s) = (4m)~(m=D/2 1o [ Tr{F{360xE,mm + 1440E,, S
+720xE? + 240X E.aq + 240XTE + 48XT,51 + 20x7% — 8Xpy; 04
+8XRijkiRijkt — 120XPmmE — 20XPpmmT + 480752 4+ 12XT 1nim,
+24XPpmiaa T 15X Prmmimm + 2707:mS + 1209, 5% + 9605 S04
+16X RammbPab — 17X PommPrnm — 10X Rammb Rammp + 288052
+14405* + (90114 + 45011 _) Lo By + (214 + 4211 ) LoaTm
+30IL+ Lap Rammbim + 240LaqS:pb + 420 LapS.ap + 390 Laq:5S:
+480Lgb:a St + 420Lga:pS + 60LapapS + (BI04 + 2311 ) Logiy Lecs
+(238ILy — 58T1_) Lapa Ly + (22104 + YT01-) Lapia Lie:e
+ (2B, — 3B ) Lap:e Lape + (14 + 22001-) Lapic Lac
+(111ITy — 611-) Lag:pb Lee + (—15114 + 3011-) Lap.ap Lee
+(= 2104 + B ) LapacLoe + (221014 — 28510 ) Lag:pe Loe
+ (11411 — 5411 ) Lye.qa Lie + 1440 L4 SE + 30L40Sp,,, + 240 L40 ST
—60Lapp oS + 180LapS Rammp + (19511, — 10511 )Ly Lip E
+(30I1 + 1501 _) Loy Lap E + (@H — 1510 ) Log LipT
+(5I14 + 2511 ) Lap LapT + (— 2511 ) Laa Lbb Py,

+(7&H + &H )LabLabpmm + (7H+ - 14H_)Lchabpab
+(X910, — 2801 ) Lee Loy Rammb + 16X Lab Lacppe
+(iH+ + 47H ) abLacRbmmc - 32XLﬂbLCdRade

2
+315Lcc abLabS + (210724811_[4' + %H )LaaLbchchd
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+150L gt LicLacS + (3104 + 211 ) Lec LagLab Lab
+1080Laq LttS? + 360Lap LapS? + (2211 — 20 ) Loy Lap LeaLea
8851 o Loy LeeS + (25101 — A1) LagLay Lo Lac + 2160LS°
+(2MI, + 22T ) Loy Lo LeaLga — 180E2 4 180x EXE — 1205.45.4
+720X5:05:a — 220 Qb + 120X Qab + 292 XQup Xt — 45Qam Qam
+180xQam Qam — 45X Qam XQam + 360(QamXS:a — QamS:aX)
+45X X0 Qam Lee — 180X.0 X 2ab + 90X X0 X6 2ab + 90X X .0 Lamsm
+120xX. 0 Qap:b + 180X X0 Qb Lab +300X., E.0 — 180X.0 X.a E — 90X X .0 X.0 B
+240).0, E — 30X;ax T —60X.0 X.6Pab +30x aXpBmabm — 52 X.aX:a Livb Lice
—BXeaXvLacLve = E2XcaXeaLealed — S2X.a X LabLec — 330X S:aLec
_3OOX:aS:bLab+IIX:aX:aX:bX:b'i_?X:aX:bX:aX:b_IX:aaX:bb_TX:abX:ab
15,0 X Xoob— 15> Xetb Xeaab ) +Fim { (52 114 =601 ) 7, +24075—90p,,,,,, S
4270840 + (63011, — 45011 _)E.,,, + 1440ES + 7205 + (9011, + 45011 )
X Lo E + (—182 23511 ) Laa Py + (15114 4 T5I1_ ) LaqT 4 600 Lgq S?
+(12811, — @H YLaa:bh — TXLab,ab + (15H+ —3011_) Lappgy,+ (— 18311,
+4T1_) Lap Rammb + 292 LaaLopS — 2 LapLapS + (BT + 2211 )
X Laq Ly Lee+ (35T, — 14851_[ )LchabLab+(_54H++%H7)LabLbcLac
—210X,45:0 = 5 X:aXea Lee = 282 XeaXp Lab +135X X0 Qam } + Fimm {30 Lga S
+ (BT, — 2T ) Ly Ly, + (— ST + 2211 ) Loy Lap + 60X T — 90X 0
+360xE + 36052 — 30X.0X .0} + Frmmm {1808 + (=301, + 10511_)L,,}
+45X Fonmmm }dy.

We now consider transmission and transfer boundary conditionsMLeand M _ be
two manifolds which are coupled along a common boundary OM, = 0M_. We have
metricsg4+ and operatord),. of Laplace type on/.. We have scalar smearing functions
f+ over M. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. We impose the compatibility conditions

grls=g-ls, Vils=V_|g=Vs, filz=/f-Is.

No matching condition is assumed on the normal derivative§ @f of g on the interface
3. Assume given an impedance matching endomorpliisdefined on the hypersurface
Y. Thetransmission boundary operat@ given by:

Bug:={o. s —¢_|s} & {Vi o s+V. ¢_|x—-Us,.ls}, (5.€)
we =V -vV,.

Since the difference of two connections is tensotigljs a well defined endomorphism of
V. The tensot, is chiral; it changes sign if the roles of and— are reversed. On the
other hand, the tensor field is non-chiralas it is not sensitive to the roles ¢fand—.
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The following result is due to Gilkey, Kirsten, and Vassilevich [62]; see also related
work by Bordag and Vassilevich [31] and by Moss [95]. Define:

even .__ 17+ - odd .__ 7+ —
‘Cab T Lab+Lab’ ‘Cab T Lab_Lab’
— dd .__
ﬁel)/en = f;z/+ + f;V*a fc; = f;u+ - f:,l/*v
f;?uen = f;u+u+ + f;u*u*7 f;(;(iud = f;lﬂruJr - f:,l/*u*a
geven . p+ 4 p- gedd . p+ _ p—
. ’ . y
gyen.— B 4B, Mgl —B
— pt >— dd ._ p+ —
Rfﬁ? T Rijkl + Rijkl’ R(i)jkl T Rijkl - Rijkl
even .__ ()t — odd ._ O+ —
Qeven = QF 4 O Qodd = Qf — Q.

Theorem 5.4 [Transmission boundary conditions]
(1) ao(f, D, By) = (4w)=™/2 [, f Tr(id)da.
(2) a1(f,D,By) =0.

() as(f,D,By) = (4m)~™/2L [ fTr{rid +6E}dx
+(4m)m/2L [ 2f Te{ L™ id —6U }dy.

(4) a3(f, D, By) = (4m) 1 =m2 o [ Te{ FI3L L™ + 3L L3 id
FILINFoen id +48 fU? + 24 fwawa — 24f LU — 24F S U }dy.

aa

(5) as(f,D,By) = (4m)~™/25L [, f Tr{60E 4, 4+ 60R;;;; E + 180E>
+3082Q4; + [127.kx + 572 — 2|p|? + 2|R|?] id }dx
+(4m) TP a5 s T {[-BREFM + 2REG, F
SBLOLRFM — Lop Lo F + B L L e
— L Loven Loyen Feren 4 12L500 Foen)id + f [ Lo Lo Loyen
—Lm Lo Lo 4 2L L2 et + ARG a2 + 12REE,
5t Lo L L — FLO L LE + L LR Lo
F2ALER, + LORGRLOE™ + 2R Lon™ — Ry Loy
F2RER LM id +18w2 Foren — 3004 Fodd 4 15U Lo34 Fotd
—30UFg™ — QU LG FSYen 4+ 30U F + f[12w2 L5y
+24wawp LS + 60ES™ — 60w, Q9 + G0EYR LEven — 60U
—30UREH — 180UE™ — 60U.qq — 18U L™ Liye"
—BULEYPLEY™ + 60U LV — 60Uw?] }dy.

