Exploring the Energy Frontier; Understanding LHC Discoveries

Jim Brau
University of Oregon
History of the Universe

Big Bang

Superstrings ?

Unified Forces

Inflationary Expansion

Forces Separate

Nucleons Created

Atoms Form

Stars Are Born

Today

Time

10^{-43} s

10^{-35} s

10^{-10} s

10^{-5} s

300 000 Years

10^9 Years

$15 \cdot 10^9$ Years

Energy

10^{17} TeV

10^{13} TeV

1 TeV

150 MeV

1 eV

4 MeV

0.7 MeV

accessible with precision meas.

LHC

ILC
Exploring the Energy Frontier

○ Terascale Physics Era begins soon

○ A Linear Collider is the essential complement to the LHC

○ ILC will be ready to go when LHC sets the energy scale

○ Political ups and downs and ups

○ Experiments are challenging, demanding aggressive, focused detector R&D
As astronomers examine the universe with different wavelengths (visible, radio, X-ray, IR, etc.), particle physicists use different initial states. Complementarity is a powerful tool across all sciences.
Particle Physics Needs Both

<table>
<thead>
<tr>
<th>SM particle</th>
<th>discovery</th>
<th>detailed study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLAC</td>
<td>HERA</td>
</tr>
<tr>
<td></td>
<td>PETRA</td>
<td>Fermilab/ SLC/LEP</td>
</tr>
<tr>
<td></td>
<td>BNL + SPEAR</td>
<td>SPEAR</td>
</tr>
<tr>
<td></td>
<td>SPEAR</td>
<td>SPEAR</td>
</tr>
<tr>
<td></td>
<td>Fermilab</td>
<td>Cornell/DESY/SLAC/KEK</td>
</tr>
<tr>
<td></td>
<td>SPPS/CERN</td>
<td>LEP and SLC</td>
</tr>
<tr>
<td></td>
<td>Fermilab</td>
<td>LHC +? (LC meas. Yukawa cp.)</td>
</tr>
</tbody>
</table>

- Electron experiments have frequently provided most precision as well as discovery.
Virtues of the ILC

Elementary interactions at known E_{cm}^*
 eg. $e^+e^- \rightarrow ZH$ * beamstrahlung manageable

Democratic Cross sections
 eg. $\sigma (e^+e^- \rightarrow ZH) \sim 1/2 \sigma (e^+e^- \rightarrow d \bar{d})$

Inclusive Trigger-free data
 total cross-section

Highly Polarized Electron Beam
 $\sim 80\%$ (positron polarization – R&D)

Calorimetry with Particle Flow Precision
 $\sigma_E/E_{jet} \sim 3\%$ for $E_{jet} > 100$ GeV

Exquisite vertex detection
 eg. $R_{beampipe} \sim 1$ cm and $\sigma_{hit} \sim 3 \mu$m

Advantage over hadron collider on precision meas.
 eg. $H \rightarrow c \bar{c}$

MODEL INDEPENDENT MEASUREMENTS
Terascale Physics

- Electroweak Symmetry Breaking at Terascale

- Many theories aim to explain Hierarchy Problem
 - SUSY, XDimensions, New Strong Dynamics,
 - Unparticles, Little Higgs, Z', …

- ILC explores all of these
 - Precision mass couplings (including the Higgs)
 - Direct production of new states
 - High energy behavior of cross sections
 (including asymmetries, CP violation, etc.)
ILC Physics

- Light Higgs h^0 Br
- Top-Yukawa
- SUSY physics study
- $\gamma\gamma$ Heavy Higgs search
- e^+e^- Heavy Higgs study
- CP-violation
- $\tilde{\chi}^0$ $\tilde{\ell}$ \tilde{t} \tilde{q}
- h^0 basic property
Confirmation of the completeness of the Standard Model
\[e^+e^- \rightarrow W^+W^- \] (LEP2)

Demonstration of unification of EW forces
\[e^-p \rightarrow e^-X \rightarrow \nu_e X \] (HERA)

