Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Hailin Wang
Oregon Center for Optics, University of Oregon, USA

Students:
Shannon O’Leary
Susanta Sarkar
Yumin Shen
Phedon Palinginis
Mark Phillips
Tao Li

Collaborations:
C. Chang-Hasnain
R. Binder
J. Prineas
R.T. Cox
UC Berkeley
Univ. of Arizona
Univ. of Iowa
CNRS, France

Supported by DARPA, NSF, ARO
Outline

• Introduction
 – EIT: Destructive interference via quantum coherence
 – Why we are interested in EIT?
 – Challenges for realizing EIT in semiconductors

• Experimental realization of EIT in semiconductors
 – Exciton spin coherence
 – Electron spin coherence

• Future work
Quantum Coherence

- Coherent superposition with well-defined relative phase between probability amplitudes

Two-level system:
\[|\psi\rangle = C_a |a\rangle + C_b |b\rangle \]
e.g. atoms, spins

Quantum coherence can be induced and manipulated via optical processes.
Nonradiative Quantum Coherence

- **Nonradiative coherence:**

 \[C_b |b\rangle + C_c |c\rangle \]

 \(|b\rangle\) and \(|c\rangle\) are not directly coupled by a dipole optical transition.

- **Quantum interference:**

 Total optical transition rate depends on the *relative phase* of the probability amplitudes.

\[|a\rangle \]
Electromagnetically Induced Transparency (EIT)

- Population trapped state: A special superposition state with

\[|\psi\rangle = C_b |b\rangle + C_c |c\rangle \]

- EIT: Vanishing optical absorption due to complete destructive quantum interference

\[\left| C_a \right|^2 = \left| C_{b\rightarrow a} + C_{c\rightarrow a} \right|^2 = 0 \]

Harris, Physics Today 50 (7), 36 (1997); Scully & Zubairy, Quantum Optics.
EIT: Quantum Interference Induced Transparency

Destructive quantum interference

Frequency

Refractive Index

Absorption
Manipulating Light with EIT

- Slow and stored light
- Entangled photon pairs
- Light-matter quantum interface
- Lasing without inversion
- Nonlinear optics with single photons
- Stimulated Raman adiabatic passage

For a review, see for example, Lukin, Rev. Mod. Phys. 75, 457 (2003).
Slow Light

\[v_g = \frac{d\omega}{dk} = \frac{c}{n + \omega \frac{dn}{d\omega}} \]

Group velocity \(\sim \frac{c}{10^7} \)

Application:

e.g., Optical buffers (Chang-Hasnain, UC Berkeley)
Spin-Photon Correlation

- Emission of a photon via the spontaneous Raman transition is correlated with a spin flip.

- Application
 Quantum state transfer, entangled photon pairs, quantum repeaters, and long distance quantum communication

Quantum Control of Single Photons with EIT

Kimble group

Harris group

Kuzmich group

Lukin group
Challenges for EIT in Semiconductors

• Short decoherence time
 – Solution 1: Pursuing quantum interference in a transient regime
 – Solution 1: Using robust quantum coherence.

• Manybody Coulomb interactions
 Fundamentally affect optical processes in semiconductors.
 – Solution: Understand and harness manybody interactions for EIT.
Optical Excitations in Semiconductors: Excitons

- Excitons: Bound states of an e-h pair
 - $E_B \sim 10$ meV
 - $r_B \sim 10$ nm
 - Very loosely bound e-h pairs!

- Collective excitation of the crystal
- Manybody interactions between excitons
Three Types of EIT Systems

Outline

• Introduction
 – EIT: Destructive interference via quantum coherence
 – Why we are interested in EIT?
 – Challenges for realizing EIT in semiconductors

• Experimental realization of EIT in semiconductors
 – Exciton spin coherence
 – Electron spin coherence

• Summary
Exciton Spin Coherence

- Exciton spin coherence: coherent superposition of spin-up and spin-down exciton states
 - The two transitions share no common state.
 - No exciton spin coherence can be induced in a non-interacting exciton system.
Excitons: A Interacting Many-Particle System

- **Exchange interaction:**

 Exciton wave-functions start to overlap at relatively low densities.

 \[|\psi|^2 \]

 ![Diagram showing exciton wave-functions](image)

- **Coulomb correlation:**

 For nearby excitons, charge fluctuations are strongly correlated.

