Some large trivalent graphs having small diameters
William M. Kantor*

This note concerns an improvement of a result of Babai–Kantor–Lubotzky [BKL]. In that paper it was shown that there is a constant C such that every nonabelian finite simple group G has a set S of 7 generators for which \(d(G,S) \leq C \log |G| \). Here, S was a carefully chosen generating set for G, and d(G,S) denotes the diameter of the corresponding undirected Cayley graph. This bound is best possible, since a simple count (the "Moore bound") shows that \(d(G,S)+1 \geq \log_2 |G| \).

In this note we will decrease |S| so as to have |S|=2 and \(|S \cup S^{-1}|=3 \) in case \(G=PSL(n,q) \) with \(n \geq 10 \):

Theorem. If \(n \geq 10 \) then there is a trivalent (undirected) Cayley graph for \(G=PSL(n,q) \) whose diameter is \(O(\log |G|) \).

Moreover, there is an algorithm which, when given \(g \in G \), finds a word in S representing g in \(O(\log |G|) \) steps (i.e., multiplications and inversions of elements of S). Actually, we will only need to assume that \(n \geq 8 \) when \(q \) is even. There are analogous results obtainable by similar arguments for all the finite simple groups of Lie type, provided that the ranks are not too small. Steinberg [Ste] obtained two generators for each finite group of Lie type; but his generators do not include an involution, and his argument does not produce the desired diameter bound.

Proof. Given a generating set S, the diameter \(d(G,S) \) of the corresponding Cayley graph can be interpreted group-theoretically as the maximum of the lengths of the elements of G as words in \(S \cup S^{-1} \). We will work inside of \(SL(n,q) \), where \(q \) is a power of a prime \(p \). In order to obtain a trivalent graph we will find a set \(S=\{s,g\} \) consisting of two matrices, one of which has order 2, such that the corresponding diameter is \(O(\log |G|) \).

For \(1 \leq i,j \leq n \) with \(i \neq j \) let \(x_{ij}(\alpha) \) be the matrix with 1's on the diagonal, \((i,j)\)-entry \(\alpha \in \mathbb{F}_q \), and 0's elsewhere. Then \(X_{ij}:=(x_{ij}(\alpha) \mid \alpha \in \mathbb{F}_q) \) is isomorphic to the additive group of \(\mathbb{F}_q \). \(U:=\langle X_{ij} \mid 1 \leq i < j \leq n \rangle \) is the group of all upper triangular matrices with 1's on the diagonal, and \(U=\prod_{i<j} X_{ij} \) with the \(\frac{1}{2}n(n-1) \) factors written in any order. If \(e_1, \ldots, e_n \) is the standard basis of \(\mathbb{F}_p^n \), for \(1 \leq i \leq n \) let \(r_i \) and \(s \) be the matrices of the transformations behaving as follows:

- \(r_i : e_i \to e_{i+1} \to -e_i \) and \(e_j \to e_j \) for \(j \neq i, i+1 \), and
- \(s : e_i \to e_{i+1} \to \cdots \to e_n \to (-1)^{n-1}e_1 \).

Then \(r_i=s^i \) (where \(g^h:=h^{-1}gh \) in any group). If \(t \in \mathbb{F}_q^* \) write \(h_1(t):=\text{diag}\left(t,1,\ldots,1\right) \).

* This research was supported in part by NSF grant DMS 87-01794 and NSA grant MDA 904-88-H-2040.
$h_{i+1}(t) = h_i(t)^{s_i}$ and $H_i = \langle h_i(t) \mid t \in \mathbb{F}_q^* \rangle$ for $1 \leq i < n$, so that $H := \prod_i H_i$ is the group of all diagonal matrices in $SL(n,q)$. Also let $d_i := \text{diag}(1,1,\ldots,1)$ and $d_i^{s_i} := d_i^1$; note that $d_i = -1$ and $d_i^2 = 1$.

Calculating with 2×2 matrices, we find that (for any $t = 0$ and α)

$$x_{i,i+1}(\alpha)^{h_i(t)} = x_{i,i+1}(\alpha^{2}) \cdot h_i(t)^{r_i}, \quad r_i^{d_i} = r_i^{-1} \quad \text{and} \quad r_i^4 = 1.$$

Let θ denote a generator of $t \in \mathbb{F}_q^*$.

Case: q is odd and $n \geq 12$. Write
g := $r_1 d_1 \cdot h_3(2) \cdot r_3 d_3 \cdot h_5(2) \cdot r_5 d_5 \cdot r_7 x_{9,10}(1) d_9 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 1/2 \\ 2 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1/2 \cos \phi \\ 2 \cos \phi & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1/2 \cos \phi \\ 2 \cos \phi & 0 \end{pmatrix} \quad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1/2 \cos \phi \\ 2 \cos \phi & 0 \end{pmatrix} \quad \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

We will show that $S := \{ s, g \}$ behaves as required.

Clearly, $\det g = 1$ and $g^2 = 1$. In particular, $|S \cup S^{-1}| = 3$.

