Lepton and Quark Scattering

- $e^+ e^- \rightarrow \mu^+ \mu^-$
- $e^+ e^-$ annihilation to hadrons ($e^+ e^- \rightarrow Q\bar{Q}$)
- Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$
- Neutrino-electron scattering, $\nu_e e^- \rightarrow \nu_e e^-$
- Elastic lepton-nucleon scattering
- Deep inelastic scattering and partons
- Deep inelastic scattering and quarks
 - Electron-nucleon scattering
 - Neutrino-nucleon scattering
- Quark distributions within the nucleon
- Sum rules
The “discovery” of quarks

- deep inelastic lepton-nucleon scattering revealed dynamical understanding of quark substructure

- leptoproduction of hadrons could be interpreted as elastic scattering of the lepton by a pointlike constituent of the nucleon, the quark

- theory of scattering of two spin-1/2, pointlike particles required
\(e^+ e^- \rightarrow \mu^+ \mu^- \)

- Dominated by single-photon exchange
- \(M_{if} = \frac{e^2}{q^2} = \frac{4\pi\alpha}{q^2} \)
- \(\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} f(\theta) \)

- What about spins?
 - The conservation of helicity at high energy for the EM interaction means only LR and RL states will interact
\[e^+ e^- \rightarrow \mu^+ \mu^- \]

- Conservation of helicity
 - consider crossed diagrams
 - (recall, helicity is conserved in vector int. at high energy)
$e^+ e^- \rightarrow \mu^+ \mu^-$

- **Amplitude is** $d^J_{mm'}(\theta) = d^{1}_{1,1}(\theta) = (1+\cos \theta)/2$
 - if RL \rightarrow RL
- **Amplitude is** $d^J_{mm'}(\theta) = d^{1}_{1,-1}(\theta) = (1-\cos \theta)/2$
 - if RL \rightarrow LR
- $M^2 \sim [(1+\cos \theta)/2]^2 + [(1-\cos \theta)/2]^2 = (1+\cos^2 \theta)/2$
\[e^+ e^- \rightarrow \mu^+ \mu^- \]

- \[\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (1 + \cos^2 \theta) \]

- \[\sigma(e^+ e^- \rightarrow \mu^+ \mu^-) \]
 \[= \frac{4\pi\alpha^2}{3s} \]
 \[= 87 \text{nb} / s(\text{GeV}^2) \]
 (point cross section)
e^+ e^- → µ^+ µ^-

\[f \sim a_{wk} a_{em} / a_{em}^2 \sim Gs/(4\pi\alpha) \sim 10^{-4}s \text{ (interference)} \]
e^+ e^- annihilation to hadrons
$e^+ e^- \text{ annihilation to hadrons}$

- $R = \sigma (e^+ e^- \rightarrow \text{hadrons}) / \sigma (\text{point})$
e\(^+\) e\(^-\) annihilation to hadrons

- \(R = \sigma (e^+ e^- \rightarrow \text{hadrons}) / \sigma(\text{point}) \)
 - consider \(e^+ e^- \rightarrow \text{hadrons} \) as \(e^+ e^- \rightarrow Q\bar{Q} \), summed over all quarks

- \(R = \sum e_i^2 / e^2 \)
 \[= N_c ((1/3)^2 + (2/3)^2 + (1/3)^2 + (2/3)^2 + (1/3)^2 + \ldots) \]
 \[\text{d \hspace{1cm} u \hspace{1cm} s \hspace{1cm} c \hspace{1cm} b}\]
 \(N_c = 3 \)

- Therefore, \(R \) should increase by a well defined value as each flavor threshold is crossed
$e^+ e^-$ annihilation to hadrons

<table>
<thead>
<tr>
<th>Threshold</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>below c</td>
<td>2</td>
</tr>
<tr>
<td>charm</td>
<td>3 $1/3$</td>
</tr>
<tr>
<td>bottom</td>
<td>3 $2/3$</td>
</tr>
</tbody>
</table>

Threshold R
$e^+ e^- \rightarrow Q \bar{Q}$

If Q is spin 1/2

\[(1 + \cos^2 \theta)\]
e+ e- annihilation to hadrons

- Constancy of R indicates pointlike constituents

- Angular distributions of hadron jets prove spin 1/2 partons

- Values of R consistent with partons of quarks expected charge and color quantum number
Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$