We now examine transfer boundary conditions. As previously, we take structures

(M,g,V,D) = (My,g94+,Vy,Dy),(M_,9-,V_,D_)). We now assume the compat-
ibility conditions

8M+ =0M_ =% and g+|§] = g—‘E .
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We no longer assume an identification1gf|s, with V_|s. Let Fy be smooth smearing
endomorphisms of ; there is no assumed relation betwdénand F_. Let Try denote

the fiber trace orV,.. We suppose given auxiliary impedance matching endomorphisms
G = {S1+} from V4 to V. Thetransfer boundary operatas defined by setting:

_ Vo, + St Si- ¢
soo={( 78T v s ) (8]

We setS, _ = S_, = 0tointroduce the associated decoupled Robin boundary conditions
Br(s, .0+ = (Vi +Si)¢ ]z, and
Bris__yp— = (V, +5-_)¢_|s.

Define the correction term, (F, D, S)(y) by means of the identity

(5.9)

b

an(F.D,Bs) — / 0 (F, D) (x)dx + / an(Fy. Dy, Brgs, .))dy
M )

+ / an(F_,D_ Brs_))dy + / an(F, D, S)(y)dy
> >

As the interior invariants,, (F, D) are discussed in Theorem 3.4 and as the Robin invari-
antsa, (F, D, Br(s,.)) anda,(F, D, Brs__)) are discussed in Theorem 5.2, we must

only determine the invariant, (F, D, S) which measures the new interactions that arise
from S, _ andS_.. We refer to [63] for the proof of the following result:

Theorem 5.5 [Transfer boundary conditions]
(1) an(F,D,Bs)(y) =0forn < 2.
(2) a3(F,D,Be)(y) = (4m)=m™/2 L{ Try (F4.81-S—y) + Tr— (F-S_4 S4-)}.

(3) aa(F,D,Be)(y) = (4m)™/? 555 { Try {480(F Sy + S4 1 F4)S1- S
+480F S, S__S_4
+(288F L}, +192F L, +240F,,, )S+_S_4}
+Tr_{480(F_S__+S__F_)S_4S,_ +480F_S_ S, S, _
+(288F_L,, +192F_LJ, + 240F_,, )S_;S;_}}.

We now take upspectral asymmetry We refer to [33, 34] for the material of this
section. Let\ be a compact Riemannian manifold. L&be an operator of Dirac type and
let D = A? be the associated operator of Laplace type. Instead of studyinge "),
we studyTr; > (Ae~*P); this provides a measure of the spectral asymmetey.of

Let V be a compatible connection; this means iat = 0 and that if there is a fiber
metric onV thatV is unitary. ExpandA = "V, + 4. If OM is non-empty, we
shall use local boundary conditions; we postpone until a subsequent section the question
of spectral boundary conditions. Lét4,...,e,,} be a local orthonormal frame for the
tangent bundle nea?M which is normalized se,,, is the inward unit geodesic normal
vector field. Suppose there exists an endomorphisafi V|5, SO thaty is self-adjoint
and so that

X*=1 XV¥m+Y¥mx=0, and xy,=7,x for 1<a<m-1.
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Such ay always exists if\ is orientable and ifn is even as, for example, one could take
X = €71---V.m_1 Wheree is a suitablet'" root of unity. There are topological obstructions
to the existence of if m is odd; if 9M is empty,x plays no role. LeHjE = (id +x)

be orthonormal projection on thel eigenspaces of. We letBo = H ¢|3M The
associated boundary condition fbr:= A2 is defined by the operatd, ¢ := Bp © BAp
and is equivalent to a mixed boundary operdiQrs where

S = %H+(7mwz4 - wA’Ym - LaaX)H+ .

Ast | 0, there is an asymptotic expansion

Trpa(FAe™t45) ~ 3" all (F, A, Byt —m=1/2
n=0
These invariants measure the spectral asymmetd, ofl (F, A, B) = —a]l (F,— A, B).
Theorem 5.6 LetW;; := Q;; — R”mk’yl where(Q is the curvature oV. LetF = fid
for f € C°(M).
(1) ag(f, A, B) =

(2) a{(f, A, B) = —(4m)""2(m = 1) [, f Te{t 4 }da.
(3) a3(f, A, B) = 3 (4m)~("=V/2 [ (2 = m) f Tr{w ox}dy.

5(

(4) aj(f, A, B) = —15(4m)~™/2 [ f{Te{2(m — )Ve, 04 + 3(4 —m)P 47,0 4
+37,0 a7 7% atii + (m = 3) Te{=7¢ 4 — 67,7, Wijoa + 67,9 4Ve, ¥4
+(m — 4Wi’1 - 3¢2A“Yj1/)A’Yj}}d’I - T12(47")_m/2 faM Tr{6(m — Q)f;mwa
+f[(6m —18)xVe, b4 +2(m = 1)Ve, ¥4 + 6XVmVa Ve, ¥ a
+6(2—m) Xt 4 Laa +2(3 =)t 4 Laa +6(3 = m)X7,n % + 37t 4Va 474
+3(3 = m)XVm ¥ ax¥a + 6x7a Wam] }dy.

6 Heat trace asymptotics and index theory

We refer to [54] for a more exhaustive treatment; the classical results may be found in
[2, 3, 4, 7, 8]. In this section, we only present a brief introduction to the subject as it relates
to heat trace asymptotics. L&t: C*° (V) — C*(V2) be a first order partial differential
operator on a closed Riemannian manifald We assumé/, andV, are equipped with
fiber metrics. We say that the triple:= (P, V1, V») is anelliptic complex of Dirac typéf

the associated second order operafdfs:= P*P and D, := PP* are of Laplace type.

One may then definkrdex(C) := dim ker(D;) — dim ker(D3)

Bott noted thatlr 2 {e *P1} — Tr;2{e tP2} = Index(C) was independent of the
parametet. He then used the asymptotic expansion of the heat equation to obtain a lo-
cal formula for the index in terms of heat trace asymptotics. Following the notation of
Equation (3.a), one may define the heat trace asymptoti£stnf setting:
ay! (P)(x) = { Tr{e;! (D1)} — Tr{e;! (Do) }} () -

n

One then has a local formula for the index:
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Theorem 6.1 LetC be an elliptic complex of Dirac type over a closed Riemannian mani-
fold M. Then:

_J Index(C) if n=m,
/Ma%(P)(x)da:— { 0 if n#m.

The critical terma (P)(z)dx is often referred to as thimdex density The other
terms are in divergence form since they integrate to zero. They need not, however, vanish
identically.

The existence of a local formula for the index implies the index is constant under defor-
mations. It also yields, less trivially, that the index is multiplicative under finite coverings
and additive with respect to connected sums. In the next section, we shall see that the
index of the DeRham complex is the Euler-Poincare characteyiéfif) of the manifold.

Thus if F — M, — M is a finite covering, thery(M;) = |F| - x(Mz). Similarly, if
M = M,#M, is a connected sum, ther{ M) + x(S™) = x(M1) + x(M>). Analogous
formulas hold for the Hirzebruch signature of a manifold.

