

Outline

CCD Vertex Detectors

General Properties of CCD Vertex Detectors

- •CCD Principles
- Advantages and disadvantages in Vertex Detectors

Requirements for future Linear Collider

SLD VXD3: Features and Performance

- •CCDs, electronics, mechanics, etc.
- •Survey, resolution, heavy quark tagging, etc.

Proposed CCD vertex detector for the future Linear Collider

- •Features
- •Performance
- •Radiation Tolerance

Other Developments

CCD Principles

CCDs were invented more than 30 years ago: W.S. Boyle, G.E. Smith, Bell Syst. Tech. J. 49, 587 (1970)

Their use a particle detectors was first proposed more than 20 years ago: C.J.S. Damerell et al., Nucl. Inst. and Meth. 185, 33 (1981)

The most advantageous feature of the CCD for particle detection is the highly segmented pixel structure (20 μ m x 20 μ m x 20 μ m) when charge sharing between pixels is used to optimize position resolution, better than 4 μ m resolution has been achieved in a large system (307,000,000 pixels) operating for years

The most limiting feature is the relatively slow readout speed: eg. about 100 msec is required to read out a large detector (<u>Linear Collider</u> well matched to this speed. Note: > 1000x faster readout is under development)

CCD Principles

CCD Vertex Detectors

Pair creation energy is \approx 3.7 eV, wth mild temperature dependence: 3.8 eV at 90 K, and 3.65 eV at 300 K

80 electron-hole pairs per micron of track-length

A detector of thickness < 300 microns deviates from Landau distribution, but for thickness > 10 microns, the deviation is acceptable

CCD Vertex Detectors

Charge collection principles

n+ on p-type substrate (usually)

lightly doped epitaxial p layer heavily doped p⁺ substrate top ~ 1 μm of p layer doped by ion implantation (n⁺)

depletion region (~ 5 μm) p/p*(« charge drifts directly charge in undepleted p region diffuses, and reflects from p/p+ edge, eventually collected

CCD Noise

CCD Vertex Detectors

< 100 e⁻ ENC for \leq 10-30 MHz and higher

Linear Collider Physics

CCD Vertex Detectors

<u>Physics Opportunities of</u> the Linear Collider

- Premier physics goals of linear collider characterized by heavyquark decays and small cross sections
 - eg.

Higgs branching ratios (eg. $c\overline{c}$ in presence of dominant $b\overline{b}$)

```
tt (usually 6 jets, 2 b jets)
```

tth (usually 8 jets, 4 b jets)

AH (12 jets with 4 b jets)

and other reactions

Linear Collider Requirements

CCD Vertex Detectors

Requirements of the

Linear Collider Vertex Detector

- Highly <u>efficient</u> and <u>pure</u> b and c tagging, including tertiary vertices (b→c)
- Charge tagging (eg. b/b discrimination)
- These goals are achieved by optimized impact parameter performance:
 - point resolution < 4 μm
 - detector thickness $< 0.2\% X_0$
 - inner radius < 2 cm</p>
 - good central tracker linking
- Also must take care with timing and radiation hardness

Linear Collider Environment

CCD Vertex Detectors

Linear Collider Environment and CCDs are well matched

•very small beam spots •well defined primary vertex

•small diameter beam pipe •precision vertexing and manageable detector area

•low mass detector •reduced multiple scattering

long interval between beam crossings
 permits readout in ~10-20 beam crossings

•highly segmented pixel structure •absorbs high background rate of LC

SLD VXD3

CCD Vertex Detectors

SLD has demonstrated the power of a **PIXEL** detector in the LC environment

- 307,000,000 pixels ٠
- $3.8 \,\mu m$ point resolution •
- Excellent impact parameter resolution ٠
 - $\sigma_{r\phi}$ (µm)= 7.8 \oplus 33/p sin^{3/2} θ σ_{rz} (µm)= 9.7 \oplus 33/p sin^{3/2} θ
- pure and efficient flavor tagging at the Z-pole •
 - $\sim 60\%$ b eff with 98% purity
 - > 20% c eff with ~ 60% purity
- decay vertex charge measurement (Q = -1, 0, 1)