Electroweak Symmetry Breaking

\[e^+e^- \rightarrow W^+W^- \] (LEP2)

\[e^-p \rightarrow e^-X \rightarrow \nu_e X \] (HERA)
Electroweak Symmetry Breaking

\[L = g J_{\mu} \cdot W_{\mu} + g' J_{\mu}^\gamma B_{\mu} \]

\[- \frac{g}{2\sqrt{2}} \sum_i \bar{\psi}_i \gamma^\mu (1 - \gamma^5) (T^+ W^+_{\mu} + T^- W^-_{\mu}) \psi_i \]

\[- e \sum_i q_i \bar{\psi}_i \gamma^\mu \psi_i A_{\mu} \]

\[- \frac{g}{2\cos\theta_W} \sum_i \bar{\psi}_i \gamma^\mu (g^i_V - g^i_A \gamma^5) \psi_i Z_{\mu} \]

WHY?

- Standard Model conjecture is the Higgs Mechanism: a non-zero vacuum expectation value of a **scalar field**, gives mass to W and Z and leaves photon massless.
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Fit</th>
<th>$\Delta \alpha_{\text{had}}^{(5)}(m_Z)$</th>
<th>m_Z [GeV]</th>
<th>Γ_Z [GeV]</th>
<th>σ_had [nb]</th>
<th>R_l</th>
<th>$A_{\text{fb}}^{0,l}$</th>
<th>$A_l(P_t)$</th>
<th>R_b</th>
<th>R_c</th>
<th>$A_{\text{fb}}^{0,b}$</th>
<th>$A_{\text{fb}}^{0,c}$</th>
<th>A_b</th>
<th>A_c</th>
<th>$A_l(SLD)$</th>
<th>$\sin^2 \theta_{\text{eff}}(Q_{\text{fb}})$</th>
<th>m_W [GeV]</th>
<th>Γ_W [GeV]</th>
<th>m_t [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Model Fit</td>
<td></td>
<td>0.02758 ± 0.00035</td>
<td>91.1875 ± 0.0021</td>
<td>2.4952 ± 0.0023</td>
<td>41.540 ± 0.037</td>
<td>20.767 ± 0.025</td>
<td>0.01714 ± 0.00095</td>
<td>0.1465 ± 0.0032</td>
<td>0.21629 ± 0.00066</td>
<td>0.1721 ± 0.0030</td>
<td>0.0992 ± 0.0016</td>
<td>0.0707 ± 0.0035</td>
<td>0.923 ± 0.020</td>
<td>0.670 ± 0.027</td>
<td>0.1513 ± 0.0021</td>
<td>0.2324 ± 0.0012</td>
<td>80.399 ± 0.025</td>
<td>2.098 ± 0.048</td>
<td>173.1 ± 1.3</td>
</tr>
</tbody>
</table>

MARCH 2009

Theory uncertainty

$\Delta \alpha_{\text{had}}^{(5)}$

- 0.02758 ± 0.00035
- 0.02749 ± 0.00012
- Incl. low Q^2 data

Excluded

Preliminary
Light Standard Model-like Higgs

MARCH 2009

(SM) $M_{\text{higgs}} < 163 \text{ GeV}$ at 95% CL.

LEP2 direct limit $M_{\text{higgs}} > 114.4 \text{ GeV}$.

