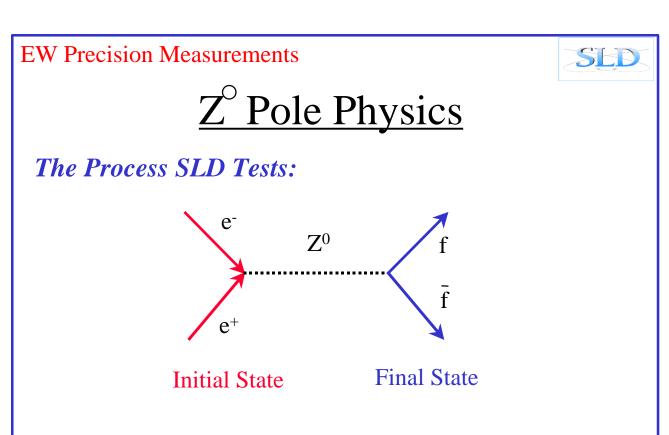


Electroweak Precision Measurements with Leptons

James E. Brau

University of Oregon, Eugene

Representing the SLD Collaboration Stanford Linear Accelerator Center Stanford University


> HEP EPS-99 Tampere, Finland July 15, 1999

<u>Electroweak Precision</u> <u>Measurements with Leptons</u>

<u>OUTLINE</u>

- SLD Left-Right Asymmetry – 1999 update with full data set
- SLD L-R Forward-Backward Asymmetries for e, μ , τ
- τ polarization from LEP
 updated DELPHI measurement
- Consistency of electroweak lepton measurements

For longitudinally polarized electron beams, we have the polarized cross section (at born level):

$$\frac{d\boldsymbol{s}}{d\cos\boldsymbol{q}} \propto (1 - P_e A_e)(1 + \cos^2\boldsymbol{q}) + 2A_f (A_e - P_e)\cos\boldsymbol{q}$$

where; P_e = polarization, $A_{e(f)}$ is initial (final) state coupling asymmetry and \boldsymbol{q} is the polar angle of the final state fermion to the electron beam.

Note: The final state coupling asymmetry is a measure of the amount of parity violation at the $Zf\bar{f}$ vertex

The coupling asymmetry:

$$A_{f} \equiv \frac{2v_{f}a_{f}}{v_{f}^{2} + a_{f}^{2}} \implies \text{for } e^{-} \Longrightarrow A_{e} \equiv \frac{2(1 - 4\sin^{2}\boldsymbol{q}_{w})}{1 + (1 - 4\sin^{2}\boldsymbol{q}_{w})^{2}}$$

$\underline{Z^{\circ}}$ Pole Physics: Asymmetries

Initial State:

• One can define the left-right asymmetry which equals the **initial state** coupling asymmetry A_e ,

$$A_{LR}^{0} \equiv \frac{1}{|P_{e}|} \frac{\boldsymbol{s}(e^{+}e_{L}^{-} \rightarrow Z^{0}) - \boldsymbol{s}(e^{+}e_{R}^{-} \rightarrow Z^{0})}{\boldsymbol{s}(e^{+}e_{L}^{-} \rightarrow Z^{0}) + \boldsymbol{s}(e^{+}e_{R}^{-} \rightarrow Z^{0})} = A_{e}$$
$$\cong \frac{1}{P_{e}} \frac{N_{L} - N_{R}}{N_{L} + N_{R}}$$
Note: This becomes a constraint with small

Note: This becomes a counting experiment with small syst. errors. Also, A_{LR} is very sensitive to the weak mixing angle:

Final State:

 $d \sin^2 q_w$

 Additionally, one can construct a forward-backward left-right asymmetry and extract the **final state** coupling asymmetry A_f (for say f=τ),

$$\widetilde{A}_{FB}^{t} \equiv \frac{(\boldsymbol{s}_{LF} - \boldsymbol{s}_{LB}) - (\boldsymbol{s}_{RF} - \boldsymbol{s}_{RB})}{(\boldsymbol{s}_{LF} + \boldsymbol{s}_{LB}) + (\boldsymbol{s}_{RF} + \boldsymbol{s}_{RB})} = \frac{3}{4} |P_e| A_t$$

$$\frac{dA_t}{d\sin^2 q_w} \approx -7.9$$

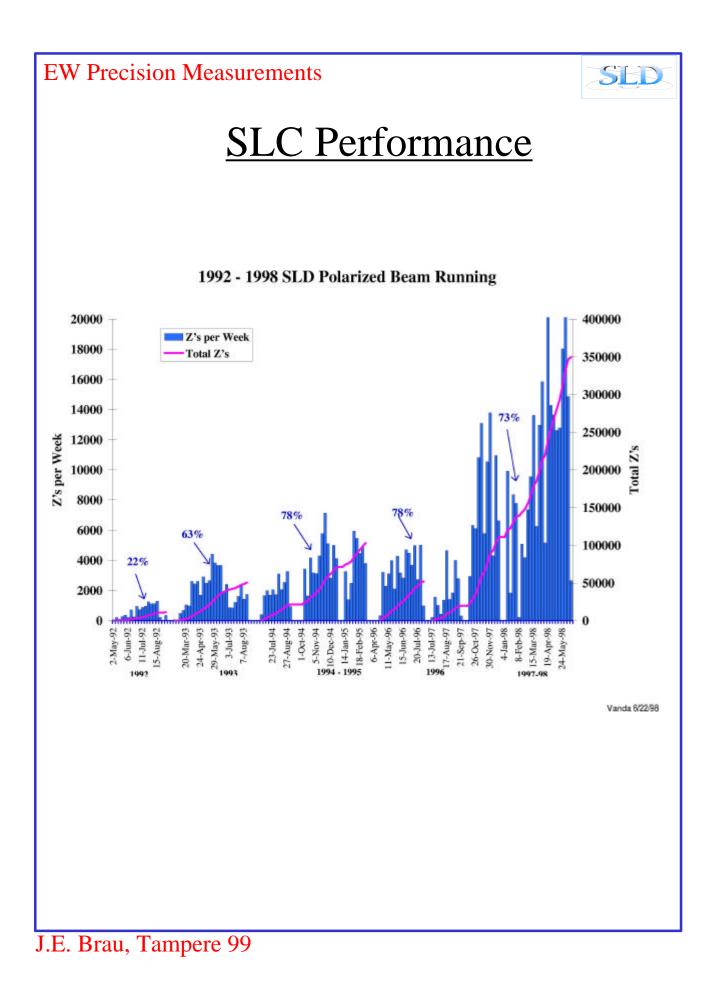
 $dA_{LR} \approx -7.9$

$\underline{Z^{\circ}}$ Pole Physics: τ Polarization

At LEP, the longitudinal τ polarization, P_{τ} , of τ pairs produced in Z decays, is

$$P_t = \frac{\boldsymbol{S}_R - \boldsymbol{S}_L}{\boldsymbol{S}_R + \boldsymbol{S}_L}$$

Then, P_{τ} is a function of the polar scattering angle, so at $\sqrt{s} = m_Z$:


$$P_t(\cos J) = \frac{A_t(1 + \cos^2 J) + 2A_e \cos J}{1 + \cos^2 J + 2A_t A_e \cos J}$$

(Neglecting γ exchange, γ Z interference, and radiative corrections.)

$$\frac{dA_t}{d\sin^2 q_W} \approx -7.9$$

The LEP experiments do combined fits to determine both A_e and A_{τ} .

EW Precision MeasurementsUpdated 1999 SLD
$$A_{LR}$$
 Measurement $A_{LR}^0 = 0.15108 \pm 0.00218$ • This is equivalent to an effective weak mixing
angle of $\sin^2 q_w^{eff} = 0.23101 \pm 0.00028$ This results includes ALL of the SLD data,
with many new checks on systematics

Evolution of A_{LR} Systematic Errors

Polarimetry errors are approximately equal to all other systematics combined.

