GENERALIZED QUADRANGLES HAVING A PRIME PARAMETER†

BY

WILLIAM M. KANTOR

ABSTRACT

Generalized quadrangles \mathcal{Q} are studied in which s or t is prime and $\text{Aut}(\mathcal{Q})$ has rank 3 on points.

1. Introduction

A generalized quadrangle \mathcal{Q} of order (s, t) consists of a set of points and lines, with each line on $s+1$ points and each point on $t+1$ lines, such that two points are on at most one line and a point not on a line is collinear with exactly one point of the line. We will study the case where s or t is prime and $\text{Aut}(\mathcal{Q})$ has rank 3 on points.

Theorem 1.1. Let \mathcal{Q} be a generalized quadrangle of order (p, t) with p prime and $t > 1$. Suppose $G = \text{Aut}(\mathcal{Q})$ has rank 3 on points. Then either $t = p^2 - p - 1$ and $p^3 \mid |G|$, or $G = \text{PSp}(4, p)$ or $P_1 U(4, p)$ and \mathcal{Q} is one of the usual quadrangles associated with these groups, or $p = 2$, $G = A_6$ and \mathcal{Q} is one of the usual quadrangles associated with $PS_6(4, 2)$.

A group G having a BN-pair whose Weyl group is D_8 naturally acts as an automorphism group of a generalized quadrangle of order (s, t) with $s > 1$ and $t > 1$. Moreover, $(1 + s)(1 + t)(1 + st)s^2t^2$ divides $|G|$. Thus, as an immediate consequence of (1.1) we have:

Corollary 1.2. Let G be a finite group having BN-pair and Weyl group D_8. Suppose that $|P : B| = 1$ is a prime p for some maximal parabolic subgroup P. Then G has a normal subgroup H isomorphic to $\text{PSp}(4, p)$ or $\text{PSU}(4, p)$, with the usual BN-pair induced on H.

†This research was supported in part by NSF grant GP 37982X.

Received November 14, 1974

Vol. 23, 1976

GENERALIZED QUADRANGLES HAVING A PRIME PARAMETER

Corollary 1.3. Let G be a rank one, prime, $p \nmid \gamma$, $(\gamma, \delta) = 1$, r a power of $\delta = 1$. Then G can be regarded as an orthogonal geometry over $GF(p)$.

Corollary 1.3 is a consequence of the preceding sort also followed by other methods. The proof of (1.1) requires for both reason, and later considerations in Section 4.

The basic idea is to take a Sylow p-subgroup of the center and various point-and line methods yield the following results:

Theorem 1.4. Let \mathcal{Q} be a generalized quadrangle of order (p, t) with p prime and $s > 1$. Suppose $G = \text{Aut}(\mathcal{Q})$, $s \neq p^2 - p - 1$ or $p^3 \mid |G|$. Then G is the usual quadrangles associated with $\text{PSp}(4, p)$ or $P_1 U(4, p)$.

We remark that there is a well-known result on the size of $3^2 | \text{Aut}(\mathcal{Q}) |$ (see, e.g., Higman [2], p. 391 on lines).

Finally, we note that the methods employed in this paper, such as rank 4 automorphism group, are proved to be p prime.

2. Preliminary results

Let \mathcal{Q} be a generalized quadrangle of order (p, t).

Lemma 2.1. Let \mathcal{Q} be a generalized quadrangle having \mathcal{Q} the set of points y such that a line is not a complement of x^2. We call x and y lines L and M are adjacent if $L \cap M$.

Let $H(x)$ denote the set of elements $H(L)$ is the pointwise stabilizer of L.

Lemma 2.1. Let \mathcal{Q} be a generalized quadrangle having \mathcal{Q} the set of points p.

(i) Suppose a subgroup H of $\text{Aut}(\mathcal{Q})$ is

(a) \mathcal{Q}

(b) \mathcal{Q}

(c) \mathcal{Q}

(d) \mathcal{Q}

(e) \mathcal{Q}

(f) \mathcal{Q}

(g) \mathcal{Q}

(h) \mathcal{Q}

(i) \mathcal{Q}

(j) \mathcal{Q}

(k) \mathcal{Q}

(l) \mathcal{Q}

(m) \mathcal{Q}

(n) \mathcal{Q}

(o) \mathcal{Q}

(p) \mathcal{Q}

(q) \mathcal{Q}

(r) \mathcal{Q}

(s) \mathcal{Q}

(t) \mathcal{Q}

(u) \mathcal{Q}

(v) \mathcal{Q}

(w) \mathcal{Q}

(x) \mathcal{Q}

(y) \mathcal{Q}

(z) \mathcal{Q}

[Note: The above text is a sample of plain text representation of the document content. For a comprehensive understanding, please refer to the original document.]
Corollary 1.3. Let G be a rank 3 group having subdegrees 1, p, p^2 with p a prime, $p^t = \gamma \delta$, $(\gamma, \delta) = 1$, t a power of p, $r > 1$ and either $(1 + \delta)r \equiv \gamma \pmod{p}$ or $p = 2$ and $\delta = 1$. Then G can be regarded as acting on the singular points of a symplectic or orthogonal geometry over $GF(p)$, or on the singular lines of a 4-dimensional symplectic or unitary geometry over $GF(p)$.

Corollary 1.3 is a consequence of (1.1) and Kantor [4]. Further consequences of the preceding sort also follow from the latter paper. The present work originated in an attempt to push the rather elementary methods of [4] somewhat further. The proof of (1.1) requires little more than elementary group theory, combined with results of Higman [1], [2], [3]. The case $t = p$ is especially simple; for both this reason, and later convenience, it has been presented separately in Section 4.

The basic idea is to take a Sylow p-subgroup P of G, and then see how both its center and various point- and line-stabilizers in P must behave. The same methods yield the following result; the details are left to the reader.

