The LHC and the Higgs Boson: A Crash Course in Collider Physics

Elizabeth Brost, UO
February 26 ${ }^{\text {th }}, 2015$

Elizabeth Brost, UO
February 26th, 2015

A few questions for you

Outline

- The Big Bang
- Brief Introduction to Particle Physics
- Discovering the Higgs Boson
- The Large Hadron Collider
- The ATLAS Detector

Matter

All atomic matter is made of three particles: the electron, the proton, and the neutron

The Standard Model

What's missing from the Standard Model?

- The Standard Model is wildly successful
- But why are the masses of the fundamental particles so different?

A New Particle is discovered!

The HIGGS BOSON is the particle of the Higgs mechanism, believed by physicists to reveal how all matter in the universe gets its mass
On July 4 , 2012, the On July 4,2012 ,
CMS and Atlas collaborations at CERN announced a 5 -sigma level of certainty that the Higgs boson had
been deter been detected with a mass of around
125 GeV . ${ }_{125} \mathrm{GeV}$
$\$ 10.49$ nussmpme
-ヤセ0 Wool felt, fleece with gravel fill heavy for maximum mass.

By the end of the lecture, you will understand where this plot comes from
\longleftarrow

The Standard Model (now)

- The Higgs field fills the universe and gives mass to the fundamental particles
- The rest of this talk will discuss how we found the Higgs boson

Searching for the Higgs Boson

How do we look for the Higgs?

Step one: accelerate protons

Insert Protons

All the protons that we will ever need at the LHC are contained in this bottle of hydrogen

p (proton) $>$ ion $>$ neutrons $>\overline{\mathrm{p}}$ (antiproton) $>$ electron $\rightarrow+$ proton/antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron
AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy lon Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Accelerate Protons

- Large Hadron Collider
(4 TeV per beam)
- Super Proton Synchrotron (450 GeV)
- Proton Synchrotron (25 GeV)
- Proton Synchrotron Booster (1.4 GeV)

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

- Lel Low Energy lon Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Accelerator Movie

How do we look for the Higgs?

Step two: collide protons

The Large Hadron Collider

- ~27 km + 4 experiments
- Collision energy: 8 TeV (upgrade to 14 TeV later this year) $\rightarrow \mathrm{T}_{\text {universe }}$ at $\mathrm{t}=10^{-10} \mathrm{~s}$

How do we look for the Higgs?

Step three: Higgs boson is produced

Collisions @ the LHC

- MOST collisions are boring
- We are looking for rare processes
- How rare?
- 300,000 Higgs events in 2012
- But!

2,000,000,000,000,000 total events in 2012

How do we look for the Higgs?

How do we look for the Higgs?

There are other decay channels, but we will focus on this one $(\mathrm{H} \rightarrow 4 \ell)$

How do we observe the leptons

- Use detectors to record the decay products from the process we're looking for ($\mathrm{H} \rightarrow$ ZZ* $\rightarrow 4 \ell$)
- Detectors ~ huge 3D digital cameras
\rightarrow picture = "event"
http://www.particlezoo.net/
Elizabeth Brost, UO

The ATLAS Detector

Particle Identification

Event Display (4 muons)

Run Number: 190300
Event Number: 60554334 Date: 2011-10-04, 05:25:26 CET

EtCut>0.3 GeV
PtCut $>\mathbf{3 . 0} \mathbf{~ G e V}$
Vertex Cuts:
Z direction $<\mathbf{1 c m}$
Rphi $<\mathbf{1 c m}$
Muon: blue

Elizabeth Brost, UO

$H \rightarrow 4 \ell$ event movie

Practice Identifying Higgs Events

- Remember: we're looking for four leptons
- Two electrons and two muons
- Four electrons
- Four muons
- You will be timed!

https://cds.cern.ch/record/1459502

https://cds.cern.ch/record/1631395

https://cds.cern.ch/record/1459493

QATLAS EXPERIMENT

Run Number 158466, Event Number 4174272 Date: 2010-07-02 17:49:13 CEST

Run: 191923
Event: 44897839
2611-10-30 15:14:12 CEST

People are not good at this.

 (so we don't identify collision signatures by hand.)

The ATLAS Trigger System

- Use event topology to save "interesting" events
- Reduce from interaction rate (a billion / second) to the number of events we are able to save (a few hundred / second)

"Big Data" - an aside

LHC's annual data output (15,360 terabytes)

Google's search index

Videos

 uploaded to YouTube each year

Business emails sent each year

Library of
Congress' digital collection

Content uploaded to Facebook each year

Now, back to the search.

Now, back to the search.

Protons: collided

Now, back to the search.

Protons: collided

Higgs boson: produced

Now, back to the search.

Protons: collided

Higgs boson: produced

4-lepton events: collected by ATLAS

Signal and Background: An Analogy

- Metal detector
- Search criteria:
metal things
- Signal = pirate treasure
- Removes background like seashells ("reducible" background)
- Results: some treasure, some rusty metal
- Rusty metal = "irreducible" background

Everything on the beach

Signal and Background (Higgs)

- Search criteria = 4 leptons
- Signal $=\mathrm{H} \rightarrow$ ZZ* $^{*} \rightarrow 4 \ell$
- "reducible" background: 3-lepton events, etc.
- Results: 4-lepton events, some from Higgs decay
- "irreducible" background: $\mathrm{pp} \rightarrow \mathrm{ZZ} \rightarrow 4 \ell$

All events

Now: plot the invariant mass of

4-lepton events

ATLAS Collaboration, Phys. Rev. D 90, 052004 (2014)

Calculate Invariant Mass

Calculate Invariant Mass

Calculate Invariant Mass

https://cds.cern.ch/record/1459495

Calculate Invariant Mass

https://cds.cern.ch/record/1459495

Calculate Invariant Mass

9ATAS LEXPERIMENT
 Event: $\begin{aligned} & 82614360 \\ & \text { Date: } 2012-05-18\end{aligned}$ Time: 20:28:11 CEST

https://cds.cern.ch/record/1459495

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now, we can plot the measured 4ℓ invariant mass:

Now the question is: How many of these are Higgs events, and how many are "background"?

Simulated Background Events

山

Watch the ATLAS collaboration collect and analyze data

Final Result:

Higgs mass $\mathbf{= 1 2 4 . 5} \mathbf{~ G e V}$

The Future

- LHC turns back on this spring, at a higher energy (14 TeV)
- What will we discover next?
- Supersymmetry? Something else?

Any Questions?

Backup Slides

How to measure the Higgs mass

Since the leptons have very high energy compared to their mass, all you need to calculate the Z boson mass is their energy, the angle between them, and the speed of light: $M_{z}=\sqrt{ } 2 \mathrm{E}_{11} \mathrm{E}_{12}(1-\cos \theta) / \mathrm{c}^{2}$

and $M_{H}=\sqrt{ } m_{z 1}{ }^{2} \mathrm{c}^{4}+\mathrm{m}_{\mathrm{z} 2}{ }^{2} \mathrm{c}^{4}+2 \mathrm{E}_{\mathrm{Z} 1} \mathrm{E}_{\mathrm{Z} 2}\left(1-\mathrm{v}_{\mathrm{Z} 1} \mathrm{v}_{\mathrm{Z2}} / \mathrm{c}^{2}\right) \cos \theta / \mathrm{c}^{2}$

Results

Current Higgs mass measurements from ATLAS and CMS (in 4ℓ and $\gamma\rangle$ channels)