The next largest error is due to the energy spectrometry.

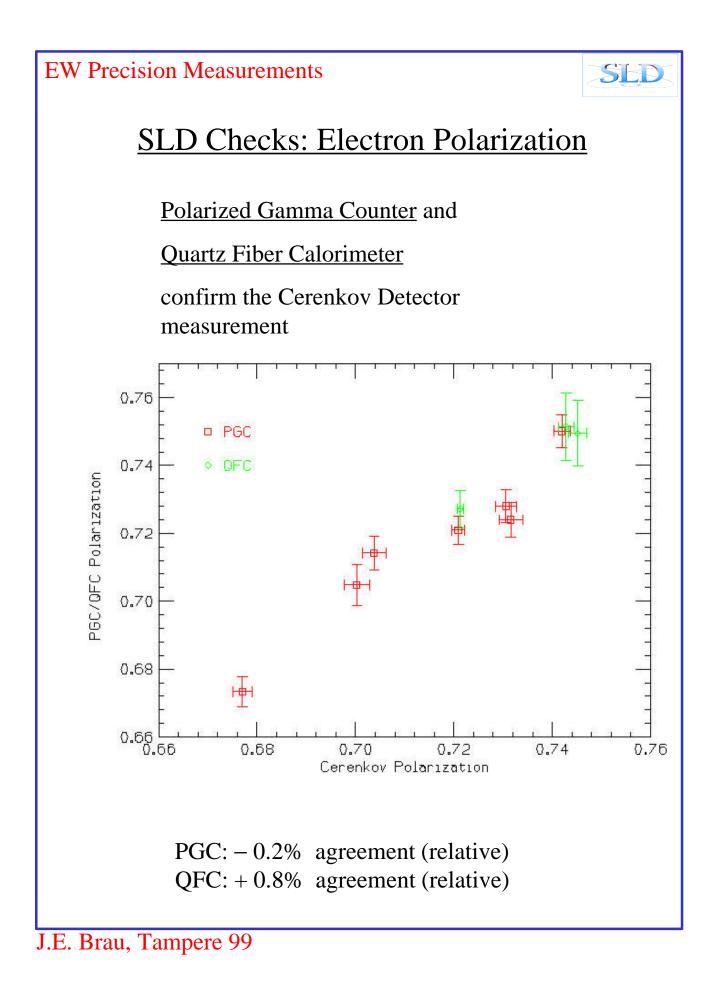
	1992	1993	1995	Now
Polarimetry (fractional error)	2.7%	1.7%	0.67%	0.5%
Ecm (fractional error)	-	-	-	0.4%
Background (frac.) (correction)	1.4%	0.25%	0.11%	0.044%
SLC asymm (10 ⁻⁴) (correction)	1.8±4.2	0.4±0.5	-1.9±0.3	-1.3±0.7
Total fractional error	3.6%	1.7%	0.75%	0.65%