- **Mandelstam variables:**

 $s = - (k_1 + k_2)^2 = - (k_3 + k_4)^2 = -2k_1k_2 = -2k_3k_4$

 $t = q^2 = (k_1 - k_3)^2 = (k_2 - k_4)^2 = -2k_1k_3 = -2k_2k_4$

 $u = (k_2 - k_3)^2 = (k_1 - k_4)^2 = -2k_2k_3 = -2k_1k_4$

 for $m = 0$

 $k = (p_x, p_y, p_z, iE)$
Electron-muon scattering, e⁻ µ⁺ → e⁻ µ⁺

- **Mandelstam variables:**

 \[s = -(k_1 + k_2)^2 = -(k_3 + k_4)^2 = -2k_1k_2 = -2k_3k_4 \]

 suppose \(k_1 = (p, iE) \quad k_2 = (-p, iE) \)

 \[s = -(p-p)^2 - (2iE)^2 = 4E^2 \quad \text{for } m = 0 \]

 \[t = q^2 = (k_1 - k_3)^2 = (k_2 - k_4)^2 = -2k_1k_3 = -2k_2k_4 \]

 suppose \(k_3 = (p \cos \theta, p \sin \theta, 0, iE) \)

 \[t = (p - p \cos \theta)^2 + (-p \sin \theta)^2^+ (E - E)^2 = 2p^2(1-\cos \theta) \]

 \[= 4p^2 \sin^2 \theta/2 \]

 \[u = (k_2 - k_3)^2 = (k_1 - k_4)^2 = -2k_2k_3 = -2k_1k_4 = 4p^2 \cos^2 \theta/2 \]
Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$

- **Annihilation cross-section** ($e^+e^- \rightarrow \mu^+\mu^-$)
 \[
 \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8p^2} \left(\frac{t^2 + u^2}{s^2} \right) = \frac{\alpha^2}{8p^2} \left[\sin^4 \left(\frac{\theta}{2} \right) + \cos^4 \left(\frac{\theta}{2} \right) \right]
 \]
 \[
 = \frac{\alpha^2}{4s} \left[1 + \cos^2 \theta \right]
 \]

- **Now consider the crossed channel**, $e^- \mu^+ \rightarrow e^- \mu^+$

\[
2 \sin^2 \left(\frac{\theta}{2} \right) = 1 - \cos \theta
\]
\[
2 \cos^2 \left(\frac{\theta}{2} \right) = 1 + \cos \theta
\]
\[
s = 4p^2
\]
Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$

crossed channel ($t \leftrightarrow u$)

\[
\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8p^2} \left(\frac{s^2 + u^2}{t^2} \right)
\]

\[
= \frac{\alpha^2}{8p^2 \sin^4(\theta/2)} [1 + \cos^4(\theta/2)]
\]

So far, all of these expressions are for the center-of-momentum system

What about the laboratory frame?
Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$

- Suppose the muon is a target at rest in the laboratory
 (Note: this is not practical since the lifetime of the muon is 2.2 microseconds)
- γ is the boost from cms to lab
- p and θ are the projectile parameters in the cms

- In the lab:

 \[E_\mu = \gamma (p - \beta p \cos \theta) \quad \text{(scattered muon)} \]
 \[= \gamma p (1 - \cos \theta) \]
 \[E_e = \gamma (p + \beta p) = 2\gamma p \quad \text{(incident electron)} \]
 \[\gamma = E_\mu / E_e = (1 - \cos \theta) / 2 \]

 \[\text{so } \cos^2 \theta / 2 = (1 + \cos \theta) / 2 = 1 - \gamma \]
 \[d\Omega = 2\pi d(\cos \theta) = 4\pi \, dy \]
Electron-muon scattering, $e^- \mu^+ \rightarrow e^- \mu^+$

\[
\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8p^2\sin^4(\theta/2)} \left[1 + \cos^4(\theta/2)\right]
\]

\[
\frac{d\sigma}{4\pi dy} = \frac{\alpha^2}{q^4 / 2p^2} \left[1 + (1-y)^2\right]
\]

\[
\frac{d\sigma}{dy} = \frac{2\pi \alpha^2 s}{q^4} \left[1 + (1-y)^2\right]
\]

As $y \to 0$, we recover the Rutherford formula.

\[
d\Omega = 4\pi dy \\
\cos^2 \theta/2 = 1-y \\
q^2 = t = 4p^2\sin^2 \theta/2
\]
Neutrino-electron scattering, $\nu_e e^- \rightarrow \nu_e e^-$

Consider only the charged-current reaction

$$M(\nu_e e^- \rightarrow \nu_e e^-) = \frac{(g/\sqrt{2})^2}{(q^2 + M_w^2)}$$

$$= \frac{g^2}{2M_w^2} \text{ for } q^2 \ll M_w^2$$