Physics 662 Problem Set 3

Due: February 27, 2014, 9:30 am

Work the following problems:

- 1. The neutral kaon decays from the states K_1^0 and K_2^0 with CP eigenvalues +1 and -1 respectively.
 - (a.) If $p\overline{p}$ annihilation at rest takes place from an S-state only, show that $p\overline{p} \to K_1^0 + K_2^0$ occurs but that $p\overline{p} \to 2K_1^0$ and $p\overline{p} \to 2K_2^0$ do not.
 - (b.) Consider the $p\overline{p}$ annihilation at a center-of-mass energy just above the threshold for $K^-\pi^+K^0$ and $K^+\pi^-\overline{K}^0$. This is the CPLEAR experiment at CERN.
 - (i.) Calculate the center-of-mass energy required for this reaction and the minimum beam momentum of the equal momenta colliding proton and antiproton.
 - (ii.) Describe how these reactions can be used to select events which contain purely K^0 's and \overline{K}^0 's from the interaction.
- 2. The unit of radiation dosage is the rad, corresponding to an energy liberation in ionization of 100 erg g⁻¹. The annual permissible body dose for a human is cited as 5 rad. Assuming that 100 times this dose would lead to the extinction of advanced life forms, what limit does this set on the proton lifetime, assuming that in proton decay a substantial fraction of the total energy released is deposited in body tissue?
- 3. Supersymmetric SU(5) grand unification predicts proton decay, in analogy with muon decay, with a lifetime of

$$\tau_P = \frac{AM_X^4}{\alpha_{GUT}^2 M_P^5}$$

where A is a dimensionless quantity of order unity and α_{GUT} is the coupling (analogous with the fine structure constant) at the GUT scale. Estimate the proton lifetime, if $M_X = 3 \times 10^{14}$ GeV, $\alpha_{GUT} = \frac{1}{42}$ and A = 1.

- 4. (a.) It is possible to assign values of B-L, where B is the baryon number and L is the lepton number, to the X and Y bosons of grand unified theories. Consider the following reactions and determine the values of B-L for the X and Y bosons in each case:
 - \bullet $d \to e^+ X$
 - $d \to \overline{\nu}_e Y$
 - $\bullet \ \overline{u} \to uX$
 - $\overline{d} \to uY$
 - $u \to e^+ Y$
 - (b.) What are the charges of X and Y in this model?
- 5. The following diagrams could contribute to the proton decay reaction $p \to \pi^0 + e^+$.

- (a.) Relabel the lines to find two possible mechanisms for the decay $p \to \pi^+ \overline{\nu}_e$.
- (b.) Show that the electric charge and B-L values are conserved at the vertices based on the results from problem 4 above.

- 6. Consider a star moving with velocity v in a circular orbit of radius R about the center of a spiral galaxy.
 - (a.) Calculate the dependence of v on R for the following extreme cases:
 - The total mass of the galaxy, like the luminous mass, is concentrated almost entirely at the centre of the galaxy.
 - The mass of the galaxy is distributed almost entirely in a spherical halo of dark matter, assumed to be of constant density and radius $R_h > R$.
 - (b.) Compare your results with the observation that v is almost independent of R for stars observed in the outer arms of spiral galaxies.
 - (c.) What conclusion might you draw regarding the population of dark matter from this observation?
- 7. Consider a collision between a cosmic ray proton and a photon in the cosmic microwave background whose energy corresponds to the ambient temperature of 2.7 K. Estimate the minimum proton energy required to produce
 - (a.) an e^+e^- pair,
 - (b.) a proton-antiproton pair,
 - (c.) the Δ^+ resonance.