 Attractive correlations can lead to the formation of exciton molecules or biexcitons.
Exciton Spin Coherence via Biexcitons

- Coupling exciton spin states via biexcitonic transitions:

\[|\downarrow\uparrow\rangle_B \to |\sigma^+\rangle \to |\uparrow\downarrow\rangle \geq |\sigma^-\rangle \to |\downarrow\uparrow\rangle \]

Taking advantage of manybody interactions between excitons to induce quantum coherence and realize EIT.
EIT with Ultrafast Pulses

A long pump pulse and a short probe induce a spin coherence.

• Spin coherence

\[\text{Re}(\rho_{+}) < 0: \] Phased for destructive interference.
The prepulse pulse arrives 10 ps before the pump to inject spin-down excitons.
Biexciton Resonance

Dashed curve: Absorption spectrum without prepulse.
Solid curve: Absorption spectrum with prepulse.

T=10 K

Energy (eV)

Absorption (αL)

10 nm GaAs/AlGaAs QW
EIT from Exciton Spin Coherence

$\tau = -3 \text{ ps}$

$\tau = 6 \text{ ps}$

10 nm GaAs QW
$T=10 \text{ K}$

EIT from Spin Coherence

Theoretical calculation based on a 3-level model.

Dashed line: Absorption spectrum when the spin coherence is artificially turned off.
Two-Exciton States

Only 1s exciton states are included.

The two-exciton states play an essential role in coherent optical processes in semiconductors.

Spin Coherence via Two-Exciton Scattering States

• Inducing spin coherence via two-exciton scattering states?

Experiment:

The pump pulse excites excitons directly: no prepulse is needed.

EIT occurs at the energy of the exciton resonance.
EIT via Exciton spin Coherence

The pump and probe couple to transitions that share no common states.

Exciton spin coherence induced via two-exciton continuum states can also lead to EIT.
EIT from Biexciton Coherence

Two pathways to drive the system to state $|x\rangle$:

- $|g\rangle$ to $|x\rangle$ & $|bx\rangle$ to $|x\rangle$

- **Biexciton coherence**: Coherent superposition of $|g\rangle$ and $|x\rangle$.

- The probe and pump couple to the exciton and biexciton transitions, respectively.

- The EIT dip occurs at the exciton absorption resonance.
EIT from Biexciton Coherence

- The pump is tuned slightly above the biexciton resonance.
- The absorption dip occurs at the exciton resonance.
- Delay dependence shows the coherent nature of the dip.

Outline

• Introduction
 – EIT: Destructive interference via quantum coherence
 – Why we are interested in EIT?
 – Challenges for realizing EIT in semiconductors

• Experimental realization of EIT in semiconductors
 – Exciton spin coherence
 – Electron spin coherence

• Future work
Electron Spin Coherence in Semiconductors

- Electron spin coherence is exceptionally robust. It can last as long as 0.1 μs and remain robust at room temperature.

- Suitable three-level systems?

The lowest energy interband transitions in a GaAs QW are characterized by two heavy-hole (HH) transitions.

- The two transitions share no common state.
- No electron spin coherence can be induced.
V-System in an External Magnetic Field

Inducing spin coherence: Coupling electron spin states to a common valence band state via dipole transitions.

- Electron spins are aligned with the external magnetic field.
- In a weak magnetic field, J_z remains approximately a good quantum number for the holes.
• The pump and probe excite an electron spin coherence.
• Destructive interference induced by the spin coherence can lead to:
 – Induced resonance in transmission (dip in the absorption).
The sharp Zeeman resonance arises from destructive interference induced by the electron spin coherence.

Coherent Zeeman resonance in the cross-linear configuration can be viewed as EIT from the electron spin coherence.
V-System without External Magnetic Fields

Key features:

- Spin-orbit coupling mixes the spin-up and spin-down states for the light-hole (LH) band: double-V system.
- Inducing electron spin coherence in the absence of an external magnetic field.
- The waveguide geometry enables long interaction length.