We define DeRham complex as follows. Lét: C°(APM) — C°°(APT1M) be
exterior differentiation and let : C>°(AP M) — C>°(AP~1 M) be the dual, interior mul-
tiplication. We may then definezterm elliptic complex of Dirac type:

(d+8): C®(A°M) — C*°(A°M) where (6.a)
AS(M) := @, A>™(M) and A°(M) := @, A" (M).

Let R, be the curvature tensor. Let = 2m be even. Let{eq,...,e,} be a local
orthonormal frame for the tangent bundle. We sum over repeated indices to define the
Pfaffian

glet Ao Aetm eIt AL Aelm)
me N = 7'('777'8'”_7'771' i1i2j1j2"'Rim—limjm—ljm :

SetPF,, = 0if mis odd. The following result of Patodi [105] recovers the classical
Gauss-Bonnet theoreaf Chern [43]:

Theorem 6.2 Let M be a closed even dimensional Riemannian manifold. Then
(1) aM(d+ 6)(z) = 0forn < m.
(2) aM(d+6)(z) = PF ().
@) x(M) = [y PFm(x)da.

One can discuss Gauss-Bonnet theorem for manifolds with boundary similarly. On
the boundary, normalize the orthonormal frameegpis the inward unit normal and let
indicesa, b range froml to m — 1 and index the induced frame for the tangent bundle
of the boundary. LeL,;, be the components of the second fundamental form. Define the
transgressiorof the Pfaffian by setting:

g(e™ A ... Aedm=1 ebt A LA ebmo1)
k8% Kl(m — 1 — 2k)! vol(S™m—1-2k)

TPF,: =

X Rala2b1b2 "'Ra2k—1a2kb2k—1b2k La2k+1b2k+1 "'Lam—lbm,—l .
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If we impose absolute boundary conditions as discussed in Equation (5.c) to define the el-
liptic complex, we recover the Chern-Gauss-Bonnet theorem for manifolds with boundary
[44]. Let AS, andA¢§, denote the Laplacians on the space of smooth differential forms of
even and odd degrees respectively. Let

a®™(d + 6)(y) = { Tr{e2™ (A, Ba)} — Tr{e2™ (AS, Ba)} } ()
Theorem 6.1 extends to this setting to become:
M oM _J 0 if n#m,
[ ataro@as [ aaroma={ o § nZm

Theorem 6.2 then extends to this setting to yield:
Theorem 6.3 (1) aZ2M(d + §)(y) = 0 for n < m.

(2) aaM(d +0)(y) =TPFn.

(3) x(M fM PFm dl’+faM TPFn(y)dy
The Iocal index invariants’!, ,(d + 6)(x) are in divergence form but do not vanish
identically. Set
m
T 8™
x gle™ A Aem et AL Aelm).

P, {Ri1i2j1 k;kRi3i4j3j4 . 'Rim— 18mIm—1Jm }§j2

Theorem 6.4 If M is even, theml! ,(d + &) = LPFmr + £ Prn-

Spectral boundary conditions plan an important role in index theory. We suppose given
an elliptic complex of Dirac typé : C>(V;) — C*°(V4). Let~ be the leading symbol
of P. Then

0 ~*
( v 0 )
defines aunitary Clifford module structurenV; & V.. We may choose a unitary connection
V on Vi & V5 which is compatible with respect to this Clifford module structure and
which respects the splitting and induces connectdnsndV, on the bundle$’; andVs,
respectively. Decompose = ~,V., + ¢. Near the boundary, the structures depend on

the normal variable. We set the normal variablg to zero to define a tangential operator
of Dirac type

B(y) == 7, (4,0) " (7,(y,0) Ve, +1(y,0)) onC™(Vi|anr).

Let B* be the adjoint of3 on L?(Vi|aar);

B* =7,,(y,0) "7, (y,0) Ve, + 95

wherey 5 :=7,,(y,0)"1(y, 0). Let © be an auxiliary self-adjoint endomorphismaf.
We set

A:=3B+B*)+06 on C>®Vilom),
= —’ymA("/m)il on (C®>® (‘/2|3]\,1) .
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The leading symbol oft is then given byyl := ~. v, which is a unitary Clifford mod-
ule structure o1 |sps. Thus A is a self-adjoint operator of Dirac type @ (Vi |oar);
similarly A7 is a self-adjoint operator of Dirac type @™ (Vz|aas)-

LetIT} (resp.HX#) be spectral projection on the eigenspaced gfesp. A*) corre-
sponding to the positive (resp. non-negative) eigenvalues; there is always a bit of technical
fuss concerning the harmonic eigenspaces that we will ignore as it does not affect the heat
trace asymptotic coefficients that we shall be considering. Introduce the associated spectral
boundary operators by

Bigy =14 (¢ ]onr) for ¢, € (W),
Body =111, (¢]on1) for ¢, € C>(Va),
Be¢, := Bi¢, © B2(Po¢,) for ¢ € C(V1).

If Ps,, Pg,, and D 5 are the realizations oP, of P*, and of D; with respect to the
boundary condition$,,3,, andBg, respectively, then

(Ps,)" = Pp, and  Dipe = Pp Ps, .

We will discuss these boundary conditions in further detail in Section 10.

The local index density for the twisted signature and for the twisted spin complex has
been identified using methods of invariance theory; see, for example, the discussion in
Atiyah, Bott, and Patodi [5]. This identification of the local index density has been used to
give a heat equation proof of the Atiyah-Singer index theorem in complete generality and
has led to the proof of the index theorem for manifolds with boundary of Atiyah, Patodi,
and Singer [6]. Unlike the DeRham complex, a salient feature of these complexes is the
necessity to introduce spectral boundary conditions for the twisted signature and twisted
spin complexes — there is a topological obstruction which prevents using local boundary
conditions. The eta invariant plays an essential role in this development. We also refer to
N. Berline, N. Getzler, and M. Vergne [28], to Bismut [30], and to Melrose [91] for other
treatments of the local index theorem.

The Dolbeault complex is a bit different. Patodi [L06] showed the heat trace invariants
agreed with the classical Riemann-Roch invariant for a Kaehler manifold; it should be
noted that this is not the case for an arbitrary Hermitian manifold. The Lefschetz fixed
point formulas can also be established using heat equation methods.

7 Heat content asymptotics

We refer to [41, 56] for further details concerning the material of this section; we note that
the asymptotic series for the heat content function is established by van den Berg et al [24]
in a very general setting. Lé? be an operator of Laplace type on a smooth vector bundle
V over a smooth Riemannian manifold. L{et-) denote the natural pairing betwe&rand

the dual bundlé’. Letp € C>(V) be the specific heat and letc C> (V') be the initial

heat temperature distribution of the manifold. Impose suitable boundary cond&jors

shall denote the dual boundary conditions for the dual opefaton C*>°(V) by B. Let

V be the connection determined Byand E the associated endomorphism. Then the dual
connectionV and the dual endomorphisi are the connection and the endomorphism
determined byD.
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The total heat energy content of the manifold is given by:

B(6.p. D, B)(t) = Bp, 6 D, B)(1) = / (o).

