Physics 661

Particle Physics Phenomenology

October 2, 2003
Hot Big Bang Model

- Evidence for theory:
 - Present expansion of the Universe
 - Existence of cosmic microwave background radiation
 - Relative abundance of light elements
- Furthermore, oldest objects (globular clusters) no older than \(~15 \times 10^9\) years
Expansion of the Universe

\[H_0 = 65 \pm 5 \text{ km/s/Mpc} \]
\[\equiv h \cdot 100 \text{ km/s/Mpc} \]
(1 pc = 3.26 light-years)
Expansion of the Universe

Use type Ia Supernovae corrected candles to measure the expansion rate. Ground-based work thus far has uncovered a major surprise:
Decelerating universe

Use type Ia supernovae corrected candles to measure the expansion rate. Ground-based work thus far has uncovered a major surprise: Similar results from the High-z Supernova Search Team (e.g., Riess et al AJ116(1998)).
Implications of expansion rate

Contrary to expectation, the expansion of the Universe appears to be increasing with time!

This could be due to a non-zero cosmological constant, a manifestation of non-zero vacuum energy….

… or systematic effects yet to be understood.

This result has raised fundamental questions and begs further investigation.

Physics 661, lecture 2
Cosmic microwave background radiation
Cosmic microwave background radiation

We can quantify these fluctuations ⇒

Physics 661, lecture 2
Recent results add to the growing collection of measurements from the ground, balloons, and space:

Amazing that we can see this – foreground removal!

and http://www.hep.upenn.edu/~max/ and links therein

Physics 661, lecture 2
Cosmic Microwave Background

Entering the era of precision cosmology. Many experiments (e.g., PLANCK, PIQUE, ...) over the next decade will measure the strength of higher acoustic peaks and polarization anisotropy.

Physics 661, lecture 2
Cosmic microwave background radiation

WMAP, 2003

Physics 661, lecture 2
Cosmic Microwave Background

\[\ell (\ell + 1) C_\ell / 2\pi (\mu K^2) \]

Multipole moment \(\ell \)

- Compression
- Rarefaction

Acoustic peaks

Physics 661, lecture 2
CMB appears to be Gaussian. (Komatsu et al.)

- 15% of CMB was re-scattered in a reionized universe.
- The estimated reionization redshift ~20, or 200 million years after the Big-Bang.

Flat LCDM still fits:

6 parameters fit 1348 points

\[
\chi^2 \over \nu = \frac{1431}{1342} = 1.07
\]

- DM density \((2.25 \pm 0.38) \times 10^{-27} \text{Kg/m}^3\)
- Atomic density \((2.7 \pm 0.1) \times 10^{-7} \text{cm}^{-3}\)
- \(\eta = (6.5^{+0.4}_{-0.3}) \times 10^{-10}\)
- Age at decoupling \(372 \pm 14 \text{Kyr}\)
- \(\sigma_8 = 0.9 \pm 0.1\)
- \(z_{\text{reion}} \approx 17\)

Fits not only the CMB but also a host of other cosmological observations.

Physics 661, lecture 2
Fluctuations measured by WMAP are consistent with \(\Omega_\Lambda + \Omega_M = 1.0 \)
We (and all of chemistry) are a small minority in the Universe.
Relative abundances

\[\eta_{10} = \eta \times 10^{10} \]

\[= \frac{n_B}{n_\gamma} \times 10^{10} \]

\[\approx 6.1 \text{ (WMAP)} \]

(baryon to photon ratio)
Baryonic Matter

• Dominated by hydrogen and helium
 - helium abundance (~24%) too large to have been produced in stars

• $\eta_B = n_B / n_\gamma \approx 10^{-9}$
 - reveals early universe matter/antimatter asymmetry

• abundances of light elements consistent with theory
 - constrains number of neutrino species
Constrained number of neutrino species
Antimatter limits

• Data indicates antimatter is rare in the present Universe
• 1998 AMS space shuttle data
Alpha Magnetic Spectrometer

An experiment to search in space for dark matter, missing matter & antimatter on the international space station.

Successful shuttle experiment flight of AMS1 in June 1998. Manifested on shuttle flight to the ISS in 2005.

See http://ams.cern.ch/AMS/ams01_homepage.html

Physics 661, lecture 2
Antimatter

- Antimatter should have been created equally with matter at the beginning.
- It does not exist today, because if it did we would observe powerful bursts.
- It annihilated away early, but only after an asymmetry between matter and antimatter developed:
 \[\eta_B = \frac{n_B}{n_\gamma} \approx 10^{-9} \]
 (how did this come about?)
Dark Matter

Galactic rotation curves reveal dark matter
Dark Matter

From:
http://hepwww.rl.ac.uk/ukdmc/dark_matter/rotation_curves.html
Dark Matter

What is it?

• ordinary matter (some is, not much)
• axions?
• massive neutrinos?
• neutralinos?
• monopoles?
• primordial black holes?
The Crisis in Particle Physics

- Universe is dominated by Dark Energy
- and even Dark Matter dominates baryonic matter
- This is a challenge to the Standard Model of particle physics since nonbaryonic dark matter, massive neutrinos, and dark energy are not part of the Standard Model
What might we achieve in the next 20 years?

- Discover the Higgs
- Discover supersymmetry
- Solve the hierarchy problem
- Directly detect dark matter
- Understand dark-matter dynamics
- Discover axions
- Solve the cosmological constant problem
- Measure the equation of state of the dark energy
- Verify/disprove inflation
- Understand the origin of large-scale structure
- Understand the baryon asymmetry
- Understand neutrino masses and mixings
- Detect gravitational waves
- Understand gamma-ray bursts
- Discover extra spatial dimensions
- Quantize gravity
- Explain ultra-high-energy cosmic rays
- Understand CP violation (and P violation)
- Discover baryon-number violation
- Detect violations of Lorentz invariance, CPT, the Principle of Equivalence, Newton’s law of gravity