W mass ($\pm 25 \text{ MeV}$) and top mass ($\pm 1.3 \text{ GeV}$) consistent with precision measures and indicate low SM Higgs mass.
Even more strict Indirect limits on the light Higgs mass in the CMSSM/ EWPO + FPO + dark matter abundance

\[m_{h}^{\text{CMSSM}} = 110+8-10(\text{exp.})+-3(\text{theo.}) \text{ GeV}/c^{2} \]

Anticipated Particles

- Positron
- Neutrino
- Pi meson
- Quark
- Charmed quark
- Bottom quark
- W boson
- Z boson
- Top quark
- Higgs boson

Dirac theory of the electron
- Missing energy in beta decay
- Yukawa’s theory of strong interaction
- Patterns of observed particles
- Absence of flavor changing neutral currents
- Kobayashi-Maskawa theory of CP violation
- Fermi theory; Weinberg-Salam electroweak theory
- Neutral currents; “ “
- Mass predicted by precision Z^0 measurements

Electroweak theory and experiments
ILC Higgs Studies
- the Power of Simple Interactions

ILC observes Higgs recoiling from a Z, with known CM energy↓
• powerful channel for unbiassed tagging of Higgs events
• measurement of even invisible decays

(↓ - some beamstrahlung)

1. KNOWN INITIAL STATE
2. MEASURE $Z \rightarrow t^+t^-$
3. CALCULATE RECOIL

Invisible decays are included

500 fb$^{-1}$ @ 500 GeV, TESLA TDR, Fig 2.1.4

Jim Brau Exploring the Energy Frontier APS, Denver, May 3, 2009
Higgs Couplings
the Branching Ratios

\[g_{ffh} = \frac{m_f}{v} \quad v = 246 \text{ GeV} \]

Measurement of BR's is powerful indicator of new physics
e.g. in MSSM, these differ from the SM in a characteristic way.
Higgs BR must agree with MSSM parameters from many other measurements.
Is This the Standard Model Higgs? Precision tells us!

Coupling Precision

<table>
<thead>
<tr>
<th>Deviation from SM value</th>
<th>(\Gamma_n)</th>
<th>(\tau)</th>
<th>(b)</th>
<th>(t)</th>
<th>(W)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0% (SM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model assumption

Limit on \(\rho \) and \(\phi \):

\[\rho < 1 + 0\%

SUSY or 2HDM

| Deviation from SM value | \(\Gamma_n \) | \(c \) | \(\tau \) | \(b \) | \(t \) | \(W \) | \(Z \) | \(H \) |
|------------------------|---------------|----------------|---------------|----------------|---------------|---------------|
| +30% | | | | | | |
| +20% | | | | | | |
| +10% | | | | | | |
| 0% (SM) | | | | | | |
| -10% | | | | | | |
| -20% | | | | | | |
| -30% | | | | | | |

Model Independent Analyses

Extra-dimension (radion-Higgs mixing)

| Deviation from SM value | \(\Gamma_n \) | \(c \) | \(\tau \) | \(b \) | \(t \) | \(W \) | \(Z \) | \(H \) |
|------------------------|---------------|----------------|---------------|----------------|---------------|---------------|
| +30% | | | | | | |
| +20% | | | | | | |
| +10% | | | | | | |
| 0% (SM) | | | | | | |
| -10% | | | | | | |
| -20% | | | | | | |
| -30% | | | | | | |

Model Independent Analyses
Strongly Interacting Light Higgs

- Origin of EW scale from new strong interaction
- Technicolor simple example,
 - But inconsistent with EW precision measurements
- Add light pseudo-Goldstone Higgs
 - arxiv/hep-ph/0703164
 - Giudice, Grojean, Pomaral, Rattazzi
 - Fares better on EWP test
- Detectable through deviations in BRs (new interaction)
 - LHC sensitivity ~0.2
 - ILC sensitivity $\sim0.01 \Rightarrow 30$ TeV
Higgs Spin Parity and Charge Conjugation (JPC)

H → γγ or γγ → H
rules out J=1 and indicates C=+1

Production angle (θ) and Z decay angle in Higgs-strahlung reveals J^P (e^+ e^- → Z H → ffH)

LC Physics Resource Book,
Fig 3.23(a)

TESLA TDR, Fig 2.2.8
The Higgs Self Coupling is given by:

$$\Phi(H) = \lambda v^2 H^2 + \lambda v H^3 + \frac{1}{4}\lambda H^4$$

In the Standard Model (SM), $$g_{HHH} = 6\lambda v$$, fixed by $$M_H$$.