Theorem 1.4. Let \mathcal{Q} be a generalized quadrangle of order (s, t) with $s > 1$ and t prime and $s > 1$. Suppose $G = \text{Aut} \mathcal{Q}$ has rank 3 on points, $p^t \mid G$, and either $s \not= p^2 - p - 1$ or $p^t \mid G$. Then $G \equiv \text{PSP}(4, p) \text{ or } \text{PGL}(4, p)$, and \mathcal{Q} is one of the usual quadrangles associated with these groups.

We remark that there is a well-known quadrangle of order $(3, 5)$ for which $3^t \mid |\text{Aut} \mathcal{Q}|$ (see, e.g., Higman [2], p. 287); $\text{Aut} \mathcal{Q}$ has rank 3 on points and rank 5 on lines.

Finally, we note that the methods presented here apply to other situations, such as rank 4 automorphism groups of generalized hexagons of order (p, p) with p prime.

2. Preliminary results

Let \mathcal{Q} be a generalized quadrangle of order (s, t). If x is a point, $\Gamma(x)$ denotes the set of points y such that a line xy exists, $x^{+} = \{x\} \cup \Gamma(x)$, and $\Delta(x)$ is the complement of x^{+}. We call x and y joined or adjacent if xy exists; and dually lines L and M are adjacent if $L \cap M$ is a point.

$H(x)$ will denote the set of elements of $H \cong \text{Aut} \mathcal{Q}$ fixing each line on x, while $H(L)$ is the pointwise stabilizer of L.

Lemma 2.1. Let \mathcal{Q} be a generalized quadrangle of order (s, t).

(i) Suppose a subgroup H of $\text{Aut} \mathcal{Q}$ fixes at least three points of some line and
at least three lines through some point. If no fixed point H is joined to all others, and no fixed line meets all others, then the set of fixed points and lines of H form a sub-quadrangle of order (s', t') for some $s' \leq s$ and $t' \leq t$.

(ii) If \mathcal{D} has a proper subquadrangle of order (s, t), then $t \geq st'$.

(iii) $t' \geq s$ and $s' \geq t$ if $s > 1$ and $t > 1$.

Proof. (i) is straightforward. To prove (ii) (which is due to Payne [6] and Thas [7]), take x outside of the subquadrangle \mathcal{D}. Then each of the $t + 1$ lines through x meets \mathcal{D}; at most once. Counting in two ways the pairs (y, L) with $y \in L$, x and y collinear, and $y, L \in \mathcal{D}$, we find that $(t + 1)(t' + 1) \geq 1 + (s + 1)t' + st'^2$ (the latter being the number of lines of \mathcal{D}). This implies that $t \geq st'$.

Finally, (iii) is Higman's inequality [2].

The second part of the following transitivity-boosting lemma is probably well-known; the proof of the first part has the same flavor as the one in Kantor [4].

Lemma 2.2. Suppose $G \leq \text{Aut} \mathcal{D}$ has rank 3 on points. Then

(i) G is 2-transitive on the lines through x; and

(ii) If $(s, t + 1) = 1$ and $y \in \Gamma(x)$, then G_{xy} is transitive on $y^t - xy$.

Proof. (i) Let $x \in L$. Then G_L contains a Sylow p-subgroup P of G, for each prime $p | t$. It suffices to show that for each P and P, each orbit L^P of lines $\not\in L$ on x has length divisible by t_p (the p-part of t).

Suppose $|L^P| < t_p$ for some such orbit. There exist points $y \in L - \{x\}$ and $y' \in L' - \{x\}$ whose $P_L = P_{L'}$ orbits have lengths $\equiv s_p$. Thus, $|P_L_{xy'}| \geq |P_L|/s_p^2 > |P|/s_p^2 t_p$, so $|P^*: P_{xy'} < s_p^2 t_p \leq |\Delta(y)|_{t_p}$ for a Sylow p-subgroup $P^* \leq P_{xy'}$ of $G_{xy'}$. Since $y' \in \Delta(y)$ and $G_{xy'}$ is transitive on $\Delta(y)$, this is impossible.

(ii) Since $(\Gamma(x), |\Delta(x)|) = (s(t + 1), s't^2) = s$, each G_{xy}-orbit on $\Delta(x)$ has length divisible by $s't^2/s = |y^t - xy|$.

Remark. Note that the hypotheses of (2.2) guarantee that G_L is 2-transitive on L. What (2.2) says is that a second 2-transitive group is also always available.

Lemma 2.3. The pointwise stabilizer $G(x^t)$ of x^t is semiregular on $\Delta(x)$, and $|G(x^t)| = t$.

Proof. The first statement is (6.17) of Higman [2], and follows immediately from (2.1 i). To prove the second one, let M be a line not on x, and set $y = x^t \cap M$. Then each $u \in x^t - xy$ is joined to some $w \in M - \{y\}$, and hence $G(x^t)_u \cong G(x^t)_w = 1$.

Theorem 2.4. (Higman [1]) If $s = t = |G(x^t)|$. Then \mathcal{D} is isomorphic to $G \cong \text{PSp}(4, s)$.

Theorem 2.5. (Higman [3]) If $s = t^2$ and $|G(x^t)| = t$. Then $G \cong \text{PSU}(4, t)$, and $G \cong \text{PSU}(4, t)$.

Lemma 2.6. (Higman [2])

Corollary 2.7. Suppose $s

(i) If $s | t + 1$ then $t = s$

(ii) If $s | t - 3$ and $3 | s - 1$

(iii) If $s | t - 2$ then $t = s$.

Proof. We will prove (iii). We can write $s^t - 1 = \alpha(s + 1)$ and $\alpha \equiv 3 \text{ (mod } s)$, so $\alpha = (s - 1)/3 + (s^t - 1)/s$.

3. Hyperbolic lines

Let \mathcal{G} be any strongly regular graph on point x. $\Gamma(x)$ will denote the set of points $\not\in x$ not joined to x. We have

(3.1) $xy = \cap \{w^t : w \not\in \mathcal{G} \}$

This line is called singular.