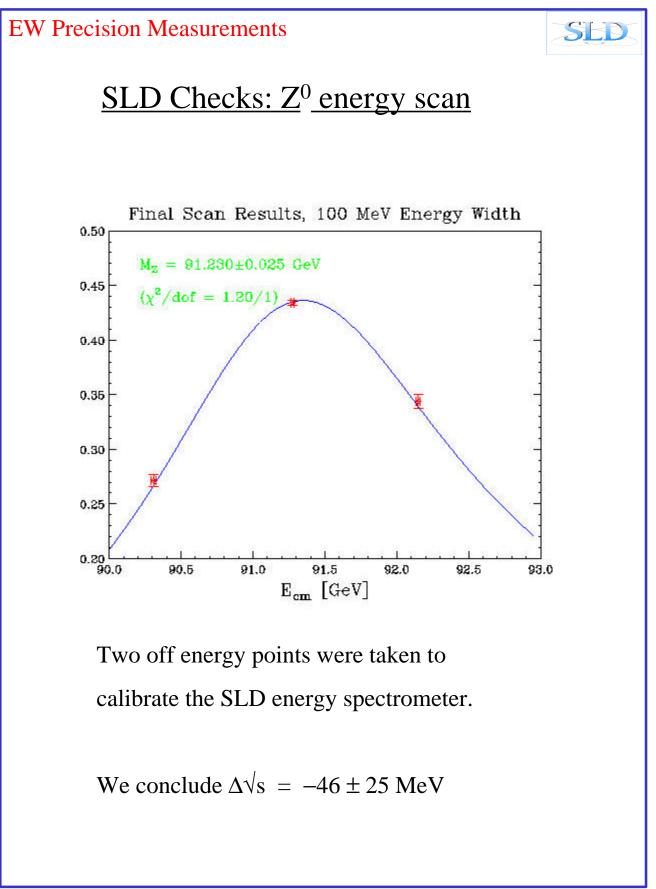
Recent SLD Checks

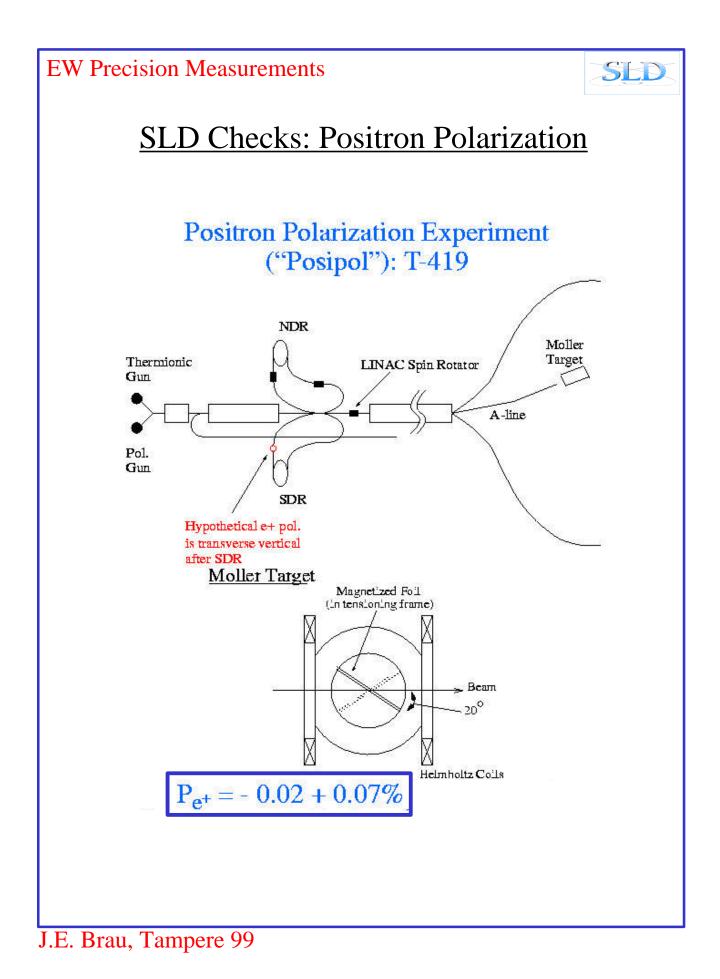
•Electron Polarization

•two additional <u>independent</u> polarimeters have been employed to confirm the electron polarization measurement

•Center-of-mass Collision Energy


•Z scan done to confirm the beam energy measurements


•Positron Polarization


•a measurement of positron polarization was done to confirm its absence

 $\bullet P_{e+} = 0.02\% +/- 0.07\%$

EW Precision Measurements SEE **SLD Checks: Electron Polarization Primary Polarimeter: Cerenkov Detector detects Compton electrons** •measure asymmetry at kinematic edge (70% analyzing power) 532 nm Frequency Doubled 'AG Laser Mirror Box Circular Polarizer Focusing and SLD Steering Lens Mirror Box (preserves circular polarization) Laser Beam Analyzer and Dump Compton Back Scattered e-"Compton IP" Cerenkov Analyzing Detector Bend Magnet Polarized Gamma Quartz Fiber Calorimeter Counter Two new detectors, PGC & QFC, detect Compton gammas measure energy asymmetry •16-22% analyzing power for PGC •18% analyzing power for QFC •measure P during dedicated electron-only runs