M

Ast | 0, there is a complete asymptotic expansion of the form

5(¢,P, D, B)(t) ~ Z ﬂn(¢’pv DvB)tn/2 :

n=0

There are local interior invariants)’ and boundary invariants?™ so that

8, (ésp, D, B) = /M B2 (6, p, D) (x)dz + /6 M 0. DB )y

These invariants are not uniquely characterized by this formula; divergence terms in the
interior can be compensated by corresponding boundary terms.
We now study the heat content asymptotics of the diskin R™ and the hemisphere
H™ in ™. We letD be the scalar Laplaciag, = p = 1, and impose Dirichlet boundary
conditions to defings,, (M) := 3,,(1,1,A%,, Bp). One has [16, 17] that:
Theorem 7.1 Let D™ be the unit disk ilR™. Then:
m/2
(1) Bo(D™) = —ios
0 r( (Q-Em) )
(m—1)/2

(%)

(2) B1(D™) = —4%

(3) Bo(D™) = 7y (m = 1)

A(m=1)/2

(@) 5,(D™) = == (m = 1)(m — 3)

(5) B4(D™) = =5 (m — 1)(m = ).

(6) B5(D™) = i (m = 1)(m = 3)(m +3)(m — 7).

(7) Be(D™) = ggr"zf,;) (m — 1)(m — 3)(m> — 4m — 9).

(8) B.(D™) = _%(m — 1)(m — 3)(m* — 8m® — 90m? + 424m + 633).
2

Theorem 7.2 Let H™ be the upper hemisphere of the unit sphg&fe Then
(1) Byp(H™) =0foranymif k > 0.

l/2
(2) 52k+1(H3) = m'

73/292k43 (o 1
3) 62k+1(H5) = 31;!(%—71)((%4-1))
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7 >/2 (67—54k)9" k 3.93¢
4) 52k+1 (H) = {k'(2k 1)(2k+1) + ZZ:O é!(k—l)!(Zk—2é+1)}'

We now study the heat content asymptotics with Dirichlet boundary conditions. Let
Bp be the Dirichlet boundary operator of Equation (5.a). We refer to [16, 19] for the proof
of:

Theorem 7.3 [Dirichlet boundary conditions]
(1) Bo(¢,p, D, Bp) = [),(¢,p)dx
(2) B1(d,p. D, Bp) = — = [ 5, (0, p)dy
(3) By(d,p,D,Bp) = —[1,(Dé, pydz + [ 51, {(3Laa®d, p) — (&, p.rn) }y.

(4) ﬁS((ba paDaBD) = _%faj\l{§<¢;mm7p> + 2<¢apmm> - <¢:a>p:a> + <E¢7P>
_gLaa<¢7 p>;m + <(T12LaaLbb LabLab Ramma>¢> >}dy

(8) 34(6:p:D: Bp) = 1/ 1,(D6: Do)z + [y {5((D)ans ) + 56 (Dp)im)
~1(Laa D, p) = §{Laa®, Dp) + ((§Bim — 15 LavLab Lee + §Lab Lac Ly
— L RompmLap + %Rab(’bLac + 3%7 im + 15 Labab)®, p)
—3Lab(D.0> L) — §(Qam@.ar p) + §(Qam®, p.o) }y.

We may computé,, (M) for n < 4 by settingg = p =1 andE = 2 = 0 in Theorem
7.3. One has a formula [18] fgt, (M); B5(#, p, D, Bp) is not known in full generality.

Theorem 7.4 ﬁS(M) = _ﬁ f8A1{8p7n7rL;ranL - 8Laapm'm;m + 16LabRammb;m
_4/037”” + 16 RammbRammb — 4LaaLbbpmm - 8LabLabpmm +64LapLocRmpem
_16LaaLbcRmbcm - 8LabLacRbddc - 8LachdRacbd + 4RabcmRabcm
+8Rabmeaccm - 16Laa:bRbccm - 8Lab:cLab:c + LaaLbchchd
—4Lao Lty LeaLeq+4Lay Lay LeaLeq—24Laa LveLeaLap+48Lapy Lve LeaLa }dy.

The invariantsg, (M), 8,(M), and 3,(M) were computed by van den Berg and
Davies [20] and by van den Berg and Le Gall [21] for domain®Iii. The invariants
Bo(M), 8,(M), and 3,(M) were computed by van den Berg [14] for the upper hemi-
sphere of the unit sphere. The general case wheig an arbitrary operator of Laplace
type and where andp are arbitrary was studied in [16, 19]. Savo [112, 113, 114, 115] has
given a closed formula for all the heat content asymptatigsl/) that is combinatorially
quite different in nature from the formulas we have presented here. There is also impor-
tant related work of McAvity [87, 88], of McDonald and Meyers [89], and of Phillips and
Jansons [108].

We now study heat content asymptotics for Robin boundary conditiond3d_be the
Robin boundary operator of Equation (5.b); the dual boundary condition is then given by
Bsp = Bgp = (p.,n + Sp)lons Where, of course, we use the dual connectionioto
definep,,,,. The following result is proved in [19, 45]:

Theorem 7.5 [Robin boundary conditions]
(1) 60((;57 p7DvBS) = fM<¢7p>d$
(2) ﬂl(qsvvavBS) =0.
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(3) Ba(¢,p, D,Bs) = — [,,(Do, pydx + [,,,(Bso, p)dy
(4) 63(@5’ paDaBS) = % : % faN[<BS¢7BS‘p>dy-

(5) Bu(®,p, D, Bs) = 5 [1,( D¢, Dp) dz + [, {—3 (Bs¢, Dp) — 3(Do. Bgp)
<(§S + ZLaa)BS¢, gp>}dy

(6) B5(¢,p, D, Bs) = = [0 {—15((BsDo, Bzp) + (Bsé, BsDp))
*£<(Bs¢>) as (Bgp):a) + (5 E + 155 + 155 Laa +35 LaaLub
+ 15 LavLab — 15 Ramam)Bs ¢, Bgp) }dy.

(7) B6(¢,p, D, Bs) = —§ [1,(D*¢, Dp)dzx + [,,,{§(BsDo, Dp) + §(D*¢, Bsp)
+1(Bs¢, D?p) — £(SBsDe, Bsp) — £(SBs¢, BsDp) — 5 (LaaBs D, Bsp)
— 5 (LaaBsd, BsDp) + (& Eun + 15 ELaa + 1 LavLavLee + oy Lav Lac Lye

1 1 1 1 1
_@Rammeab + ERabchac - ﬂRamameb + %T;m + @Lab:ab +
Tlg SLaaLbb

+LSLapLap — 5SRamam + 75(SE + ES) + 152L,, + 153
+18.00)Bs . Bsp) — 15 Laa((Bs®)b, (Bsp)s) — 15 Lab((Bs®):as (Bsp)v)
—§(S(Bs®):as (Bsp):-a) = 37(Qam(Bs®).a, Bsp)
+31 (QamBs o, (Bsﬂ):a>}dy-

We now turn our attention to mixed boundary conditions. We use Equation (5.d) to
defined the mixed boundary operaf®y s. The dual boundary operator dhis given by
By,sp = 4(p.m + Sp)lonm © II_plars. Extendy to a collared neighborhood dff to
be parallel along the inward normal geodesic rays. Thgn= 0. Let¢, := [I.¢ and

ps = Ilip. Sincex.,, =0, ¢1., = i (d,,) andp,.,, = I (¢.,). Asx., need not
vanish in general, we need not have equality betwgen andIl . (¢.,) or betweerp,.,
andIl-(p.,). We refer to [45] for the proof of:

Theorem 7.6 [Mixed boundary conditions]
(1) 60(¢7p7DaBX,S) = f]\1<¢7p>dm
(2) ﬁl(qsavavBX,S) :7% faM<¢—7p—>dy'

(3) Bo(d,p, D, By s) = — [1,(D, pydax + [ (bt +SP4,p4)
(3 Laat_s p_) = (D_s p_) Iy
(4) 53(¢apaDan,S) = ffaM{ (25, smm P— > - §<¢—ap—;mm> +
2Laa(d_,p_)im
+H{(~ 13 LaaLvv+ 5 LavsLab+§ Ramma)—, p)+5(1m+50 1, pyom+5py)
~(Bo_,p_) +(DsarPosa) T 5 (Dsiar Poia) + 3P as Piia)
—2(Bo_,py) — 5(Edy,p_)}dy.
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We adopt the notation of Equation (5.e) to define the transmission boundary operator
By and the tensaop.