Lemma 3.2. (Higman [2], Theorem 2.4)

(i) Two adjacent points are singular.

(ii) Two non-adjacent points are singular, if \mathcal{G} is the point line.

Consider the following hypotheses:

(H) Each hyperbolic line is singular.

This will be the case, for instance, when all pairs of non-adjacent points are singular.
Theorem 2.4. (Higman [1]) Assume \(G \leq \text{Aut } \mathcal{Q} \) has rank 3 on points, and \(s = t = |G(x^*)| \). Then \(\mathcal{Q} \) is isomorphic to the usual quadrangle for \(Sp(4, s) \), and \(G \cong PSp(4, s) \).

Theorem 2.5. (Higman [3]) Assume \(G \leq \text{Aut } \mathcal{Q} \) has rank 3 on points, \(s = t^2 \) and \(|G(x^*)| = t \). Then \(\mathcal{Q} \) is isomorphic to the usual quadrangle for \(PSU(4, t) \), and \(G \cong PSU(4, t) \).

Lemma 2.6. (Higman [2, (6.1)]) \(s^2(1 + st)/(s + t) \) is an integer.

Corollary 2.7. Suppose \((s, t) = 1, s > 1 \) and \(t > 1 \).

(i) If \(s | t \) then \(t = s^2 - s - 1 \).

(ii) If \(s | t - 3 \) and \(3 | s - 1 \) then \(t = 2s + 3 \).

(iii) If \(s | t - 2 \) then \(t = s + 2 \).

Proof. We will prove (ii); (i) and (iii) are similar. By (2.6), \(s + t | s^2 - 1 \). We can write \(s^2 - 1 = \alpha(\alpha + t) \) and \(t - 3 = \beta s \) for integers \(\alpha \) and \(\beta \). Then \(-1 = 3a \mod s \), so \(\alpha = (s - 1)/3 \mod s \). Write \(\alpha = ((s - 1)/3) + sy \). Then \(s^2 - 1 = \((s - 1)/3 + sy)(s + t) \) implies that \(y = 0 \) and \(3(s + 1) = s + t \), as required.

3. Hyperbolic lines

Let \(\mathcal{G} \) be any strongly regular graph with parameters \(n, k, \lambda, \mu \). For each point \(x \), \(\Gamma(x) \) will denote the set of points joined to \(x \), and \(\Delta(x) \) the set of points \(x \) not joined to \(x \). Write \(x^* = \{x\} \cup \Gamma(x) \). The line \(xy, x \neq y \), is defined by

\[
xy = \bigcap \{w^* \mid x, y \in w^*\} = \bigcap \{w^* \mid w \in x^* \Delta(x)\}.
\]

This line is called singular if \(y \in \Gamma(x) \) and hyperbolic if \(y \in \Delta(x) \).

Lemma 3.2. (Higman [2, p. 282].)

(i) Two adjacent points are on a unique singular line.

(ii) Two non-adjacent points are on at most one hyperbolic line, and are on no singular line, if \(\mathcal{G} \) is the point-graph of a generalized quadrangle.

Consider the following hypothesis:

(H) Each hyperbolic line has \(h + 1 \) points, and two distinct lines meet at most once.

This will be the case, for example, if (3.2i) holds and \(\text{Aut } \mathcal{G} \) is transitive on pairs of non-adjacent points.
LEMMA 3.3. Assume (H). Then the following hold.
(i) \(x \) is on \(l/h \) hyperbolic lines.
(ii) There are \(nl/h(h + 1) \) hyperbolic lines.
(iii) \(h \mid k - \lambda - 1. \)
(iv) If \(w \in \Delta(x) \) then \(w \) is on \(l/h - (k - \mu + 1) \) hyperbolic lines missing \(x^\perp \).
(v) There are \([(l/h - (k - \mu + 1))/(h + 1)] \) hyperbolic lines missing \(x^\perp \).

PROOF. (i) and (ii) are easy. If \(y \in \Gamma(x) \) then \(y^\perp \cap \Delta(x) \) is a union of hyperbolic lines with \(x \) removed; this implies (iii).

To prove (iv), note that \(w \) is joined to \(\mu \) points of \(\Gamma(x) \). Let \(y \) be any of the remaining \(k - \mu \) points of \(\Gamma(x) \). If \(wy \) meets \(\Gamma(x) \) at a second point \(y' \neq y \), then by (H), \(y' \in \Delta(y) \) and \(wy = yy' \). But now, \(y, y' \in x^\perp \) implies that \(yy' \subseteq x^\perp \), and hence that \(w \in x^\perp \).

Thus, \(w \) is on exactly \(k - \mu \) hyperbolic lines meeting \(x^\perp \). By (i), this proves (iv).

Finally, count the pairs \((w, L)\) with \(w \in \Delta(x) \cap L \), \(L \) a hyperbolic line, and \(L \cap x^\perp = \phi \), in order to obtain (v).

COROLLARY 3.4. If (H) holds, and \(Aut \mathcal{F} \) is transitive on hyperbolic lines, then each hyperbolic line misses exactly \(l - h(k - \mu + 1) \) sets \(x^\perp \).

PROOF. By (3.3), the desired number is
\[
n \cdot l[[l/h - (k - \mu + 1)]/(h + 1)] \cdot (nl/h(h + 1))^-1.
\]

LEMMA 3.5. If (H) and (3.2ii) hold, then
(i) \(x^\perp \) contains \(s't(t + 1)/h(h + 1) \) hyperbolic lines; and
(ii) \(|G(x^\perp)| \) divides \(h \).

PROOF.
(i) Count the pairs \((y, H)\) with \(y \in H \subset x^\perp \) and \(H \) a hyperbolic line.
(ii) Higman [2, (6.17)].