The Higgs strahlung process in the SM is shown with a graph, and the result is:

$$\Delta \lambda / \lambda \sim 20\%$$

for 1 ab$$^{-1}$$.
New Physics other than the Higgs

- Motivated by “Hierarchy Problem”
 - Gigantic Mismatched between Electroweak Scale (100 GeV) and the Planck Scale of gravity (10^{19} GeV)
 - Expect More New Physics

- Supersymmetry?
 - new space-time symmetry with new particles

- New Strong Interactions?

- Hidden Dimensions?
Supersymmetry

- Super-partners -> cancellation of divergences
 - Solves “hierarchy problem”
- Dark matter candidate
 - and inspired by string theory
- Many new particles
 - Mass spectrum is model dependent
 - ILC could detail properties

Squarks are well measured at LHC

Light Sleptons & Neutralinos pinned down w/ LC precision
Mass measurements

- \(\Delta m \sim 100 \text{ MeV} \)

Heavy sneutrinos

- \(e^+e^- \rightarrow \tilde{\mu}_R \tilde{\mu}_L \rightarrow \mu^+ \chi_1^0 \mu^+ \chi_1^- \)

- \(\Delta m \sim 50 \text{ MeV} \)

\(m(\text{snu}) \sim 2000 \pm 100 \text{ GeV} \)
Supersymmetry (CMSSM)

CMSSM/
EWPO + FPO + dark matter abundance

(arXiv:0707.3447,
O. Buchmueller, R. Cavanaugh, A. De Roeck,
S. Heinemeyer, G. Isidor, P. Paradisi, F.J. Ronga,
A.M. Weber, and G. Weiglein)

Figure 2. Mass spectrum of super-symmetric particles at the globally preferred \(\chi^2 \) minimum. Particles with mass difference smaller than 5 GeV/\(c^2 \) have been grouped together.
Understanding Dark Matter

Identification of dark matter
SUSY mass and coupling measurements

![Graph showing dark matter mass from supersymmetry measurements](image)
Complementarity with LHC

Z’ discovered at LHC

- $m_{Z'} = 2$ TeV, $E_{cm} = 500$ GeV, $L = 1$ ab$^{-1}$
- With and w/o beam polarization

Couplings determined at ILC

- $m_{Z'} = 1, 2, 3$ TeV, $E_{cm} = 500$ GeV, $L = 1$ ab$^{-1}$
- S. Godfrey, P. Kalyniak, A. Tomkins

Jim Brau
Exploring the Energy Frontier
APS, Denver, May 3, 2009
Ultimate Unification

- Do Gaugino masses unify?
 - Working together, the ILC and LHC will test this
 - LHC → gluino
 - ILC → wino, zino, photino

- Do quark and lepton couplings unify, as well?
Extra Dimensions

- Extra Dimensions
 - string theory inspired
 - solves hierarchy problem
 - if extra dimensions are large
 - observable at ILC

Graviton emission

G. Wilson

Graviton emission

G. Wilson
The International Linear Collider

- **500 GeV E_{cm}**
 - Two 11 km SuperRF linacs at 31.5 MV/m
 - Centralized injector (polarized electrons)
 - Circular damping rings
 - Undulator based positron source (polarized)
 - Single IR for two detectors (push-pull) w/ 14 mr crossing angle
 - Dual tunnel

- **Upgradable to 1 TeV**

- **Options**
 - Hi luminosity at M_τ / W pair threshold
 - $\gamma\gamma$, $e\gamma$, e^-e^-
2004 Technology Decision allowed concentration of effort on major issues & realistic design

- CesrTA (electron cloud)

- ATF-2 (final focus)
 Demonstrate Fast Kicker perf. and Final Focus Design
 2010
 - Demonstrate ~ 50 nm beam
 2012
 - Stabilize final focus

- SCRF cryomodule gradient
 31.5 MV/m av. req.
 29 in DESY test stand
 27 in DESY FLASH