Using light hole transitions in a waveguide.

\[
| j_z = 1/2 \rangle = \frac{1}{\sqrt{3}} | Y_{11} \rangle \downarrow + \sqrt{\frac{2}{3}} | Y_{10} \rangle \uparrow
\]
GaAs/AlGaAs QW Waveguide

Sample:
Single 17.5 nm GaAs QW AlGaAs Cladding
Length ~ 100 μm

For TM polarization, HH exciton resonance is nearly negligible, as expected from optical selection rules.
EIT in a QW Waveguide

V-Type vs Λ-type Three-Level Systems

• V-System

 Spin decoherence is limited by radiative decay.

 Degree of transparency is limited.

• Λ-System

 Spin states are the ground states.

 Nearly complete transparency can be achieved.
• The formation of the Λ-system requires an excess electron population in the conduction band.

• Trion:

An exciton bound to an electron (negatively charged exciton).
Involves two electrons and one hole.

Mixed Type Quantum Well Structures

• Mixed type QW:
The bottom of the conduction band in the narrow QW is higher than the X-valley in the AlAs barrier.

Narrow well: type II
Wide well: type I

• Electrons in narrow QW transfer via X-valley in the barrier to wide QW. Holes remain confined in the narrow QW.

• Advantage: Using optical injection to control the electron density in the wide QW.
Formation of Trions in a Mixed-Type QW

- For black lines, the sample is excited by both the red and green laser beams.
- With increasing number of electrons in the wide well, more excitons are converted into trions.
- Trion binding energy: 1.6 meV

![Graph showing PL intensity vs. energy with peaks labeled X^- and X.](image)

- I = 0.5, 1, 2 mW/cm²
- I = 2 W/cm²
Λ-type Three-Level System via Trions

Trion states

$|+3/2\rangle_z$

$|3/2\rangle_z$

$|1/2\rangle_z$

$|1/2\rangle_z$

Electron spin states

$|+1/2\rangle_z$

$|1/2\rangle_x$

$|1/2\rangle_x$

$|1/2\rangle_x$

σ^+

σ^-

GaAs QW
Coherent Zeeman Resonance in the Λ-System

- The width of the coherent Zeeman resonance corresponds to a spin decoherence time of 1 ns.

Coherent Zeeman resonance amplitudes are suppressed with increased electron injection. The linewidth does not appreciably broaden.

The coherent response is quenched by the increased dipole decoherence induced by the carrier injection.

- Coherent Zeeman resonance amplitudes are suppressed with increased electron injection.
- The linewidth does not appreciably broaden.
Effects of Carrier-Carrier Interactions

- Trion resonance present without injection due to residual doping.
- Trion absorption peak enhanced by the injection of electrons.
- Absorption resonance broadens dramatically due to efficient carrier-carrier carrier scattering.

Red curve: absorption spectrum obtained at an injection level of 0.25 mW/cm²

What is next?
Trions in II-VI Semiconductors

- CdTe/CdZnTe quantum well
- Modulation doping: $2 \times 10^{10}/\text{cm}^2$

- II-VI semiconductors feature greater binding energy.
- Pronounced and robust trion resonance in both absorption and emission spectra (the Y-resonance).
Spin Precession from Trions in CdTe QW

• Spin decoherence time ~ 1 ns
• Modulation doping: $2 \times 10^{10}/\text{cm}^2$
The pump is at the trion resonance ($\lambda \sim 771.92$ nm).

Pronounced coherent Zeeman resonance arising from destructive interference induced by the electron spin coherence.
Future Work

• Optimize the EIT process using trions and electron spin coherences.
• Coherent spin flipping via adiabatic passage.
• Incorporate EIT via trions in a waveguide geometry.
• Spin-phonon correlations.
• Generation of entangled photons.
Main Theme: EIT can be realized in semiconductors.

- Demonstrated EIT with exciton spin coherence and biexciton coherence.
- EIT can also be realized with robust electron spin coherence, opening possibilities for applications.
- Manybody interactions between optical excitations modifies fundamentally coherent optical processes in semiconductors.
Acknowledgement

University of Oregon:

Mark Phillips (now at Sandia National Labs)
Phedon Palinginis (now at UC Berkeley)
Susanta Sarkar
Yumin Shen

Collaborations:

Connie Chang-Hasnain UC Berkeley
Rolf Binder University of Arizona

Supported by DARPA, NSF, and ARO