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Detectors 
•  Interaction of Charged Particles and Radiation with Matter 

–  Ionization loss of charged particles 
–  Coulomb scattering 
–  Radiation loss by electrons 
–  Absorption of  γ -rays in Matter 

•  Detectors of Single Charged Particles 
–  Pictorial Detectors: Cloud Chambers, Emulsions, Streamer Chambers, 

Spark Chambers, Bubble chambers 
–  Proportional counters, Drift chambers, Scintillation counters, Cerenkov 

counters, Solid-state counters,  
•  Shower Detectors and Calorimeters 

–  Electromagnetic-shower detectors 
–  Hadron-shower detectors 

•  References:  Donald H. Perkins, Introduction to High Energy Physics, Fourth Edition 
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Spatial and Temporal Resolutions 
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Pictorial Detectors 
•  Cloud chamber 

–  condensation on track 
•  Emulsions 

–  enhanced silver content, reveals (after development) 
particle tracks with extreme precision 

•  Streamer chambers 
–  ionization of gas generates light through recombination 

which is photographed 
•  Spark chambers 

–  breakdown through electrodes 
•  Bubble chambers 

–  liquid is expanded to superheated condition 
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Bubble Chamber 
•  Invented in early 1950’s by 

Glaser. 
•  Dominant detector for 

decades. 
•  Liquid at high pressure (5-20 

atm.) is heated to just below 
boiling point.  

•  Sudden reduction of pressure 
puts liquid into superheated 
state and boiling begins along 
path of charged particle. 

•  Bubbles grow for a period of 
time (ms typically). 

•  Photograph and recompress. 
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Bubble Chamber 
•  Several cameras provide stereo image 

–  very detailed measurements following 
reconstruction 

•  Disadvantages 
–  low repetition rate (1-20 Hz) 
–  analysis of film complicated 
–  very low duty cycle (~ 10-2) 
–  not matched to colliding beam 

geometry 
Particles 
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Bubble Chamber 
•  Liquids used 

–  hydrogen  -  most elementary target material (proton) 
–  deuterium - most elementary form of neutron targets 
–  heavy liquids  - short radiation length, or higher interaction rate 

Gert G. Harigel, 
CERN 
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SLAC 1-meter 
Bubble Chamber 



Physics 610, detectors 9 

Bubble Chamber 
•  BEBC at CERN, 3.7 m diameter, 

–  with EMI (MWPCs) 
–  B = 2-3.5 Tesla 
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Bubble Chamber 
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Hybrid Bubble Chamber 
•  Combine bubble chamber with a downstream system 
•  Example was the Fermilab 30-inch hybrid bubble chamber 

system 
•  Upstream measurements to tag beam particle 
•  Downstream measurement needed to achieve 

 good momentum resolution on high energy 
 tracks (beam momentum ~ 150 GeV/c) 
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Triggered Bubble Chamber 
•  Use downstream system to trigger bubble chamber flash 
•  Only take picture when event, or selected event, occurs in BC 
•  Example was the SLAC Hybrid Facility (1 meter BC) 

•   π+p -> K+X 
•  Flash in 2.5 msec 
•  40% of photos had event 
•  ~15/1 reduction in photos 
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Triggered Bubble Chamber 
•  Event detected at SLAC 

 1 meter bubble chamber. 

•  Careful analysis shows 
 this event is 
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High Resolution Bubble Chamber 
•  Special optics were developed to improve resolution 

–  Run bubble chamber “hot” (29K) to slow bubble growth and 
increase bubble density 

–  Achieved bubble size of <50 µm  
 (compared to standard ~300 µm) 

–  Example, charm lifetime  
 measurements in  
 SLAC Hybrid Facility 

                          Decay lengths of 
                            0.86 mm and 1.8 mm 
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Holographic Bubble Chamber 
•  In a conventional optics system the depth of field is coupled 

with the resolution: 
–  DOF ~ λ / D2 

–  Resolution ~ λ / D 

•  Therefore, high resolution implies limited depth of field, 
reducing useful volume of bubble chamber 

•  A holographic system uncouples DOF and resolution 
–  DOF ~ laser coherence length 
–  Resolution ~ λ / D where D is the size of the recording medium 

•  Applied in two experiments at Fermilab in search of tau 
neutrino interactions in 1980s 
–  Sensitive to large volumes – critical for neutrino experiments 
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Spatial and Temporal Resolutions 
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Electronic Detectors 
•  Scintillators 
•  Proportional counters 
•  Multi-wire proportional counters 
•  Wire drift chambers 
•  Time projection chamber 
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Scintillators 
•  Certain materials scintillate when excited by 

ionizing particles 
•  Rutherford had his grad students counting the 

scintillations from zinc-sulfide 
•  Plastic or polystyrene are in common use today, 

but other material scintillate as well 
•  Organic 

–  crystalline 
–  liquid  
–  plastic 

•  Inorganic 
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Scintillator Mechanism 
•  Scintillation:  

–  Molecules are excited by a passing charged particle.  
–  Certain molecules will release a small fraction (~3%) of this 

energy as optical photons, in a process known as scintillation.  
–  Scintillation is particularly important in organic substances 

which contain aromatic rings, such as polystyrene, 
polyvinyltoluene, and napthalene.  