- Power Distribution
 RF Cluster Concept

- Cost Reduction Studies - rebaseline in 2010
Political Winds Create Unsteady Journey

- 2004 - Technology Choice
- 2006 - EPP2010
- 2007 - Reaction to RDR Cost
 - Omnibus December
- 2008 - New P5: modest support
 - US ILC funding restored
 - Japanese INTEREST
- 2009 - New Presidential Science R&D Emphasis
High Level Interest in Japan

February 26 Symposium in Tokyo
Departing from Japan to Universe – Toward the realization of International Linear Collider
ILC Detector Performance Requirements

<table>
<thead>
<tr>
<th>Physics Process</th>
<th>Measured Quantity</th>
<th>Critical System</th>
<th>Critical Detector Characteristic</th>
<th>Required Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow b\bar{b}, c\bar{c}, gg$</td>
<td>Higgs branching fractions b quark charge asymmetry</td>
<td>Vertex Detector</td>
<td>Impact parameter \Rightarrow Flavor tag</td>
<td>$\delta_b \sim 5\mu m \oplus 10\mu m/(p \sin^{3/2} \theta)$</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^-X$</td>
<td>Higgs Recoil Mass Lumin Weighted E_{cm} BR ($H \rightarrow \mu\mu$)</td>
<td>Tracker</td>
<td>Charge particle momentum resolution, $\phi(p_t)/p_t^2$ \Rightarrow Recoil mass</td>
<td>$\sigma(p_t)/p_t^2 \sim few \times 10^{-5}$GeV</td>
</tr>
<tr>
<td>$ZH \rightarrow q\bar{q}b\bar{b}$</td>
<td>Triple Higgs Coupling Higgs Mass BR ($H \rightarrow WW^*$) $\sigma(e^+e^- \rightarrow \nu\bar{\nu} W^+W^-)$</td>
<td>Tracker & Calorimeter</td>
<td>Jet Energy Resolution, σ_E/E \Rightarrow Di-jet Mass Res.</td>
<td>$\sim 3%$ for $E_{jet} > 100$ GeV $30% / \sqrt{E_{jet}}$ for $E_{jet} < 100$ GeV</td>
</tr>
<tr>
<td>SUSY, eg. $\tilde{\mu}$ decay</td>
<td>$\tilde{\mu}$ mass</td>
<td>Tracker, Calorimeter</td>
<td>Momentum resolution, Hermiticity \Rightarrow Event Reconstruction</td>
<td>Maximal solid angle coverage</td>
</tr>
</tbody>
</table>

Excellent performance needed to fulfill physics potential
The Concepts

ILD

SiD

ILD

4th

Jim Brau
Exploring the Energy Frontier
APS, Denver, May 3, 2009
Detector R&D Challenges

- **Vertex Sensors**
 - Fast, 20 µm pixels,
 - thin: 0.1% X_0/layer

- **Calorimetry**
 - Finely segmented EM
 - Si-W

- **Tracking**
 - Measure Higgs recoil
 - Resolution $\sim 1/6 \times$ LEP
 - Silicon or TPC

- **Jet energy measurements**
 - Separate W & Z
 - Particle Flow Analysis
 - Dual-readout

Important - broader, generic impact
Options Roadmap for Lepton Colliders

• LHC will help guide energy choice.
 • If a low mass higgs or low mass new states, ILC is well motivated.
 • It’s the only feasible early option.

• There are multiple technologies.
 • ILC is most advanced, but not adequate for high energies >1 TeV.

• Several other technologies are aimed at Multi-Tev regime, but need to mature technology
 • Two-beam acceleration (CLIC)
 • Plasma Wake Field Acceleration (PWFA)
 • Laser Acceleration
 • Muon Collider
Conclusion

- Terascale Physics Frontier will open soon at the LHC
- Precision measurements required to understand LHC discoveries
- ILC will be ready when LHC discoveries justify the next step