SLD Collab., NIM A400, 287-343 (1997)

CCD Parameters

CCD Vertex Detectors

		6	
Basic design features		Performance parameters	
Substrate resistivity	$<$ 20 m Ω cm	Clock capacitances	
Epitaxial layer reistivity	$20 \ \Omega \ cm$	I mage section to substrate	16 nF
Format	4 quadrant full frame	I mage section interphase	6 nF
No. pixels	800 Hor x 4000 Vert	Readout register to substrate	85 pF
Pixel size	20 x 20 μm²	Readout register interphase	30 pF
Sensitive Area	16 mm x 80 mm	Charge storage capacity	
Overall chip size	≤ 16.6 mm x 82.8 mm	Pixel (supplmentary channel)	100 x 10 ³ e ⁻
I nactive edge spacing	< 300 μm	Pixel (total)	350 x 10³ e-
Thickness	180 ± 20 μm	Readout register	400 x 10 ³ e ⁻
Passivation	2 μm polyimide	Vertical transfer rate	>200 kHz
I mage area clock type	3-phase	Horizontal transfer rate	> 10 MHz
Readout register		Output circuit responsivity	3 µV⁄e-
clock type	2-phase	Output impedence	260 Ω
No. of pre-scan elements	6	Power dissipation (on-chip)	
No. of amplifiers	4	I mage section (10 V clocks at	
Gate protection	on all gates	200 kHz)	1.3 W
		Readout register (10 V clocks	
		at 10 MHz	25 mW
		Each output amplifier	45 mW

VXD3 Ladder Assembly

CCD Vertex Detectors

CCDs mounted on kapton flex circuits, stiffened by beryllium

VXD3 Electronics

CCD Vertex Detectors

Significant compactification (from VXD2) 16 A/D boards close to CCDs 24 channels / board gain of 100 amplifier 8 bit flash ADC microcontroller for: XI LI NX codes clock waveforms DC offsets CCD enable/disable High speed optical links (1.2 GHz, 2 per board) to FASTBUS VDA Cluster processing on-line (better than thousand-fold reduction)

J. Brau, Snowmass, July 11, 2001

VXD3 Cooling

CCD Vertex Detectors

Cooling

190K operating temperature (suppresses dark current and CTE losses) Liquid nitrogen boil-off through fine holes in beryllium beampipe jacket Foam cryostat

< 20 Watts overall within cryostat

VXD3 Mechanics

CCD Vertex Detectors

Mechanics

VXD3 supported by instrument grade beryllium structure Components match pinned and doweled for stability Mating surfaces lapped (1 micron precision) All joints allow for differential thermal contraction Two modules clamped together & stablely mounted on beampipe via 3 point kinematic mount

VXD3 Optical Survey

CCD Vertex Detectors

All ladders, inner and outer barrels, surveyed to few micron precision

Optical Survey <u>Coordinate Measuring Machine</u> OMISII (Ram Optics) aperture: 30.4, 15.2, 20.3 cm resolution: 2-5 microns (xy); 20-30 microns (z)

Ladder Survey <u>4 views measured</u> (ref: 6 tooling balls) 96 fiducials on CCD surface 42 fiducials on flex strip 26 points on each side of CCD physical corners of Si wafer rate: 6 hours per ladder

Estimated accuracy: approx 20 microns

Barrel Survey

<u>3 layers measured</u> (ref: 32 tooling balls) measurements through holey grill visible outside surface of each ladder physical corner of top CCD used symmetry to reduce programming rate: 5 days per barrel

Jet Charge

CCD Vertex Detectors

Precision Vertexing, with complete decay reconstruction, leads to discrimination between B⁺ and B⁻ VXD3 at SLD

J. Brau, Snowmass, July 11, 2001

Charge Efficiency and Decay Length Resolution

CCD Vertex Detectors

Ghost track method improves dipole charge tag and decay length resolution

Lesson on Ultimate Performance

CCD Vertex Detectors

One important lesson from VXD3: (we should have expected)

Build an outstanding detector and physics analysts will push the performance beyond your expectations!