<u>A_{LR} Numbers</u>

• Table of the time history of SLD's A_{LR} and the luminosty weighted average polarization

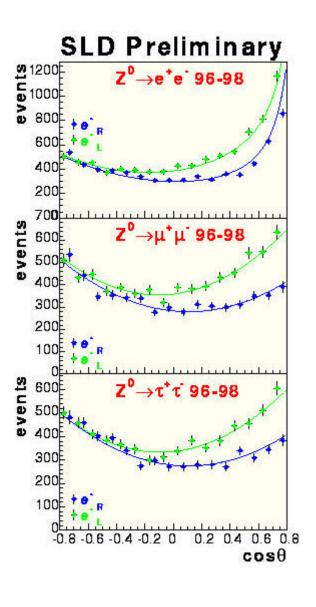
Year	A_{LR}^{0}	P _e (%)
1992	0.100 + - 0.044 + - 0.004	22.4 ± 0.6
1993	0.1656 + - 0.0071 + - 0.0028	62.6 ± 1.2
1994/5	0.1512 + - 0.0042 + - 0.0011	77.2 ± 0.5
1996	0.1570 + - 0.0057 + - 0.0011	76.5 ± 0.5
1997/98	0.1490 +/- 0.0024 +/- 0.0010	72.9 ± 0.4
Total	0.15108 + - 0.00218	

• An EW correction of ~2% is applied to get from A_{LR}^{meas} to A_{LR}^{0} (the Z⁰ pole)

$$A_{LR}^0 = 0.15108 \pm 0.00218$$

• This is equivalent to the effective weak mixing angle of

$$\sin^2 \boldsymbol{q}_w^{eff} = 0.23101 \pm 0.00028$$



SLD Left-Right Forward-Backward A_{leptons}

- This is a final state coupling measurement.
- A_{lepton} is determined from the forwardbackward left-right asymmetry:

$$A_{l} \propto \frac{(N_{LF} - N_{LB}) - (N_{RF} - N_{RB})}{(N_{LF} + N_{LB}) + (N_{RF} + N_{RB})}$$

- A_e and A_{l=µ,τ} are simultaneously determined from a maximum likelihood fit to the angular distributions
- This analysis is a test of lepton universality and also, if LU is granted, this analysis precisely measures sin²θ_w

 $\frac{d\boldsymbol{s}}{d\cos\boldsymbol{q}} \propto (1 - P_e A_e)(1 + \cos^2\boldsymbol{q}) + 2A_{\boldsymbol{m},\boldsymbol{t}} (A_e - P_e) \cos\boldsymbol{q}$

Measuring A_{leptons}

• Sample statistics for 1996-8 data

Channel	Sample size	Efficiency $(\cos\theta < 0.8)$	Purity	Dominant Background(s)
e ⁺ e ⁻	14803	87.3%	98.6%	$\tau^{+}\tau^{-}(1.2\%)$
$\mu^+\mu^-$	11867	85.5%	99.8%	$ au^+ au^- (0.2\%)$
$\tau^+\tau^{-}$	11266	78.1%	94.6%	$\mu^{+}\mu^{-}(2.0\%), 2\gamma(1.7\%)$

This 1996-98 data has been analyzed to $|\cos \theta| < 0.8$, and will eventually cover to $|\cos \theta| < 0.9$.

