Physics 610 Problem Set 3

Due: Wednesday, June 11, 2014, 2 pm

1. The power radiated by a gravitational radiation source with time dependent moment of inertia I and angular frequency ω is

$$
P_{\text {grav }}=\frac{32 G I^{2} \omega^{6}}{5 c^{5}}
$$

For a binary system of equal masses M with an orbital radius of r, orbiting in the x - y plane, the momenta of inertia, $I_{i i}$, are

$$
\begin{aligned}
& I_{x x}=2 M r^{2} \cos ^{2}(\omega t)=M r^{2} \cos (2 \omega t) \\
& I_{y y}=2 M r^{2} \sin ^{2}(\omega t)=M r^{2} \sin (2 \omega t)
\end{aligned}
$$

The power radiated is therefore

$$
P_{\text {grav }}=\frac{32 G\left(M r^{2}\right)^{2} \omega^{6}}{5 c^{5}}=\frac{32 G M^{2} r^{4} \omega^{6}}{5 c^{5}}
$$

Calculate the power radiated by the Moon in the Earth's orbit due to gravitational radiation. (the Earth's mass $=6 \times 10^{24} \mathrm{~kg}$, the Moon's mass $=7.4 \times 10^{22} \mathrm{~kg}$, the mean Earth-Moon distance $=3.8 \times 10^{5} \mathrm{~km}$, orbital period of the Moon $=27.3$ days).
2. The binary pulsar PSR $1913+16$, discovered by Hulse and Taylor in 1975, is the most convincing evidence for the existence of gravitational radiation. This system of two neutron stars, one of which is a pulsar with period 0.059 s . has an orbital period of 7.8 hours. The observed fractional rate of decrease in the period (τ) of the binary system is found to be:

$$
\frac{d \tau}{d t}=-(2.409 \pm 0.005) \times 10^{-12}
$$

Use the formulae of gravitational radiation to check this result, assuming a circular orbit and equal masses for the members of the binary star system.
3. (a.) Show equation for the Ricci tensor, $R_{\mu \nu}$, in terms of the perturbations, $h_{\mu \nu}$, results from the Einstein field equations for that vacuum $\left(T_{\mu \nu}=0\right)$

$$
2 R_{\mu \nu}=\partial_{\rho} \partial_{\mu} h_{\nu}^{\mu}+\partial_{\nu} \partial_{\mu} h_{\rho}^{\mu}-\square h_{\nu \rho}-\partial_{\rho} \partial_{\nu} h_{\mu}^{\mu}
$$

(b.) Show that in the case of traceless $\left(h_{\mu}^{\mu}=0\right)$ and transverse $\left(\partial_{\mu} h^{\mu \nu}=\partial_{\mu} h^{\nu \mu}=0\right)$ perturbations $h^{\mu \nu}$, this reduces to the simple wave-equation

$$
\square h^{\mu \nu}=0 .
$$

4. Suppose that you have at your disposal a device for measuring lengths with the same accuracy as LIGO. How far away would an object have to be to produce an uncertainty of 1 mm in the distance determination?