–  Liquids which scintillate include toluene and xylene. 

PDG 
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Scintillator Mechanism 
•  Fluors  

 (a) increase 
wavelength,  
 (b) extend range 
of photons, and  
 (c) speed up decay 
time 

PDG 
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Fluorescence 
•  Fluorescence:  

–  In fluorescence, the initial excitation takes place via the 
absorption of a photon, and de-excitation by emission of a 
longer wavelength photon.  

–  Fluors are used as “waveshifters" to shift scintillation light to a 
more convenient wavelength.  

–  Occurring in complex molecules, the absorption and emission are 
spread out over a wide band of photon energies, and have some 
overlap, that is, there is some fraction of the emitted light 
which can be re-absorbed.  

–  This “self-absorption" is undesirable for detector applications 
because it causes a shortened attenuation length.  

PDG 
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Scintillators 
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Organic Scintillators 
•  Most applications in HEP are plastic or liquid 
•  wide range of applications, extremely versatile 
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Plastic Scintillators 
•  Plastic scintillators are reliable, robust, and convenient, but 

there are issues that must be dealt with 
–  aging and handling 

•  exposure can reduce light yield, and surface crazing destroys light 
transmission 

–  attenuation length 
•  care must be taken to ensure good transmission 

–  afterglow 
•  long-lived luminescence 

–  atmospheric quenching 
•  decrease light yield 

–  magnetic field 
•  small effects on light yield 

–  radiation damage 
•  reduced light yield, and attenuation length 
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Non-linear Response 
•  Plastic scintillators do not respond linearly to the ionization 

density.  
–  Very dense ionization columns emit less light than expected on 

the basis of dE/dx for minimum ionizing particles.  
–  A widely used semi-empirical model by Birks' posits that 

recombination and quenching effects between the excited 
molecules reduce the light yield.  

–  These effects are more pronounced the greater the density of 
the excited molecules.  

–  Birks‘ formula is 

–  where L is the luminescence, L0 is the luminescence at low 
specic ionization density, and kB is Birks' constant, which must 
be determined for each scintillator by measurement. 

PDG 
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Inorganic Scintillators 
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Photomultiplier Tubes 
•  Light from scintillator is usually 

recorded by photomultiplier 
tubes 

•  photcathode coated by alkali 
metals 

•  amplification through dynode 
chain 
–  108 for 14 dynodes 

•  transit time    ~ 50 nsec 
•  jitter     ~ nsec 
•  quantum efficiency   ~25% 
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Typical Phototube - 931A 
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Super K Phototubes 
•  Super Kamiokande  

–  11,146 tubes (20-inch diameter) 
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Photodiodes 
•  Higher quantum efficiency 
•  Lower power consumption 
•  More compact 
•  Improved ruggedness 
•  Immune to magnetic fields 
•  Good time response 
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Light Path in Scintillator 
•  Light may be extracted from scintillator to phototube by 

internal reflection (multiple reflection down light guide) 
•  Alternative approach - wavelength shifter bars along edge of 

scintillator 
–  blue light from scintillator re-emitted as green 
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Proportional Counter 
•  Developed over a century ago 
•  Gas-filled cylindrical tube of radius r2 at negative potential, 

with central anode wire of radius r1 at positive potential 
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Proportional Counter 
•  For potential difference V0, the electric field is 

•  Liberated electrons drift toward anode, gaining energy. 
•  An avalanche is initiated if energy gain exceeds ionization 

energy 
•  Gas amplification of ~105 is typical, but independent of the 

number of primary ions      “proportional counter” 
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Multiwire Proportional Counter (MWPC) 
•  Around 1968, Charpak developed the MWPC 
•  Many parallel anode wires in a plane between two cathode 

planes 
•  Each wire is an independent detector 
•  Typical: 20 µm diameter wires, 5/cm, 12mm between 

cathodes, 5kV, argon-isobutane gas 
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Multiwire Proportional Counter (MWPC) 
•  Electric Field Lines 
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Multiwire Proportional Counter (MWPC) 
•  Fast rise time (0.1 nsec) arising from first arriving electrons 
•  Positive ions are slower, resulting in pulses of ~30 nsec 

duration 
•  Spatial resolution ~ 0.7 mm from anode pulses 
•  Cathode strips can be used to measure spatial coordinate of 

the avalanche (with about 0.05 mm precision) 
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Wire Drift Chambers 
•  MWPCs require large number of wires and are limited to 

resolutions of about 1 mm and time resolutions of about 30 ns 
•  By drifting the charge, the number of wires can be 

significantly reduced, and the resolutions improved. 
•  Drift in field of ~ 1 kV/cm over 10 cm, amplify at anode 

