Vertex Detectors for the LCD

Jim Brau
Univ. of Oregon

SLAC
August 4, 1999
c^+e^- \rightarrow ZH \quad (4 \text{ jet topology}) \quad \text{at } 500 \text{ GeV} = 10^{-8} \quad (\sim 1 \text{ Nc yr})

1. \geq 4 \text{ jets} \quad \text{with } m_{H^+} < 45 \text{ GeV} \quad (c^+e^- \rightarrow q\bar{q})
2. E_{H^+} > 0.7 \text{ TeV} \quad (\pm \nu)
3. \chi^2_{\text{exp}} < 75 \quad (\pm \nu)
4. m_{H^+} = m_{H} \quad (80-125 \text{ GeV})

\begin{align*}
M_W &= 110 \text{ GeV/}c^2 \\
M_H &= 150 \text{ GeV/}c^2
\end{align*}
$e^- e^- \rightarrow H \nu \bar{\nu}$ \(\sqrt{s} = 500 \text{ GeV/c}^2 \) \(\Delta \vec{p} \leq 10^{-4} \text{ fm}^{-1} \) (\(\sim \frac{1}{2} \text{ LHC year} \))

1. $E_{\text{miss}} > 1 \text{ TeV}$
2. $p_T > 100 \text{ GeV/c}$
3. $M_H > 200 \text{ GeV/c}^2$
4. $\theta_{\text{had}} > 25^\circ$
5. $\theta_{\text{lep}} < 150^\circ$
6. veto isolated leptons

[Diagrams showing M_{UU} and M_{U12} distributions for $m_H = 120 \text{ GeV/c}^2$, with and without b-tagging.]

hermeticity
dijet mass resolution

J. Brau, SLAC, August 4, 1999
For the LCD Vertex Detector there are clear simulations AND hardware R&D issues.

We will restrict discussion to R&D issues related to simulation studies.

We are assuming that the vertex detector will be a CCD vertex detector.

basically, an improved version of the SLD vertex detector

more layers than SLD
(3->5)
thinner ladders than SLD
(0.4% X₀ -> < 0.2% X₀)
smaller inner radius than SLD
(2.8 cm -> 1.2 cm)
	herefore -> improved performance

Big issue on the hardware side is the radiation level (relative to damage) and the detector tolerance to the radiation - we are working on this, but it is not a topic of this meeting.
SLT
Vertex
Detector
Upgrade
(VXD3)

307,000,000
pixels
(20μm x 20μm x 20μm)
Suggested layout of Vertex Detector for future $e^+ e^- \text{Linear Collider}$ (Updated November 1998)

- Single CCD Lengths: 125 mm
- Outer Cryostat Length: 340 mm
- Barrel 1, Barrel 2, Barrel 3, Barrel 4, Barrel 5

Cos $\theta = 0.98$
What have we learned so far:

Bruce Schumm's parametrization of impact parameter resolution is pretty accurate

Model S
\[\sigma_b = \left(3 \, \mu m \oplus 10 \, \mu m / p \sin^{3/2} \theta \right) \]

Model L
\[\sigma_b = \left(3.5 \, \mu m \oplus 25 \, \mu m / p \sin^{3/2} \theta \right) \]

The vertex detector has a large role in track finding for the S1 detector, and helps some for the L1 detector.

With the vertex detector, S1 tracking efficiency is 99%
Impact parameter resolution for $P=3$ GeV, $\cos(\theta)=0.5$

Curves for small detector represent 1 mm and 2 mm thick BP with BP radius 1 cm
Curves for large detector represent 1 mm and 2 mm thick BP with radius 1 cm and 2 mm thick BP with radius 2 cm
Simulation is made only for 1 cm BP radius for 1 mm and 2 mm thicknesses.
Issues needing study:

Dependence of performance on vertex detector parameters

Parameters:
- Inner radius
- Outer radius
- Number of barrels
- Angular coverage
- Hit Resolution
- Background pile-up
 (layer dependent)

Performance measures:
- Impact parameter resolutions
- Tagging efficiencies and purities
 - b quarks
 - charm
 - taus
- Specific channels studies
 - eg. Higgs \rightarrow c c-bar

We need to incorporate vertex reconstruction into LCD simulations package
 \rightarrow early fall (N. Sinev)
What modifications would be like for the next round of Monte Carlo runs?

Vertex Detector specific mods

1. reduce the beampipe thickness to 0.5 mm

2. change the CCD layout to Damerell's new layout:

 [link](http://hep.ph.liv.ac.uk/~green/lcfl/techdraw/VXDcol.ps)

3. use the same CCD layout for both model S and model L

4. add the VXD cryostat to both detectors