THE STANDARD MODEL IN 2001
Jonathan L. Rosner

1. Introduction 1
1.1 Quarks and leptons 2
1.2 Color and quantum chromodynamics 3
1.3 Electroweak unification 5
1.4 Higgs boson 7
2 Gauge theories 7
2.1 Abelian gauge theories 7
2.2 Non-Abelian gauge theories 9

INTRODUCTION TO ELECTROWEAK SYMMETRY BREAKING
S. Dawson

1 Introduction 1
2 The Higgs Mechanism 2
2.1 Abelian Higgs Model 2
2.2 Weinberg-Salam Model 6
3 Indirect Limits on the Higgs Boson Mass 11
3.1 Triviality 12
3.2 Vacuum Stability 14
3.3 Bounds from Electroweak Radiative Corrections 15
4 Higgs Branching Ratios 18
4.1 Decays to Fermion Pairs 18
4.2 Decays to Gauge Boson Pairs 19
5 Higgs Production at LEP and LEP2 24
6 Higgs Production in Hadronic Collisions 28
6.1 Gluon Fusion 28
6.2 QCD Corrections to gg → h 29
6.3 Finding the Higgs Boson at the LHC 32
6.4 Associated Higgs Boson Production 34
7 Higgs Boson Production from Vector Bosons 38
7.1 The Effective W Approximation 39
7.2 Searching for a Heavy Higgs Boson at the LHC 40
8 Higgs Production at a High Energy e+e− Collider 41
8.1 e+e− → llh 41
8.2 e+e− → tth 42
9 Strongly Interacting Higgs Bosons 46
9.1 Unitarity 49
9.2 Mh → ∞, The Non-Linear Theory 51
9.3 Coefficients of New Interactions in a Strongly Interacting Symmetry Breaking Sector 58
10 Problems with the Higgs Mechanism 59
10.1 Quadratic Divergences 60
11 Higgs Bosons in Supersymmetric Models 65
12 Conclusions 78
Beyond the Standard Model

M. Peskin

1. Introduction
2. Three Basic Questions
2.1 Why not just the Standard Model?
2.2 Three models of electroweak symmetry breaking
2.3 Questions for orientation
 - What is the mechanism of electroweak symmetry breaking?
 - What is the spectrum of elementary particles at the 1 TeV energy scale?
 - Is the mass of the top quark generated by weak couplings or by new strong interactions?
2.4 General features of electroweak symmetry breaking
2.5 The evolution of couplings
2.6 The special role of the top quark
2.7 Recapitulation
3. Supersymmetry: Formalism
3.1 A little about fermions
3.2 Supersymmetry transformations
3.3 Supersymmetric Lagrangians
3.4 Coupling constant unification
3.5 The rest of the supersymmetric Standard Model
3.6 How to describe supersymmetry breaking
3.7 Electroweak symmetry breaking from supersymmetry
4. Supersymmetry: Experiments
4.1 More about soft supersymmetry breaking
4.2 The spectrum of superparticles—concepts
4.3 The spectrum of superparticles—diagnostics
4.4 The superpartners of W and Higgs
4.5 Decay schemes of superpartners
4.6 The mass scale of supersymmetry
4.7 Superspectroscopy at e^+e^- colliders
4.8 Superspectroscopy at hadron colliders
4.9 Recapitulation
5. Technicolor
5.1 The structure of technicolor models
5.2 Experimental constraints on Technicolor
5.3 Direct probes of new strong interactions
5.4 New strong interactions in WW scattering
5.5 New strong interactions in W pair-production
5.6 Overview of WW scattering experiments
5.7 Observable effects of extended Technicolor
5.8 Recapitulation
6. Conclusions