4. The case \(s = t = p \)

Theorem 1.1 is particularly easy when \(s = t = p \) is prime. We may assume \(p > 2 \). Let \(P \) be a Sylow \(p \)-subgroup of \(G \). Then \(P \) fixes some \(x \) and some (singular) line \(L \) on \(x \). Moreover, \(P \) is transitive on \(L - \{x\}, \Delta(x) \) and \(x^\perp = L \) (by (2.2)). Set \(Z = Z=P \cap P(x) \cap P(L) \). Since \(p^2 = |\Delta(x)| \) \(|G|, Z \neq 1. \)

Let \(w \in \Delta(x) \), and suppose \(P_w \neq 1 \). Then \(P_w = P(wy) \) if \(y \in L \cap \Gamma(w) \). If now \(Z \) is transitive on the lines \(\neq L \) on \(y \), then \(P_w \subseteq G(y^\perp) \) and Higman's result (2.4)

applies. Assume next that \(Z \neq 1 \) and fixes every line meeting \(L \). Hence, if \(G \) has rank 3 on lines. But by \(|K^p| \leq p^r \) for a line \(K \) on \(w \). Thus by (2.1), the set of fixed points and \((p, p) \), which is absurd.

Thus, we may assume \(|P| = p \) and \(n \) is a nonadjacent points. In particular, regular on \(\Delta(x) \), so \(G \) has rank 3 on lines, and \(P \) has a subgroup of order \(p \) by the Frattini argument. \(N(P) \) hence induces at least \(SL(2, p) \) on \(P(L) \).

Moreover, \(|Z| = p \) here, and we may permit (2.4) to be applied to the \(2 \)-transitive on the \(p + 1 \) subgroups, \(SL(2, p) \) on \(P(L) \).

In view of the action of \(N(P(x)), N(P(L)) \) which inversions each of the \(p + 1 \) subgroups, hence \(t \in G(x) \). Similarly, there then centralizes \(P(L) \) and centralizes \(P = \{t, t'\} \leq N(P(x)) \cap N(P(L)) \) is a subgroup of \(P \).

Now \(t' \) centralizes \(Z \) and is \(t \) as well.

Then also \(t' \) fixes one of the \(p + 1 \) points of \(L, s \) shows that \(t \in G(L_1) \), and hence \(Z \) is transitive on the lines \(\neq l \).

The case \(s = t = p \) is completed.

5. The case \(s = p \) and \(p > 2 \)

Let \(G \) and \(P \) be as in Theorem 1.1. Assume \(P \) fixes some point \(x \). Set \(Z = P \cap P(L_1) \).

It is easy to handle the case \(p > 2 \). By Section 4, we may assume \(t' = t \).

Throughout this section we will use the following lemma.

LEMMA 5.1. \(t > p \).
applies. Assume next that \(Z \leq G(y) \). Then the transitivity of \(P \) shows that \(Z \) fixes every line meeting \(L \). Hence, Higman’s result (2.4) applies to the dual of \(Z \) if \(G \) has rank 3 on lines. But by (2.2), if \(G \) does not have rank 3 on lines, then \(|K^x| \leq p^3 \) for a line \(K \) on \(w \). This implies that \(|P_x| \geq p^3 \), so \(P_{xw} \neq 1 \). Then, by (2.1), the set of fixed points and lines of \(P_{xw} \) form a subquadrangle of order \((p,p)\), which is absurd.

Thus, we may assume \(|P| = p^3 \). Then no nontrivial \(p \)-element can fix two nonadjacent points. In particular, \(P(L) = P \), is regular on \(x^+ - L \). (Also, \(P \) is regular on \(\Delta(x) \), so \(G \) has rank 3 on lines.) Since \(|P(x)| = p^3 \), we see that \(P(x) \) has \(p + 1 \) subgroups of order \(p \), each fixing a unique line on \(x \) pointwise. Hence, by the Frattini argument, \(N(P(x)) \), is 2-transitive on these \(p + 1 \) subgroups, and hence induces at least \(SL(2,p) \) on \(P(x) \).

Moreover, \(|Z| = p \) here, and \(Z = P(x) \cap P(L) \). Thus, \(Z \leq P(y) \) would again permit (2.4) to be applied to the dual of \(Z \). It follows as above that \(N(P(L)) \), is 2-transitive on the \(p + 1 \) subgroups of order \(p \) of \(P(L) \), and induces at least \(SL(2,p) \) on \(P(L) \).

In view of the action of \(N(P(x)) \), on \(P(x) \), there is a 2-element \(t \in N(P(x)) \cap N(P(L)) \) which inverts \(P(x) \) and centralizes \(P(L) / Z \). Then \(t \) normalizes each of the \(p + 1 \) subgroups of \(P(x) \) corresponding to the lines on \(x \), and hence \(t \in G(x) \). Similarly, there is a 2-element \(t' \in N(P(L)) \cap N(P(x)) \) which inverts \(P(L) \) and centralizes \(P(x) / Z \). By Sylow’s theorem, we may assume that \((t,t') \leq N(P(x)) \cap N(P(L)) \) is a 2-group.

Now \(t' \) centralizes \(Z \) and inverts \(P/Z \) and \(t' \) fixes some line \(L_1 \neq L \) on \(x \). Then also \(t' \) fixes one of the \(p \) points of \(L_1 - \{x\} \), and the transitivity of \(Z \) on \(L_1 - \{x\} \) shows that \(t' \in G(L_1) \). Dually, \(t' \in G(y) \) for some \(y \in L - \{x\} \). (Recall that \(Z \) is transitive on the lines \(\neq L \) on \(y \).) Thus, (2.11) implies that the set of fixed points and lines of \(t' \) is a subquadrangle of order \((p,p)\). This is ridiculous, and the case \(s = t = p \) is completed.

5. The case \(s = p \) and \(p^3 \mid G \)

Let \(Z \) and \(G \) be as in Theorem 1.1. Let \(P \) be a Sylow \(p \)-subgroup of \(G \). Then \(P \) fixes some point \(x \). Set \(Z = Z(P) \).

It is easy to handle the case \(p = 2 \) (since \(t \leq p^2 \) by (2.1)). We may thus assume \(p > 2 \). By Section 4, we may also assume \(p \neq t \).