307,000,000 pixels
3.8 μm point resolution throughout the entire system
7.8 μm impact parameter resolution at high energy

J. Brau, Snowmass, July 11, 2001

Recap of CCD Advantages

CCD Vertex Detectors

High granularity

 $20 \times 20 \times 20 \ \mu m^3$ pixels (Intrinsically 3-dimensional) superb spatial resolution (< 4 mm achieved at SLD)

<u>Thin</u>

0.4% X_0 at SLD (0.1% forseen) low multiple scattering

Large detectors 80 x 16 mm² at SLD facilitates ease of geometry

Exceptional <u>system-level</u> performance demonstrated well matched to Linear Collider

Parameters for Future Linear Collider

CCD Vertex Detectors

Vertex Detector Design for the future Linear Collider

- Maximum Precision (< 4 μm)
- Minimal Layer Thickness (1.2% $X_0 \rightarrow 0.4\% X_0 \rightarrow 0.12\% X_0 \rightarrow 0.06\% X_0$) SLD-VXD2 SLD-VXD3 Linear Collider stretched
- Minimal Layer 1 Radius (28 \rightarrow 12 mm \rightarrow 5mm) SLD-VXD3 LC Schumm challenge
- Polar Angle Coverage (cos θ~ 0.9)
- Standalone Track Finding (perfect linking)
- Layer 1 Readout Between Bunch Trains
- Deadtime-less Readout

J. Brau, Snowmass, July 11, 2001

Radiation Hardness

CCD Vertex Detectors

<u>Surface Damage</u> from ionizing radiation hard to > 1 Mrad (acceptable for LC)

Bulk Damage

results in loss of charge-transfer efficiency (CTE)

ionizing radiation damage suppressed by reducing the operating temperature

<u>hadronic radiation (neutrons)</u> damage clusters \rightarrow complexes cooling much less effective

VXD3 Experience on Radiation Damage

CCD Vertex Detectors

SLD Experience during VXD3 commissioning,

An undamped beam was run through the detector, causing radiation damage in the innermost barrel.
The damage was observed as the detector was operating at an elevated temperature (≈220 K).
Reducing to 190 K ameliorated the damage

Neutron Damage

Background estimates for the next Linear Collider have varied from 10⁷ n/cm²/year to 10¹¹ n/cm²/year

- 2.3 x 10⁹ n/cm²/year (Maruyama-Berkeley2000)

Expected tolerance for CCDs in the range of 109-10

Increase tolerance to neutrons can be achieved through improve understanding of issues and sensitivity engineering advances

flushing techniques

supplementary channels bunch compression & clock signal optimization others Neutron Damage and Amelioration Study

CCD Vertex Detectors

Radiation Hardness Tests of CCDs - N. Sinev

This study investigated flushing techniques on spare VXD3 CCD

Flash light to fill traps, then read out

IEEE Trans. Nucl. Sci. 47, 1898 (2000)

Neutron Damage and Amelioration Study

Image of damaged sites

CCD Vertex Detectors

Image of damaged sites after flushing

Basic concept demonstrated; future work will involve charge injection to keep traps filled.

Conclusion

CCD Vertex Detectors

CCDs have been established as a powerful technique for precision vertex detection at SLD 307,000,000 pixels 3.8 µm hit resolution throughout (years of operation) ~ 100 µm decay length resolution (even much better in for specific channels, eg. Bs \rightarrow DsX (Ds $\rightarrow \phi\pi$)) many world-leading measurements of heavy quark physics

A CCD Vertex Detector would be a powerful tool at the future Linear Collider

Advances in the technique are planned Rad-hardening faster read-out other improvements