• Combined (preliminary) results of the lepton asymmetry for 1993-8 data are consistent with lepton universality:

A _{lepton}	$\sin^2 \theta_{\rm w}^{\rm eff}$
$A_e = 0.1558 \pm 0.0064$	
$A_{\mu} = 0.137 \pm 0.016$	
$A_{\tau} = 0.142 \pm 0.016$	
$A_{e\mu\tau} = 0.1523 \pm 0.0057$	0.23085 ± 0.00073

Eventual error will be ± 0.0006

J.E. Brau, Tampere 99

Summarizing the SLD $\sin^2 q_w^{eff}$ measurements, using the full SLD data set

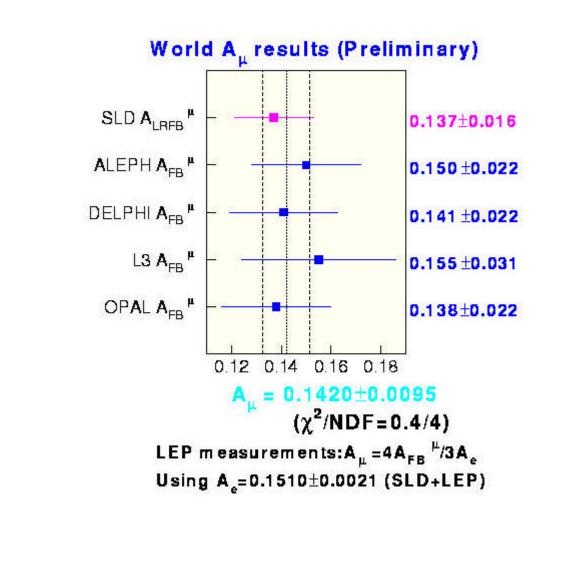
1999 A_{LR} update:

$$\sin^2 \boldsymbol{q}_{w}^{eff}$$
 (*LR*) = 0.23101 ± 0.00028

Preliminary left-right forward-backward lepton asymmetry

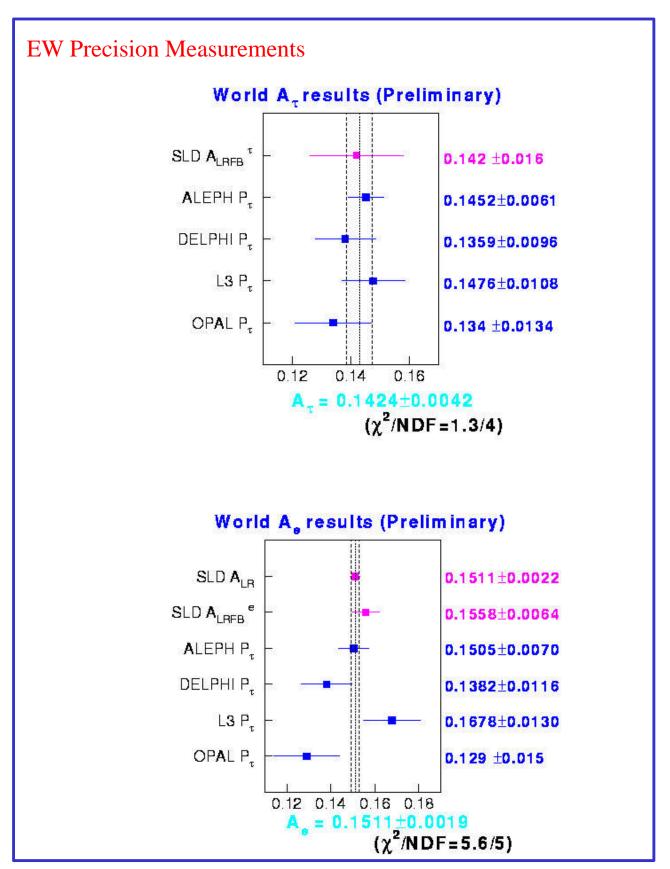
$$\sin^2 \boldsymbol{q}_{w}^{eff}$$
 (LRFB) = 0.23085 ± 0.00073

Combined SLD Average:

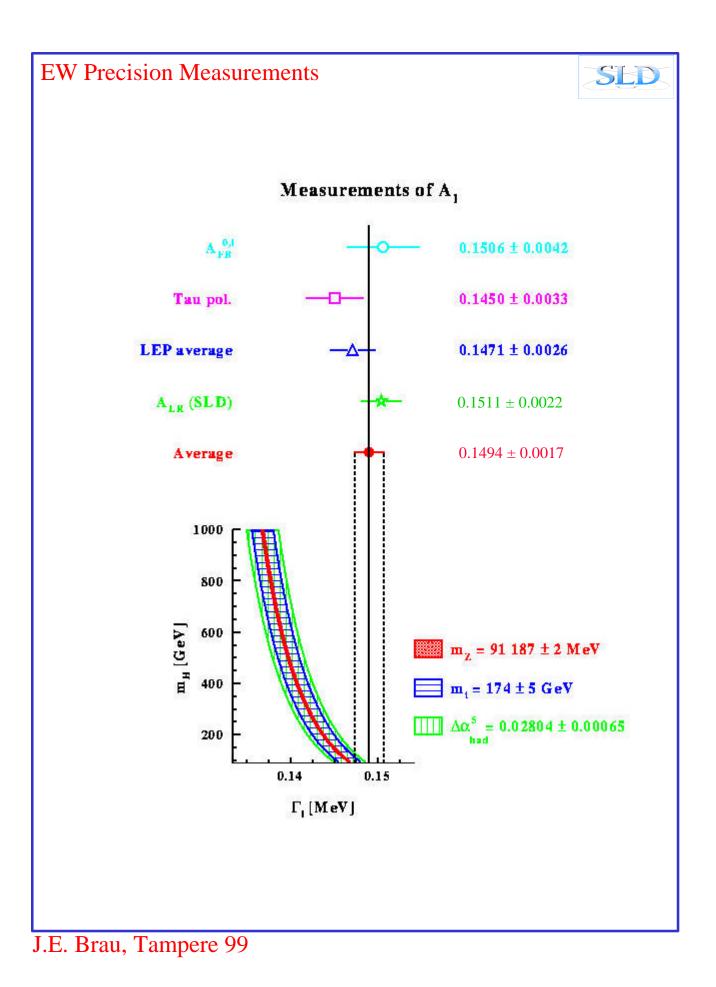

$$\sin^{2} \boldsymbol{q}_{w}^{eff} (LR + LRFB) = 0.23099 \pm 0.00026$$

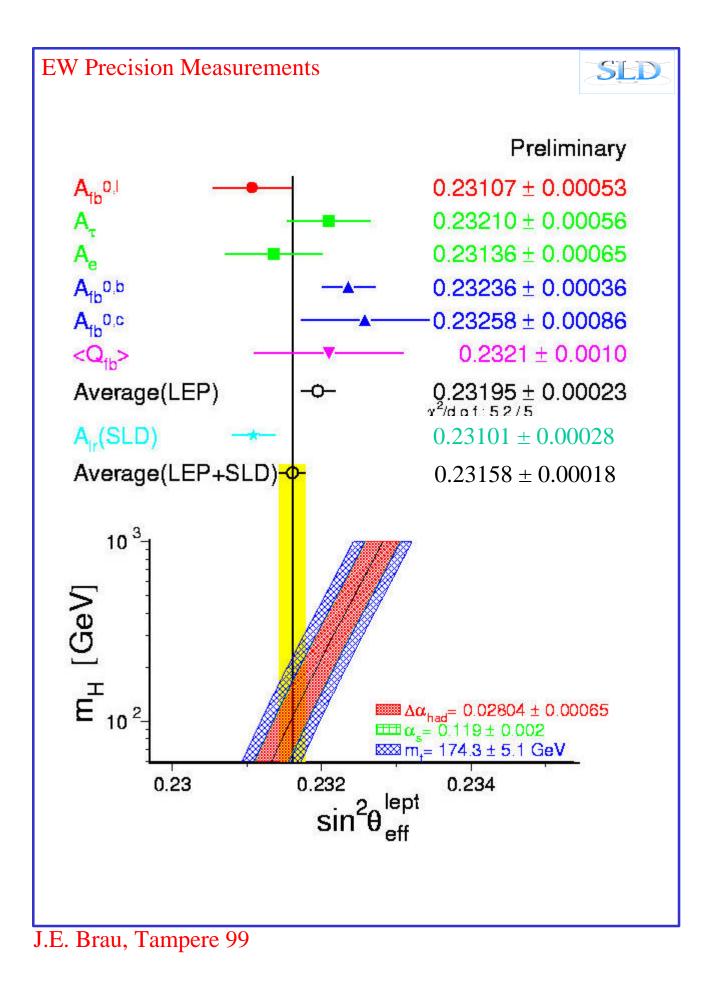
$\underline{A}_{\underline{\mu}}$ Measurement