Throughout this section we will assume \(p^3 \mid G \).

Lemma 5.1. \(t > p \).
PROOF. Suppose $t < p$. Then $P \leq G(x)$. As $|\Delta(x)| = p^t$, $P_\omega \neq 1$ for some $w \in \Delta(x)$. Certainly, $P_\omega = P(\omega y)$ for each $y \in x^\omega \cap w^\omega$. By (2.1i), the set of fixed points and lines of P_ω form a subquadrangle of order (p, t), which is absurd.

Lemma 5.2. $p \not| t$.

Proof. Suppose $p \not| t$. By (2.1) and (5.1), $p < t < p^2$. Also, for some $w \in \Delta(x)$, $P_\omega \neq 1$ and P_ω is Sylow in G_ω.

Consider first the possibility $p | t + 1$. Here no nontrivial subgroup of P can fix elementwise a subquadrangle of I_2. For, by (2.1) such a quadrangle would have order (p, t) with $p|t + 1 < p^2$ and $p | t + 1$, so $t = p - 1$. However, by (6.2) no quadrangle of order $(p, p - 1)$ can exist.

On the other hand, $|P_\omega| \equiv p^2$ for one of the p^2 lines K not on x. Then $P(K) \neq 1$, and we may assume $w \in K$. Now $P(K)$ fixes at least p lines L on x, and at least p on w. Since w is joined to some point of $L' - \{x\}$, this contradicts (2.1) and the preceding paragraph.

From now on we may assume $p \not| t + 1$. Then p fixes some line L on x. Moreover, the set L of fixed points and lines of P_ω forms a subquadrangle, necessarily of order (p, t) for some $t \equiv 1 \pmod p$. Here $t = t (\mod p)$, while $p|t < p^2$ by (2.1), also, since P_ω is Sylow in G_ω, $N(P_\omega)$ is transitive on the ordered pairs of non-adjacent points of ω.

We claim that $|P| = p^3$. For suppose $|P| \geq p^4$. Then $1 \neq P_\omega < P^\omega$ for some line L on x. The set of fixed points and lines of P_ω forms a subquadrangle $I_2 \supset I_1$ of I_2 of order (p, t) for some t. By (2.1), $p^2 < p^2 < t < p^3$, which is impossible.

Thus, $|P| = p^3$ and $|P_\omega| = p$. But the transitivity of $N(P_\omega)$ implies that $P^3 | (N(P_\omega))$. Hence $P_\omega \leq Z(P)$.

Since $x^\omega - L = \omega \not= 0 \pmod p^2$, $|P_\omega| \equiv p^2$ for some $u \in x^\omega - L$. Then P_ω is not conjugate in G to any P_ω, so P_ω fixes no point of $x^\omega - x$. Thus, $Z(P)$ fixes x. There are thus exactly $t + 1$ lines xu with $|P(xu)| \geq p^2$. If v is any point of x^ω not on any of these lines, then $v^p < p^t$, so $P_\omega \neq 1$ and $Z(P) \equiv C(P(xu))$ implies that $P(xu)$ fixes a second line on x pointwise, and hence determines a subquadrangle of order (p, t), say. But this time, $p \equiv t$, and this contradicts (2.1).

By (5.2), we now know P fixes some line L on x. Let t_ω denote the p-part of t.

Lemma 5.3. If $p^2 t_\omega$ divides $|G|$, then the conclusions of (1.1) hold.

Proof. By (5.2), $p | t$, then $|P| \geq p^4$, and $|P| \geq p^3$ if $t = p^2$. By (2.1), $t \leq p^2$.

We have $|\Delta(x)| = p^2 t = 0 \pmod {p^2}$. Let $w \in \Delta(x)$. Then $p^3 \geq p^2 t \equiv w^p \equiv p^3$, so $w^p \equiv p^3$. In particular, $P_\omega \equiv P^3$. Note that $P_\omega = P(xy)$ if $y = L \cap w^\omega$.
We claim that P_x fixes no point of $\Delta(y)$. For otherwise, by (2.1) P_x fixes elementwise a subquadrangle of order (p, t_1), where $pt_1 \leq p^2$ and $p | t_1$. Thus, $t = p^2$, so $P_x \cong p^3$. Now $t - t_1 < p^3$ implies that, for some line $M \neq L$ on x, $P_x > P_{x.M}$. Then $P_{x.M}$ fixes more than $p + 1$ lines through x; by (2.1), it determines a subquadrangle of order (p, t_3) with $pt_3 \leq p^2$ and $t_3 > t_1$. This contradiction proves our claim.

Thus, P_x fixes only points of y^2. Since w and y are arbitrary, $Z = Z(P)$ fixes each point of L.

Let $u \in x^4 - L$. Since $pt \leq p^3$, by (2.2) each P-orbit on $x^4 - L$ has length pt. Thus, $P: P_{x.L} = p_t$. Clearly, P_x has an orbit $\{ux\}$ of lines K on u of length $\leq t$. Thus, $P: P_{x.L} = |P: P_{x.L}| \leq pt$, so $P_{x.K} \neq 1$.

We claim that all fixed lines of $P_{x.K}$ are adjacent to ux. For otherwise, by (2.1) the set \mathfrak{Z} of fixed points and lines of $P_{x.K}$ is a subquadrangle of order (p, t_3) (as $P_{x.K} \cong P(ux)$ fixes at least $p + 1$ lines on x). Here $p^2 \leq t \leq pt$, by (2.1), while $p | t_3$. Thus, $t = p^2$ and $t_3 = p$. By (2.1), $P_{x.K}$ must be semiregular on the $t - t_3$ lines through x it moves, so $|P_{x.K}| = p$. Thus, $|K^p| \geq p^3$, so K^p consists of all lines not adjacent to L. Moreover, $N_x(P_{x.K})$ is transitive on $K^p \cap \mathfrak{Z}$, and hence (by intersecting these lines with x^3) also on $(x^4 - L) \cap \mathfrak{Z}$. Since L can be any line of \mathfrak{Z}, it follows that $N(P_{x.K})$ has rank 3 on the dual of \mathfrak{Z}. Moreover, $p^4 \nmid |N(P_{x.K})|$, since $P_{x.K}^p = 1$. By Section 4, this is impossible, and our claim is proved.