–  arrival time give measure of position 
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Wire Drift Chambers 
•  SLD Drift Chamber 
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Wire Drift Chambers 
•  SLD Drift Chamber 

~100 µm resolution 
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Wire Drift Chambers 
•  SLD Drift Chamber 
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Time Projection Chamber 
•  Uniform electric field 

drifts ionization electrons 
to a 2D array of detectors 
at the end. 
–  drift along the 

magnetic field direction 
to eliminate   v x B 
force 

ALEPH TPC 
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Cerenkov Counters 
•  Threshold detectors 
•  Differential detectors 
•  Ring Imaging detectors 
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Cerenkov Counters 
•  Part of the light emitted as a particle passes 

through a dielectric medium at a velocity 
exceeding the speed of light in the medium 
appears as a coherent wavefront 
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Cerenkov Counters 
•  Cerenkov radiation 

•  blue light predominates 
–  well known blue glow from 

reactor 
•  Total rate of energy loss: 

–  a small fraction of the energy 
loss 
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Cerenkov Counters 
•  The angle of emission of radiation is a measure of 

the velocity of the particle 
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Threshold Cerenkov Counters 
•  If two particles of different mass carry the same 

momentum, the lighter particle may emit Cerenkov radiation, 
while the heavier does not  

• For example, in helium at 
NTP, the threshold for 
radiation is  γ = 123 

•  A 100 GeV/c pion has a γ ≈ 
700, above the threshold 
while a 100 GeV/c proton has 
a γ ≈ 106, below threshold 
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Differential Cerenkov Counters 
•  Since the angle of emission of radiation is a measure of the 

velocity of the particle, by measuring the angle, one can 
determine velocity 
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Ring Imaging Cerenkov Counters 
•  eg. SLD and DELPHI 

 
light at angle θc is focussed 
by mirror of radius R 
on ring CD 
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Ring Imaging Cerenkov Counters 

                Muon in liquid (C6F14)                  Muon in gas (87% C5F12 13% N2) 
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Ring Imaging Cerenkov Counters 
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Solid State Detectors 
•  Silicon detectors in nuclear physics 
•  Microstrip detectors 
•  Hybrid pixels detectors 
•  Silicon drift detectors 
•  CCDs 
•  CMOS detectors 
•  Diamond detectors 
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Silicon Detectors 
•  Silicon detectors have several advantages over gas detectors 

–  one major advantage is the small energy required to produce pair 
•  3.6 eV / electon-hole pair 
•  1.1 eV band-gap 

–  excellent response time 
•  few nanoseconds 

–  many years of use in nuclear physics  

•  position localization accuracy of 5 µm  in one coordinate 
•  two-track separation down to 10 µm 
•  geometrical accuracy in the region of 1 µm 
•  bias voltages less than 100 V for microstrip detectors 
•  time response less than 5 ns 
•  relatively simple installation. 
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Silicon Detectors 
•  Theory of silicon junction 

–  depleted region is the region where the free carriers have been 
removed 

–  electron-hole pairs created in the depletion region will be swept 
out by the bias voltage 

Reverse 
Bias 

CONDUCTION 
BAND 

VALENCE 
BAND 
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Silicon Detectors 
•  Theory of silicon junction 

–  The thickness of the depletion depth is 
d =0.5  µm   √ ρ(Ωcm)  V(volts) 

–  Therefore, for large depletion depth with moderate voltage, need 
high resistivity, ~ 2-5 k Ωcm 

d =0.5  µm   √ ρ(Ωcm)  V(volts) 
d =0.5  µm   √ 4 x 103  100 

d ≈ 300  µm  
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Silicon Detectors 

•  Blankenship Nomogram 
–  IEEE Trans NS7, 190 (1960) 
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Silicon Microstrip Detectors 
•  1980 - Kemmer introduced planar technology 
•  Outstanding performance has since been achieved with 

microstrip detectors 
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Silicon Microstrip Detectors 
•  Star ladder construction 
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Hybrid Pixel Detectors 
•  Pixel detectors are 2D detectors 

•  Great reduction in ambiguities 
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Hybrid Pixel Detectors 
•  Hybrid pixel detectors have been developed for LHC 

–  rad hard 
–  fast 
–  high background rate near IP rules out microstrips 

Disadvantages 
• large power consumption 
• large pixel sizes 
• thick devices (multiple scatt) 
           (compared to CCDs) 