Theorem 7.7 [Transmission boundary conditions]
(1) ﬂO(qba P D7 BU) = f]\/Lr <¢+a p+>d$+ + f]L{7 <¢—a p_>d33_.
(2) 61(¢7 P Dv BU) = _ﬁ f2<¢+ - ¢7a,0+ - p7>dy

(3) Ba(d,p, D, Bu) = = [y (D ¢y, pi)day — [y (D-op_,p_)da
+ o {3 (Ld + L) (b4, p4) + (-, p))
— (L + L) by, p ) H(D—s p )+ 5 (D p) H (D )+ (D p)
b)) = 5(D4 )+ (B p_ )+ 5 (Do) + (0 p1))
— iU, p) + (Ug_,p_) + Uy, p_) + (Ub_,py)) }dy.

(4) 63(¢7 vavBU) = ﬁ f2{4(<D+¢+»p+> + <¢+aD+p+> + <D*¢—7p7>

+(d_, D_p_))=4((Ds¢ 4, p_)+{ds, D_p_)H(D_¢_, p)+(d_, Dipy))
_(<w0«¢+;a>p+> - <Wa¢7;a7pf> - <‘Ua¢+ap+;a> + <wa¢—7p7;a>)
_(<wa¢+;a7p—> - <wa¢—;aap+> + (Wats s P—;a> - <Wa¢_7p+;a>)
+4(<¢+;wP+;u>+<¢—;mp—;u>+<¢)+;wp—;u>+<¢—;wP+;y>)_2(<¢+;aap+;a>
a0 P—ia)) F2({ 105 P—ia) +(D_iar P1a)) = 20Uy, 04)

U1 py) H UG p )+ Ud_,p_)) —2(Ud_,,. p1) H(Ud_, pysy)
Uy p) +{Udr.p_) + (Law — Lia) (4 {dy, py) —v—(d_,p_))
AL (D40 p-) T (D p10)) + Loy p4) + (4 0-0))
~(Laa(bir p) (D p4)) + Lia((D p4) + (D450-0)))
Hwawad s py) + (Wawad_, p_) = LI Ly, (D4, p1) + (D p_))

5 L Ly (b p_) + by pi)) + 5(L Liy(d4 p4) + Loy Loy (6, p))
+3(LayLapdy o) + L Lo, po) = 5(Lay Ly + Ly L) (64, p)
+(o_, p+>) + Lja<U¢+v P+> + Lo Uo_,p_) — Lo, (Uey, p+>
—L}(U¢_,p_) +(U?b_,p.) +(U¢_,p_) + (U?¢,,p_) +(U?d_,p,)
HEr¢pp) H(E-d_,p_) +(E-¢,,py) +(Erd_,p_)
_<(E++E*)¢+7p7>_<<E++E*)¢—7p+>+%(RImma+R;mma)(<¢+7p+>
Ho_,p-)) = 3(Rimma + Ramma) (D4, p_) + {6, p1)) }dy.

We continue our studies by examining the heat content asymptotics for transfer bound-
ary conditions Adopt the Equation (5.f) to define the transfer boundary opésatoLet
Bgs be the dual boundary operator

~ 4 ~ ~
B~GP — vl/+ + €++ o “?—"F ( P+ )
S v, +5._ ) \»ro

We refer to [57] for the proof of the following result:

P



P. Gilkey 309

Theorem 7.8 [Transfer boundary conditions]
(l) ﬂO(¢a P DvBG) = f]ﬂ+ <¢+,p+>d$+ + fM_ <¢_,p_>d$_.
(2) ﬁl((bapaDaBG):O'

(3) 62(¢7p7D BG f]\/[ D+¢+,P+ d»LJ,- f]V[ _¢,,p,>d1’_
+f2 BG¢7 > Y.

(4) 53(¢7 p7D786) = ﬁ f2<86¢78~6p>)dy

Oblique boundary conditions are of particular interest. Ddie an operator of Laplace
type on a bundlé” over M. Let Br be a tangential first order partial differential operator
on Vlgar and let By be the dual operator oﬁ\aM. The associatedblique boundary
conditionson V and dual boundary conditions éhare defined by:

Bod = (¢.,, + Bré)lone and Bop = (p.,, + Brp)lon -

Note that we recover Robin boundary conditions by tak#gto be a0 order operator.
We refer to [59] for the proof of the following result:

Theorem 7.9 [Oblique boundary conditions]
(1) Bo(b.p, D, Bo) = fM<¢7P>d~’C-
(2) B1(¢,p, D, Bo) =
(3) Bo(d,p, D, Bo) = — [,,(Do, p)dx + [,,,(Bod, p)dy
(4) B3(9,p,D,Bo) = 3f Jons (Bod, Bop)dy.

(5) B4(¢ap7DBO _2fM D¢7Dp dx+f(‘)M{ BO¢3DP>
_§<D¢a Bp> <(§BT + %Laa)80¢7lgop>}dy

We refer to [24] for further details concerniaremba boundary condition§Ve as-
sume given a decompositiehl/ = Cr U Cp as the union of two closed submanifolds
with common smooth boundatyr N Cp = 3. Let¢,,, denote the covariant derivative of
¢ with respect to the inward unit normal én\/. Let 'S be an auxiliary endomorphism of
Vl]c,. We take Robin boundary conditions 6ty and Dirichlet boundary conditions on
Cp arising from the boundary operator:

Bz¢ = (¢;m + S¢)|{CR—E} D ¢|CD .

We refer to related work of Avramidi [11], of Dowker [46, 47], and of Jakobson et al. [80]
concerning the heat trace asymptotics.

There is some additional technical fuss concerned with choosing a boundary condition
on the interfac&’'p N Cr that we will suppress in the interests of brevity. Instead, we shall
simply give a classical formulation of the problem. Suppfse- A is the Laplacian and
thatS = 0. LetW12(M) be the closure of>° (M) with respect to the Sobolev norm

6] = / (VP + |62)dr.
M
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Let Wy 2, (M) be the closure of the sét € W'2(M) : sup{¢) N Cp = 0}. Let
N(M,Cp,\) =sup(dim Ey) for A >0
where the supremum is taken over all subspdces. W(}”éD (M) such that

IVoll2ary < All@llz2(ary, Vo € Ex.

This is the spectral counting function for the Zaremba problem described above.
On X, we choose an orthonormal frame&g is the inward unit normal oM in M
and so that,,,_; is the inward unit normal of in Cp.