Thus, $Z \cong C(P_{x.K})$ must fix ux. As $u \in x^4 - L$ was arbitrary, we now have $Z \cong P(x) \cap P(L)$.

Let $G(L^*)$ denote the set of elements of G fixing every line adjacent to L. Suppose that $Z \cap G(L^*) \neq 1$. By (2.3) (applied to the dual of \mathfrak{Z}), $|G(L^*)| \geq p$. Thus, $G(L^*) \cong Z$. Clearly, $G(L^*) \cong G_e$. Set $E = (G(M^*P)|x \in M)$. Then $E \subseteq G(x)$ is elementary abelian, and G_e acts 2-transitively on the $t + 1 > p + 1$ groups $G(M^*)$. In particular, $|E| \geq p^3$. But $GL(3, p)$ has no such 2-transitive subgroup since $t + 1 > p^2 + p + 1$ (Mitchell [5]). Thus, $|E| \geq p^5$. If now $t < p^2$ then $|P| \geq p^3$. Then $|P_e*| = p^3$, so $P_e > P_e* \neq 1$ for some line K adjacent to y^w. (Note that $P_{x.K} \cong G((yx)^w)$.) As usual, $P_e*_{x.K}$ determines a subquadrangle, and (2.1) produces a contradiction. Thus, $t = p^2$, so $|xu^w| = p^3$. By (2.5), we may assume that G does not have rank 3 on lines. Then $|K^p| \leq p^4$ for each line K not adjacent to L, so $|P_{x.K}| \geq p^3$. As usual, (2.1) implies that for $w \in K \cap \Delta(x)$, the set of fixed points and lines of $P_{x.K}$ form a quadrangle of order (p, p). Hence, again by (2.1), $|P_{x.K}| = p$, $|P_{x.K}| = p^3$, and hence $|P| = p^6$. Now $P: P(x) \cong p^3 = |xu^w| = t$ shows that no subgroup of P can fix exactly $p + 1$ lines on x, whereas $P_{x.K}$ is such a subgroup.

Thus, we may assume that $Z \cap G(L^*) = 1$, and (eventually) will derive a
contradiction from this assumption. Since \(P \) is transitive on \(L - \{ x \} \), \(Z \cap P(y) = 1 \) for each \(y \in L - \{ x \} \). Since \(P(L) \) is Sylow in \(G(L) \), we can find \(g \in G_t \) such that \(P^t \cong P(L) \) and \(P^t \) is Sylow in \(G_{at} \). Set \(W = Z^t \). Then \(W \leq P(L) \).

Moreover, \(P_c \leq P(L) \leq C_t(W) \).

Recall that all fixed points of \(P_c \) are in \(y^t \). Since \(P_c \) fixes \(L \) and \(wy \), pointwise, while \(N(P_c) \) is transitive on ordered pairs of non-adjacent fixed points of \(P_c \), we must have \(|N : P_c| \equiv |L - \{ y \} : wy - \{ y \}| = p^2 \), where \(N = N_t(P_c) \).

We can now prove \(t = p^2 \). By (2.1), \(P_c \) is semiregular on the lines \(L \) through \(x \), so \(|P_c| = p \) and \(|P| = p^4 \). In particular, \(N = C_t(P_c) \) and \(|P : N| = p \). Also, \(P_c \leq P(x) \) implies that \(P_c \not\leq Z \), so \(|N| = p^2 \). Then \(P_c \times Z \cong Z(N) \) implies that \(N \) is abelian. Hence, \(N \) centralizes its subgroup \(W \). But the transitivity of \(N(P_c) \) implies that \(N \) is transitive on \(L - \{ x \} \). Thus, \(W \leq P(y) \) fixes every line meeting \(L - \{ x \} \). Since \(Z \) conjugates to \(W \), \(Z \) must fix every line meeting \(L - \{ y \} \), which is not the case.

Thus, \(t = p^2 \) and \(|P| \geq p^4 \).

Next note that \(P(x^t) = 1 \). For otherwise, \(h \) is a power of \(p \) by (3.3), so \(h = p^t \) by (3.5i), whereas \(s^t/h \equiv (s - 1)(t + 1) + 1 \) by (3.5iv).

Hence, the transitivity of \(P \) on \(x^t - L \) (see (2.2)) implies that \(Z \) is semiregular on \(x^t - L \). Thus, for each \(L' \) on \(x, P(x) \cap P(L') \) contains a \(G_t \)-conjugate \(Z' \not\leq Z \) of \(Z \). In fact, if \(P' \) is a Sylow \(p \)-subgroup of \(G_{at} \) such that \(P'(x) = P(x) \), then we can choose \(Z' = Z(P') \). Thus, \(P(x) \) has \(p^2 + 1 \) nontrivial subgroups, any two meeting trivially. In particular, \(|Z(P(x))| \geq p^3 \). But \(\langle P, P \rangle \) permutes \(p^2 + 1 \) such subgroups 2-transitively, so \(|Z(P(x))| \geq p^4 \).

If \(|P(x)| \geq p^4 \), then \(P(x) \not\cong 1 \), and this contradicts (2.1).

Thus, \(|P(x)| = p^2 \) and \(P(x) \) is elementary abelian. Moreover, \(|P(x) \cap P(L)| = p^2 \). Since \(P(x) \) is transitive on \(L - \{ x \} \) and centralizes \(P(y) \cap P(L) \), we have \(P(x) \cap P(y) \leq P(L^t) = 1 \). Thus, since \(|P(y) \cap P(L)| = p^2 \), necessarily \(|P(L)| \equiv p^2 \cdot p^2 \), so \(|P| \equiv p^7 \) and \(P_c \| p^2 \). Consequently, \(P = 1 \) for some \(M \neq L \) on \(x \). By (2.1), \(P_{at} \cap P(x) = 1 \).