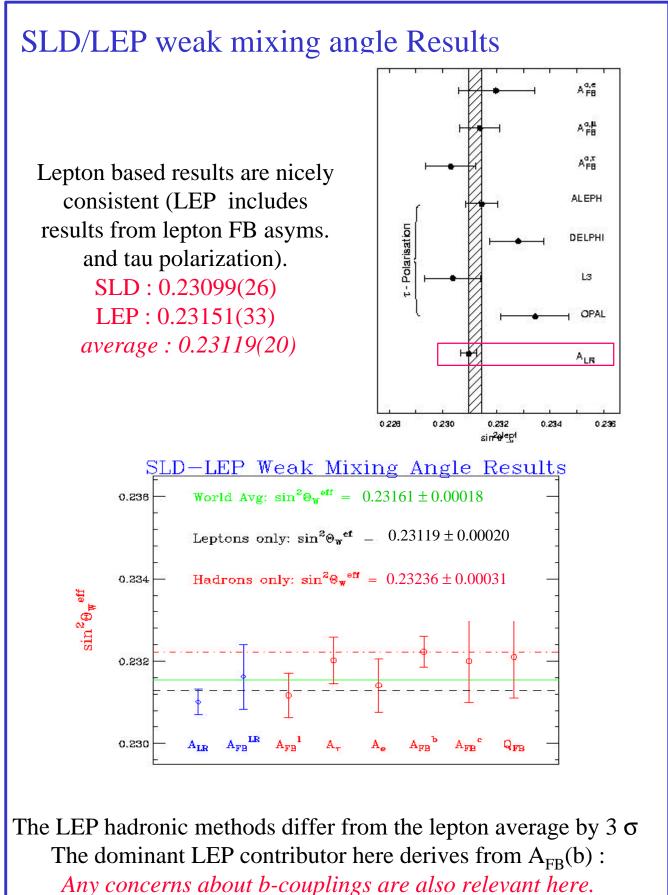
Comparison of the world's A_{μ} measurements


Tau Polarization

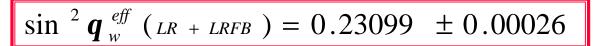
DELPHI has presented a new measurement of the tau polarization


Experiment	A_{τ}	A _e
ALEPH	0.1452 ± 0.0061	0.1505 ± 0.0069
DELPHI [*]	0.1359 ± 0.0096 *	0.1382 ± 0.0116 *
L3	0.1476 ± 0.0108	0.1678 ± 0.0130
OPAL	0.1340 ± 0.0134	0.1290 ± 0.0149


* old DELPHI result:


 $A_{\tau} = 0.1381 \pm 0.0104$ $A_{e} = 0.1353 \pm 0.0121$

J.E. Brau, Tampere 99



Conclusions

SLD now has an updated measurement of the weak mixing angle from A_{LR} and the left-right forward-backward lepton asymmetries:

This result includes ALL of the SLD data,

with many new checks on systematics

The SLD/LEP lepton electroweak measurements are self-consistent.

A modest difference exists between the lepton and hadron parameters.