Theorem 7.10 [Zaremba boundary conditions] There exist universal constanend c,
so that:

@) Bo(d,p. D, B) = [1,(¢. p)da

(@) B1(d,p. D, B) === [, (¢,p)dy

(3) By(¢.p, D, B) = — [,,(Dé,p d$+fCR (D + 50, p) }dy
+ Jo, {5 Laald, ) = (D, p.m) Yy — 5 [5,(0: p)

(4) B5(0,p,D.B) = 535= fcR (D + 56, pn + Sp)dy — % Joo 13(Smms P)
3D i) — (Par Pa) + (BDs p) = §Laald, p)im + ((f3 Laa Lo

*%LabLab + %Ramam)¢vp>}dy + fz{«c m—1m—1 + ( co + Sf)L

+2f wu + C2S>¢> > 2\1/;<¢7p>;m71 - ﬁ<¢7p>;m}d2’"

We conclude this section with a brief description of the non-smooth setting. We refer
to van den Berg and Srisatkunarajah [25] for a discussion of the heat content asymptotics
of polygonal regions in the plane. The fractal setting also an important one and we refer to
van den Berg [15], to Fleckinger et al. [51], to Griffith and Lapidus [70], to Lapidus and
Pang [85], and to Neuberger et al. [100] for a discussion of some asymptotic results for
heat problems on the von Koch snowflake.

8 Heat content with source terms

We follow the discussion in [18, 22, 23, 56] throughout this section./D&e an operator

of Laplace type. AssumeéM = Cp U C'r decomposes as a disjoint union of two closed,
possibly empty, disjoint subsets; in contrast to the Zaremba problem, we emphasize that
CpNCris empty. Let3 be the Dirichlet boundary operator 6y and the Robin boundary
operator onCr. Let ¢ be the initial temperature of the manifold, let= p(x;t) be a
variable specific heat, let = p(z;t) be an auxiliary smooth internal heat source and let

¥ = 9(y; t) be the temperature of the boundary. We assume, for the sake of simplicity, that
the underlying geometry is fixed. Letxz;t) = uy o (2;t) be the subsequent temperature
distribution which is defined by the relations:

(0r + D)u(x;t) = p(x;t) for ¢ >0,
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Bu(y;t) = (y;t) for t>0,y € OM,
1 .. — i 2
ltlfgu( it) = ¢(-)in L*.

The associated heat content function has a complete asymptotic serigs:as

(6.9, D, B,p,0)(t) : = /M<u¢,p,w<x;t>,p<x;t>>dx

> B,(6.p.D,B,p, )"/
n=0

Assertions (1)-(4) in the following result are valid for quite general boundary condi-
tions. Assertion (5) refers to the particular problem under consideration. This result when
combined with the results of Theorems 7.3 and 7.4 permits evaluation of this invariant for
n < 4. Assertion (1) reduces to the casés static and Assertion (2) decouples the in-
variants as a sum of 3 different invariants. Assertion (3) evaluates the invariant which is
independent of p, v}, Assertion (4) evaluates invariant which dependg,cand Assertion
(5) evaluates the invariant which dependsjon

Theorem 8.1 (1) Expand the specific heatz;t) ~ >+, t¥p,.(z) in a Taylor series.
Thenﬂ'ry,(qb? Py Da Bap7 1/’) = Z2k§n ﬂ71—2k(¢7 Pk> D7 87p7 1/J)

(2) If the specific heap is static, therng,, (¢, p, D, B, p,v) = 8,,(6, p, D, B,0,0)
+ﬁn(07pﬂDaBap70) +5n(07P»D78»07¢)

(3) If the specific heap is static, thens,, (¢, p, D, B,0,0) = 3,,(¢, p, D, B).
(4) Letc;; = fo s)is7/2ds. Expandp(z;t) ~ 3,5, t*pr () in a Taylor series. If
the specific heat |s static, then: -
a) 50(07 |2 Da Bapv 0) =0.
b) Ifn >0, thenﬂn((l P D, vaa 0) = 22i+j+2=n Cijﬂj(pia P D7 B)

(5) Expand the boundary source temriz, t) ~ >, -, t*,(z) in a Taylor series. As-
sume the specific heatis static. Then: a

a) By(0,p, D, B,0,4) = 0.

b) ,(0,p,D,B,0,9) = = [ o, (g, p)dy.

¢) B2(0,p,D,B,0,7) = _ch Laa®os p) = (o Py ) Fdy — fcR (1o, p)dy

d) B5(0,p, D, B,0,9) = = [ 5, {500, Pimm) + 50, Praa) + (3EV, p)
=2Laa(¥o, pom) + (15 LaaLir — g LabLab — & Ramma)¥o, p) }dy
_%IC’R 1/1073P>dy+ %ICD Py, p)dy.

e) 84(0,p,D,B,0,¢) = ch (Yo, Dp) m) = 5 (Laato, Dp) + (3 Eim
- L(LbLachc +3:L bLaprp — 5 RambmLab + 15 Ravev Lac

+312 T:m + 16 Lab.ab)¢0; > ab<w0 ar P: b> < amwo a’ p>
+%< (Lquszv > + 1Laa<wla > <11[}17 7m>}dy

—J o {=3 0, Dp) + (35 + iLm)wo, Bp) + 3 (11, p) }dy.
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9 Time dependent phenomena

We refer to [56] for proofs of the assertions in this section and also for a more complete
historical discussion. Le® = {D;} be a time-dependent family of operators of Laplace
type. We expand in a Taylor series expansion

Dtu = Du + ZtT{gmju;ij + Fr,iu;i + Eru} .

r=1

We use the initial operatdb := Dy to define a reference metrig. Choose local frames
{e;} for the tangent bundle o/ and local frameqe,} for the tangent bundle of the
boundary which are orthonormal with respect to the initial mejgpic Use go to define
the measuredz on M anddy on OM. The metricgy, defines the curvature tensé
and the second fundamental forfn We also uséD to define a background connection
V, that we use to multiply covariantly differentiate tensors of all types and to define the
endomorphisnt.

As in Section 8, we again assurié/ = Cp U Cr decomposes as a disjoint union of
two closed, possibly empty, disjoint subsets. We consideparameter familys = {5;}
of boundary operators which we expand formally in a Taylor series

Bip = ¢

@ {¢;m + 56+ t"(Crag, + sr(b)}
Cp

r>0

Cr

The reason for including a dependence on time in the boundary condition comes, for ex-
ample, by considering the dynamical Casimir effect. Slowly moving boundaries give rise
to such boundary conditions. We lebe the solution of the time-dependent heat equation

(0 + Dy)u=0, Biu=0, ltilrgu(-;t) =¢(-)inL?.

There is a smooth kernel function so that:;t) = [,, K(t,z,2,9,B)¢(z)dz. The
analogue of the heat trace expansion in this setting and of the heat content asymptotic
expansion are given, respectively, by

/ f(z) Try, {K(t,m,x,@,%)}dx ~ ian(f,g,%)t(”_m)/z,
M

n=0
/ (K(t,z,2,9,B)¢(x), p(z))dxds ~ Z B, (6, p, D, B2
M P

By assumption, the operatogs. ;; are scalar. The following theorem describes the
additional terms in the heat trace asymptotics which arise from the structures described by
Gr.ij» Fr.ir Ery Iy g, @ndS,. given above.