\(N(P(x)) \) induces the same 2-transitive representation on the \(p^2 + 1 \) lines on \(x \) and the \(p^2 + 1 \) subgroups \(P(x) \cap P(L) \) of \(P(x) \). It thus induces a subgroup of \(GL(4, p) \), 2-transitive on \(p^2 + 1 \) hyperplanes, and having a nontrivial \(p \)-subgroup (induced by \(P_{at} \)) fixing more than one such hyperplane. However, \(GL(4, p) \) has no such subgroup.

Proof of Theorem 1.1 when \(p^2 \mid |G| \)

In view of the preceding lemmas, it remains to eliminate the case \(p \mid t, p < t \), and \(p^2 \mid |G| \). By (2.1iii), either \(t = p^2 \) or \(p \).

Suppose first that \(t < p^2 \). Then \(P \) and \(P \leq P(L) \) is semiregular on \(x \) (which is nontrivial as otherwise \(x^t - xu \)). In particular, \(Z \mid P(L) \leq P(x) \), so \(Z \mid P(L) \). Thus, \(Z = Z(P) \) and \(Z \) is conjugate in \(G_t \), by \(t + 1 > p + 1 \) distinct proper subgroup impossible.

Thus, \(t = p^2 \). Suppose next that \(t \mid \Delta(x), P \not\cong 1 \) for each \(u \in x^t - L \).

Moreover, \(|Z \cap P(L)| = p = |P_c| = |P(x)| \). Thus, \(Z \cap P(L) = P(L) \), \(P_c \leq P(x) \), and \(P \leq P(x) \) conjugate to \(Z \cap P(L) \).

For each \(u \in x^t - L \), thus, \(Z \cap P(L) \) is again ridiculous.

Consequently, \(|P| = p^2 \). Now \(|P| = p^2 \).

Also, \(Z \cap P(L) \not\cong 1 \). Since \(P(x) \) is \(p \)-semiregular on \(x^t - L \). Thus, \(|Z \cap P(L)| \geq p^2 \).

For each \(u \in x^t - L, Z(P(x)) \cap P = 1 \). Thus, \(Z(P(x)) \) has \(p^2 + 1 \) such subgroups \(P \) permutes these subgroups 2-transitively, is again ridiculous.

This completes the proof of (1.1).

6. The case \(p^3 \mid |G| \)

We now consider the case \(p^3 \mid |G| \). Since \(|\Delta(x)| = p^3 \), thus, a Sylow \(p \) of \(\Delta(x) \) some point \(x \). By (2.7), \(p \not\mid t + 1 \), so \(P \) is semiregular on \(\Delta(x) \), so \(P \not\cong 1 \).

Lemmas 6.1. \(e = 1 \) or \(3 \), so \(p \mid p_1 \).

Proof. By (2.2), \(N(P) \), is 2-transitive on \(\Delta(x) \), the lemma does not hold when \(e = 3 \). Then (2.6) implies \(t = p_1 \).
transitive on \(L - \{ x \} \), \(Z \cap P(y) = \emptyset \) in \(G(L) \), we can find \(g \in G_t \).

Set \(W = Z^t \). Then \(W \leq P(L) \).

Since \(P \), fixes \(L \) and \(\delta \), non-adjacent fixed points of \(P \), we get \(N = N_\delta(P) \).

By (2.1), \(P \), is semiregular on \(\Delta(x) \). In particular, \(N = C_{G_r}(P) \) and \(Z \), so \(| N | = p^2 \). Then \(P, Z \leq Z(N) \) realizes its subgroup \(W \). But the cycle on \(L - \{ x \} \). Thus, \(W \leq P(y) \) conjugate to \(W \), \(Z \) must fix every line \(h \) is a power of \(p \) by (3.3), so \(h = p^2 \).

\((3.3iv) \).

\((2.2) \) implies that \(Z \) is semiregular on \(\delta \). \(Z \) contains a \(G_r \)-conjugate \(Z' \neq Z \) such that \(P(x) = P(x) \), then \(we \) + 1 nontrivial subgroups, any two \(P \), \(\langle P, P' \rangle \) permutes \(p^2 + 1 \) such subgroups.

\(\delta \) is abelian. Moreover, \(| P(x) \cap P(y) \rangle \) and centralizes \(P(x) \cap P(y) \), we get
\[| P(y) \cap P(L) | = p^k \] necessarily.

Consequently, \(P_{u,v} \neq 1 \) for some \(u \), \(v \).

\(\delta \) presentation on the \(p^2 + 1 \) lines on \(x \).

It thus induces a subgroup of \(P \) and having a nontrivial \(p \)-subgroup hyperplane. However, \(GL(4, p) \) has

and \(p^2 \cdot \delta (G) | G | \). By (2.iii), either \(t < p^2 \) and \(| P | = p^2 \), or \(t = p^2 \) and \(| P | = p^2 \) or \(p^3 \).

Suppose first that \(t < p^2 \). Then \(P \) is semiregular on \(\Delta(x) \). Hence, if \(y \in L - \{ x \} \) then \(P \) is semiregular on \(x^i - L \). Consequently, if \(u \in x^i - L \), then \(P \) (which is nontrivial as otherwise \(p^2 = | u^i | \leq | x^i - L | = p^t \)) is semiregular on \(x^i - xu \). In particular, \(Z = Z(P) \leq G(x) \). By (2.2), \(Z < P \), so \(| Z | = p \). But \(P(L) \neq P, \) \(Z \leq P(L) \). Thus, \(Z = P(L) \), whenever \(x \in L' \neq L \). Consequently, \(P \), and \(Z \) are conjugate in \(G \), by (2.2), so \(P \), \(P(x) \) and \(P(xu) \). Now \(P(x) \) has \(t + 1 \) \(p^2 + 1 \) distinct proper subgroups, so \(| P(x) | \geq p^3 | | P \). By (2.2ii), this is impossible.

Thus, \(t = p^2 \). Suppose next that \(| P | = p^3 \). Then once again, \(P \) is semiregular on \(\Delta(x) \), \(P \neq 1 \) for each \(u \in x^i - L \), \(P \) is semiregular on \(x^i - xu \), and \(Z \leq G(x) \).

Moreover, \(| Z \cap P(L) | = p = | P \rangle \) by the semiregularity of \(P(L) \), and \(P \), \(P(xu) \).

Thus, \(Z \cap P(L) = P(L) \), whenever \(x \in L' \neq L \). As above, we then have \(P \), \(P(xu) \), conjugate to \(Z \cap P(L) \), so \(P \), \(P(x) \), \(| P(x) | \geq p^3 \), and hence \(| P : P(x) | \leq p \). Once again, this contradicts (2.2ii).

Consequently, \(| P | = p \). Now \(| P \rangle \neq 1 \) for each \(w \in \Delta(x) \), while \(| P \rangle = p^3 \) for each \(u \in x^i - L \). Thus, \(P \), fixes no points of \(x^i - xu \), so \(Z \leq P(x) \) once again.

Also, \(Z \cap P(L) \neq 1 \). Since \(P(x^i) = 1 \) as in the proof of (5.3), \(Z \cap P(L) \) is semiregular on \(x^i - L \). Thus, \(| Z \cap P(L) | = p \).

For each \(u \in x^i - L \), \(Z(P(x)) \cap P(xu) \) contains a \(G_r \)-conjugate of \(Z \cap P(L) \). Thus, \(Z(P(x)) \) has \(p^2 + 1 \) such subgroups, and \(| Z(P(x)) | \geq p^3 \). Since \(N(P(x)) \) permutes these subgroups 2-transitively, \(| Z(P(x)) | \geq p^4 \). But now \(| P : P(X) | \leq p \) is again ridiculous.

This completes the proof of (1.1) when \(p^3 | G | \).

6. The case \(p^2 \lor G | \)

We now consider the case \(p^2 \lor G | \) of Theorem 1.1. Certainly, \(p^2 | G | \) since \(| \Delta(x) | = p^t \).

Thus, a Sylow \(p \)-subgroup \(P \) of \(G \) has order \(p^2 \), and fixes some point \(x \).

By (2.7), \(p \lor t + 1 \), so \(P \) fixes \(1 + \epsilon \) \(2 \) lines on \(x \).

Let \(L \) be such a line. \(P \) is semiregular on \(\Delta(x) \), so \(P(L) \) is semiregular on \(x^i - L \).

Lemma 6.1. \(\epsilon = 1 \lor r \) or \(3 \), so \(t \lor t - 1 \lor t - 3 \). If \(\epsilon = 3 \) then \(3 \lor p - 1 \) and \(N(P) \lor C(P) \lor SL(2, 3) \).

Proof. By (2.2), \(N(P) \), is 2-transitive on the \(1 + \epsilon \) subgroups \(P(L) \). Hence, if the lemma does not hold then \(\epsilon = 2 \) and \(N(P) \lor C(P) \) induces \(S_1 \) on these subgroups. Then (2.6) implies \(t = p + 2 \). Since \(N(P) \) acts irreducibly on \(P \) and
1 + \epsilon > 1 + \epsilon, P \neq P(x) and hence P(x) = 1. Thus, G, acts on the lines through x as a group of degree p + 3 and order divisible by p^2, which is absurd since p \neq 3 here (as t \neq p^2 - p - 1).

COMPLETION OF THE PROOF OF (1.1). By (6.1) and (2.7), t = 2p + 3 and \epsilon = 3.
Then P has just 2 nontrivial orbits C_1 and C_2 of lines on x. Then the commutator group N(P) fixes C_1 and C_2, and induces a metacyclic group in each C_i, so N(P)\langle g \rangle induces the identity on both orbits by (6.1). N(P)\langle g \rangle has an element g inverting P.
Then g normalizes P(L), so g \in G(x). Now P = [P, g] \leq [P, G(x)] \leq G(x), so \epsilon = 1 + t. This contradiction proves the theorem.

REFERENCES
3. D. G. Higman, Characterizations of families of rank 3 permutation groups by the subdegrees III (unpublished)

UNIVERSITY OF OREGON
EUGENE, OREGON, U.S.A.

MONOMIAL CHARACTERIZATIONS

LOUISE KANTOR

Dradin introduced the notion of monomial conditions and developed monomials in a ring. For primitive rings which have primitive rings which have prime G, monomial conditions related to the characterization of prime G, o monomials.

1. Preliminaries

In this paper, all rings are associative rings, with \(R \) such that \(R \neq 0 \) (without 1) generated by the commutative subring \(X = \{X_1, X_2, \cdots \} \). Let \(Z[X; t] \) be subring of \(\{\text{monic monomials } h \in Z[X]| h^n \neq 0\} \). Say \(y \in R \) is \(\pi(t) \cap Z[X; k] \). Say \(y \in R \) is \(R \)-essentially if \(yr \neq 0 \) and \(b \neq 0 \) in \(R \), there are nonzero and nonessential. Weakening Dradin's definition of \(X_1, \cdots, X_r \) is \(R \)-pivotal if every homomorphism \(\varphi: Z[X; t] \to R \), \(\varphi \) is \(R \)-regular and \(y \) is \(R \)-essential. The \(R \)-pivotal will be the ring obtained by adjoining the group \(Z \oplus R \), endowed with the \((n_1, n_2, n_3, r_1, r_2, r_3) \), and the maps \(n_1, r + r \) and \(r(n_1, r_2) = m_1 + m_2 \). The \(R \)-pivotal will merely be called \(R \)-pivotal for \(R \) a domain.

Received December 13, 1974