Theorem 9.1 [Varying geometries]
(1) ao(F,D,B) = ao(F, D, B).
(2) a1(F,9,B) = a1(F, D, B).
(3) ax(F,D,B) = ax(F,D,B) + (47r)*m/2% fM Tr{%Fgl,ii}dm.
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(4) a3(F,D,B) = a3(F, D, B) + (4m)1=™/2 oy [ Tr{—24FGy a4 }dy

+(4m) 2 o fo, Tr{24F Gy o}y,

(5) CL4(F,©,‘B) = CL4(F,D,B) + (4 ) m/2 1 360 fM TI‘{F( gl ngl,]] + gl ’L]gl ij
+60G2 ;i — 180&1 + 15G1 T — 30G1,i5p;; + 90G1 ii E + 60F1 ii + 15G1 iy
—30G1,iji5) Yz + (47) P g5 [, Te{ F(30G 1,00 Lt — 60G1 s Lt
+Sogl,abLab + 3ogl,mm;m - 30g1,aa;m - 30]:1,771) + Em(_45g1,aa
+45gl,mm)}dy + (47r)7m/2% fC’R Tr{F(Sogl,aaLbb + 120g1,7nmeb
*150g1,abLab*Gogl,mm;m+60g1,aa;m+150]:1,m+1805g1,aa*180Sg1,mm
+36051) + Em (45g1,aa - 45g1,mm)}dy-

Next we study the heat content asymptotics for variable geometries. We have the fol-
lowing formulas for Dirichlet and for Robin boundary conditions. Bet= 5.

Theorem 9.2 [Dirichlet boundary conditions]
(1) ﬁn((ba paD’B) = Bn(d)?paDCHB) forn = 07 11 2.
(2) 63((1)7 pvng) = ﬂ3(¢,p7D07B) + ﬁ fCD <g1,mm¢a P>dy

() B4(d, p,D,B) = B4(¢, p, Do, B) — %fM<g1,ij¢;ij + ~7:1,i¢;i +&1¢, p)dx
+ Jo {75 (G1mmm®, p) — T5 Laa(Gr.mm®, p) — 15 (F1r.m®, p)
+1%Lab<gl ab® P) = 3(G1,amP.ar P) + 5(G1,mm®; Pm) }ly
+ fCR 5(G1,mmBod, p) + 5((S1 + TaVe,)d, p) tdy.

10 Spectral boundary conditions

We adopt the notation used to discuss spectral boundary conditions in Section 6. Let
P : C*(V1) — C*(V4) be an elliptic complex of Dirac type. Léd = P*P and letBg
be the spectral boundary conditions defined by the auxiliary self-adjoint endomor@hism
of V1. LetV be a compatible connection. ExpaRd= v,V., + .

We begin by studying the heat trace asymptotics with spectral boundary conditions.
There is an asymptotic series

S

Trp2(fe *Pse) Z (f, Do, Bo)tF=™/2 1 O(t=1/8).

Continuing further introduces non-local terms; we refer to Atiyah et al. [6], to Grubb
[71 72], and to Grubb and Seeley [74, 75] for further details. Defife:= ~v..!7v,,

¥ =y, andB(m) = D(Z)0(3)~'T(25L)~1. We refer to [48] for the proof of the
following result:

Theorem 10.1 [Spectral boundary conditions] Let € C>°(M). Then:
(1) ao(f, D, Be) = (4m)~™/? [, Te(f id)da
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(2) If m > 2, thena,(f, D, Be) = ;[B(m) — 1](4m)~("=1D/2 [, Tr(fid)dy.

(3) If m > 3, thenas(f, D, Be) = (4m)~™/2 [, £ Tr{f(Tid +6F)}dx
+(4m) 2 [ TS + 91 + 31— 378(m)] Laa f id
— 5o [1 = $7B(m)) f.m id}dy.

(4) If m > 4,thenag(f, D, Bo) = (4m)~("=1/2 [\ Te{h (1— 2 f (447
+35(5 — 2m + B2 B ) foh” — (=L B(m) — 1) frid
+ 33y (2m — 3 — 2=OmES B()) f (v by T + 4T 4T
g (L + 5258 8(m NIV + (1 = 42=108(m)) fp,,,, id
+ gy (L2 + Z=2mdn () £ 1L Ly id

+48(m12—1)(_17+87m + dm 7171n7712+0m71ﬂ(m))fLaaLbb id
T gy Bm) £ (00 + LA TOT0)} + 12t (2B(m) — 1) fyn id
+8(77L1—3)(57T1877 - 57713796(m))Laaf;m id}dy.

We now study heat content asymptotics with spectral boundary conditions. To simplify
the discussion, we suppostis formally self-adjoint. We refer to [60, 61] for the proof of:

Theorem 10.2 (1) By(o,p, D, Be) = [, (¢, p)dx
(2) B1(d:p, D, Be) = == [, (T4, 1T}, p)dy.

(3) By(¢,p. D, Be) = — [,,(Dé, pydz + [5,,{—(vmILh P, p) — (v, 1T} ¢, Pp)
Y (Loa + A+ A% — 7, 0p + P pm — ¥ a — GG, T, p) Yy,

11 Operators which are not of Laplace type

We follow Avramidi and Branson [12], Branson et al. [32], Fulling [52], Gusynin [77],
and drsted and Pierzchalski [101] to discuss the heat trace asymptotiosi-ofiinimal
operators Let M be a compact Riemannian manifold with smooth boundary an8 let
define either absolute or relative boundary conditions. et C*°(End(A?M)) be an
auxiliary endomorphism and let and B be positive constants. Let

DY := Add + Béd— E on C>*(AP(M)),
cmp(A,B) =B+ (B —-A"™) Z(_l)k+p<p) (kz) :

k<p
Theorem 11.1 (1) If E = 0, thena, (1, D?,B) = B("=™)/2q,, (1, A} B)
H(BOm2 A2 3R (— 1R Pa (1, AR, B).

(2) For generalE one has:
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a) ao(1, D%, B) = ao(1, D?, B).
b) al(LD%‘aB) = al(laDpvlg)'
¢) ax(1, D%, B) = ax(1, DP, B) + (47) "™/ ¢, (A, B) [, Tr(E)dz.

We follow the discussion in [56] to study the heat content asymptotics of the non-
minimal operatoD := Ad§ + Béd — E onC>(A'(M)). Let¢ andp be smoothl forms;
expandp = ¢,e; andp = p,e; wheree,,, is the inward geodesic normal.

Theorem 11.2 (1) LetB define absolute boundary conditions. Then:

a) ﬁo(qsapaDaB) = f]\l((b7 p)d(E
b) ﬂ1(¢apaDaB) = _%\/ZIQM ¢mpmdy

€) Ba(¢.p, D, B) = — [, {A(6¢, dp) + B(d¢,dp) — E(¢, p)}dzx
+ faM A{_¢mpa:a - (bu:apm - ¢m;mpm - (bmpm;m
+%Laa¢mpm}dy'

(2) LetB define relative boundary conditions. Then

a) BO((b) P D7 B) = fM(¢a p)dl‘
b) 61(¢; |2 D, B) = _%\/Efa]\/[ ¢apady-
c) By(,p, D, B) = — [, {A(¢,0p) + B(d¢,dp) — E(¢, p) }dx
+ faM B{f(ba:apm - d)mpa:a - ¢a;7npa - ¢apa;m
+Lab¢bpa + %Laa(zsbpb}dy'

We now turn our attention to fourth order operators. Létbe a closed Riemannian
manifold. LetV be a connection on a vector bundfeover a closed Riemannian manifold
M. Set

D(mz2) 7 I0() o= lim {D(252) 7T (252)}

S—n

Theorem 11.3 Let Pu = w455 +D2,i5 ;45 +P1,i;: +Ppo ON @ closed Riemannian manifold
wherep, ;; = ps ;; and where{ps ;;, p1 5, po} are endomorphism valued. . Then:

(1) ao(1, P) = 5(4m)~™/20 (%) ' T() [y, Tr(id)da.
(2) as(1,P) = L (4m) /2T (22270 (22) L [, Te{rid + 2 po i}
(3) as(1,P) = %(4ﬂ)7m/gr(%)flr(%)ﬁ Jur Tr{mgiggplijplij + m47_|5_2p2,iip2,jj

+(m - 2)(57’2 id —2|p|2 id +2|R|2 id +3OQ”Q”) + 307’]72’,@ - 60pijp2,ij
—360po }dax.
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12 The spectral geometry of Riemannian submersions

We refer to [64] for further details concerning the material of this section; additionally
see Bergery and Bourguignon[13], Besson and Bordoni [29], Goldberg and Ishihara [65]
and Watson [126]. Letr : Z — Y be a smooth map wher# andY are connected
closed Riemannian manifolds. We say thats a submersion ifr is surjective and if
w1, Z — T, Y is surjective for every € Z.

Submersions are fiber bundles. &t= 71 (y,) be the fiber over some poigg € Y.

If O is a contractable open subset¥f then7—1(0) is homeomorphic t@ x F and
under this homeomorphisng, is projection on the first factor. The vertical distribution
V := ker(w.) is a smooth subbundle &fZ. The horizontal distribution is defined by
H := V1. One says that is a Riemannian submersiomif : H, — T,.Y is an isometry
for every pointz in Z.

The fundamental tensors may be introduced as follows.nL.etZ — Y be a Rie-
mannian submersion. We use indieg$, c to index local orthonormal frames, }, { f*},
{F.}, and{F*} for H, H*, TY, andT*, respectively. We use indicésj, k to index local
orthonormal framege; } and{e’} for V andV*, respectively. There are two fundamental
tensors which arise naturally in this setting. The unnormalized mean curvature gector
and the integrability tensay are defined by:

0 := —gz([ei, fal, €:) [ = “Tiiaf® € CP(H),

w = wabi = 39z(€i, [fa, [5]) = 5(“Tari — “Thai) -
Lemmal1l2.1 Letw : Z — Y be a Riemannian submersion.

(1) The following assertions are equivalent:
a) The fibers ofr are minimal.  b)r is a harmonic map. ¢ = 0.

(2) The following assertions are equivalent:
a) The distributioriH is integrable. b)v = 0.

(3) Let® := 7.6 be the integration of along the fiber, and le¥ (y) be the volume of
the fiber. Ther® = —dy In(V'). Thus in particular, if0 = 0, then the fibers have
constant volume.

By naturalityn*dy = dzn*. The intertwining formulas for the coderivatives and for
the Laplacians are more complicated. Ket= w,;; extz(e?)intz(f?) intz(f?) and let
Z:=1intz(0) + £.
Lemma 12.2 Letw : Z — Y be a Riemannian submersion. Thesaw* — n*0y = Exn*
andAYm* — Al = {Ed; + dzE}n*.

One is interested in relating the spectrum on the base to the spectrum on the total space.
The situation is particularly simple if = 0:
Theorem 12.3 Letw : Z — Y be a Riemannian submersion.

(1) If ® € E(X\, A ) is nontrivial and ifr*® € E(u, AY), then\ = p.

(2) The following conditions are equivalent:
a) AYr* = 7*AY.. b) Forall A\, m* E(\, AY) € E(A\,A%). c)0 = 0.
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Muto [97, 98, 99] has given examples of Riemannian princ§gadundles where eigen-
values can change. The study of homogeneous space also provides examples. This leads
to the result:

Theorem 12.4 (1) LetY be a homogeneous manifold witf? (Y'; R) # 0. There exists
a complex line bundl& overY with associated circle fibratioms : S(L) — Y,
and there exists a unitary connectié vV on L so that the curvaturer of L'V is
harmonic and has constant norm# 0 and so thatt F € E(e, A%).

(2) Let0 < XA < pand letp > 2 be given. There exists a principal circle bundle
7 : P — Y over some manifold”, and there exist§ # ® € E(\, A},) so that
0 € E(u, AY).
The case = 1 is unsettled; it is not known if eigenvalues can change=f 1. On the
other hand, one can show that eigenvalue can never decrease.

Theorem 12.5Letr : Z — Y be a Riemannian submersion of closed smooth manifolds.
Letl <p < dim(Y). If 0 # ® € E(\,A}) and if7*® € E(u,AY), then\ < p. The
following conditions are equivalent:
a) We haveA 7* = AL
b) For all A\, we haver*E(\, A}.) c E(\, AL).
c) For all \, there existg: = p(A) sor*E(X\, A}) € E(u, AL).
d) We haved = 0 andw = 0.

Results of Park [103] show this if Neumann boundary conditions are imposed on a
manifolds with boundary, then eigenvalues can decrease.

There are results related to finite Fourier series. We &P M) = &, E(\, AR)).
Thus if ¢ is a smoothp-form, we may decompos¢ = 3, ¢, for ¢, € E(X A%,).
Let v(¢) be the number of so thaty, # 0. We say thaty hasfinite Fourier seriesf
v(¢) < oo. For example, ifM = S*, theng has finite Fourier series if and only df
is a trignometric polynomial. The first assertion in the following result is an immediate
consequence of the Peter-Weyl theorem; the second result follows from [49].

Theorem 12.6 (1) Letr : G — G/H be a homogeneous space wh@ré is equipped
with a G invariant metric and wheré&; is equipped with a left invariant metric. If
¢ is a smoottp-form onG/ H with finite Fourier series, then*¢ has finite Fourier
series onG.

(2) Letl <p,0< A and2 < p, be given. There exists: G — G/H and there exists
¢ € E(X, AZ/H) so thatue (7*¢) = vo.
In general, there is no relation between the heat trace asymptotics on the base, fiber,
and total space of a Riemannian submersion. McKean and Singer [90] have determined
the heat equation asymptotics for the sph&te Let

(4rt)™/?

(4mt)™
REERCAI——) A ~ t”/z
Vol(M) L€ Z Al

Z(M,t) := Vol (37

be the normalized heat trace; with this normalizatig), t) is regular at the origin and
has leading coefficierit Their results (see page 63 of McKean and Singer [90]) show that

Z(S*,t) =1+ O(t*) for any k



318 Spectral geometry
et/4 1l o=/t 2
Z(‘SQ?t):\/ﬁfO slnﬁdx:l'i_%“r%‘i‘
Z(S' x 8%t) = Z(S2,0)Z(S' ) =1+ L+ & + .
Z(SPt)=et=1+t+ 32+ ...

The two fibrationsr : S* x $? — S? and= : S? — S? have bas&? and minimal fibers
S1. However, the heat trace asymptotics are entirely different.

On the other hand, the following result shows that the heat content asymptoti€s on
are determined by the heat content asymptotics of the base and by the volume of the fiber
if # = 0; Lemma 12.1 shows the volurmié of the fiber is independent of the point in
question in this setting.

Theorem 12.7 Letw : Z — Y be a Riemannian submersion of compact manifolds with
smooth boundary. Lei, := 7*p, and let¢, = 7*¢y.. If § = 0and if B = Bp or
B - BN: thenﬁn(pZa ¢Z7 AOZ> B) = Bn(pY7 ¢Y7 A(})/a B) . V
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