Claim 1. All elements of $x_{34}(\mathbb{F}_p)$ have length $O(\log p)$. For,

$$g^4 = h_3(16) h_5(\theta^4) x_{9,10}(4)$$

$$[g^4, g^4 s]^{-8} g = [x_{9,10}(4), x_{10,11}(4)]^{-8} g = x_{13}(16)^{-8} g = x_{13}(16) x_{13}(16)^{d_4} h_3(2) = x_{23}(8).$$

Thus, $x_{34}(8) = x_{23}(8)^n$ has length $O(1)$, while $x_{34}(8)^2 = x_{34}(8 \cdot 2^2)$. Now, as in [BKL], use Horner's Rule to express an arbitrary $t \in \mathbb{F}_p$ in the form

$$t = 8(t/8) = 8 \sum_{i=0}^m b_i 2^i = \cdots (8b_{m-2} 2^2 + 8b_{m-1}) 2^2 + \cdots 2^2 + 8b_0$$

where $m < \log p$ and the b_i are integers satisfying $0 \leq b_i < 2^2$. Then

$$x_{34}(t) = x_{34}(8)^{b_m} x_{34}(8)^{b_{m-1}} x_{34}(8)^{b_{m-2}} \cdots x_{34}(8)^{b_0}$$

has length $O(\log p)$, as claimed.

Claim 2. All elements of $X_{S_6} = x_{56}(\mathbb{F}_q)$ and X_{65} have length $O(\log q)$. For, all elements of
$x_{56}(\mathbb{F}_p) = x_{34}(\mathbb{F}_p)s^2$ have length $O(\log p)$. If $a \in \mathbb{F}_p$ then $x_{56}(a)^g = x_{56}(a\theta^2)$. By writing an arbitrary element of \mathbb{F}_q in the form $t = \sum_{i=0}^{m} a_i \theta^{2i}$, where $m < \log p$ and $a_i \in \mathbb{F}_p$, we can proceed as above to see that each element of X_{56} looks like

$$x_{56}(t) = (\cdots(x_{56}(a_m)^g x_{56}(a_{m-1}))^g \cdots)^g x_{56}(a_0)$$

for some $t \in \mathbb{F}_q$ and hence has length $O(\log q)$. Now conjugate by g in order to obtain the claim.

From this point on the arguments in [BKL] can be used, essentially verbatim. We will merely outline them; the reader is referred to that paper for the details. First one shows that all elements of $L_{12} = \langle X_{12}, X_{21} \rangle \cong \text{SL}(2,q)$ have length $O(\log q)$, and hence in particular r_1 and all elements of H_1 do. Then so does $z := sr_1$. Note that $U \subset YY^s \cdots Y^{s^{n-1}}$ where $Y := X_{12} \ X_{12}^z \ X_{12}^{z^2} \cdots X_{12}^{z^{n-2}}$, and there are cancellations occurring in these products since $s^k(s^{k+1})^{-1} = s^{-1}$ and $z^k(z^{k+1})^{-1} = z^{-1}$. It follows that each element of Y has length $O(n \log q)$, so that each element of U has length $O(n \log q)$. Each element of $H = H_1 \ H_1^S \cdots H_1^{S^{n-2}}$ also has length $O(n \log q)$. Moreover, if $N := \langle H, r_i \mid 1 \leq i < n \rangle$ then $H \leq G$, and each element of $N/H \cong S_n$ has $\{r_i, H \mid 1 \leq i < n\}$-length $O(n)$ since the involution $r_i H$ (of S-length $O(n \log q)$) can be identified with the transposition $(i, i+1) \in S_n$. Then each element of N has S-length $O(n^2 \log q) = O(\log |G|)$, and hence so does each element of $G = \text{UNU}$.\\

Case: q is odd and $n = 10$ or 11. This time write $g := h_1(\theta) r_1 d_1 \cdot h_3(2\theta) r_3 d_5 \cdot d_5 x_{78}(1) d_7$ and $S := \{s, g\}$, and calculate:

$$g' := gg^2 = h_1(\theta) r_1 d_1 \cdot h_3(2\theta) r_3^{-1} x_{78}(1) x_{9,10}(1) d_9$$

$$f := [(gg^2)^4]^{s^2} = h_1(16) x_{56}(4)$$

$$f^2 = h_1(16^2) x_{56}(8).$$

$$v = f^{s^4} = h_5(16) x_{9,10}(4)$$

$$f^{-1} f^v = x_{56}(4 \cdot 1 6^2 - 4)$$

Thus, $x_{56}(b)$ has length $O(1)$ for some $b \in \mathbb{F}_p^*$ (i.e., $b = 4 \cdot 16^2 - 4$ or 8), and hence so does $x_{34}(b) = x_{56}(b)s^{-2}$. Since $x_{34}(b)^g = x_{34}(4b)$, as before it follows that all elements of $x_{34}(\mathbb{F}_p)$ have length $O(\log p)$. Then the same is true of $x_{i,i+1}(\mathbb{F}_p)$ for each i, and hence also of $[\cdots [x_{23}(\mathbb{F}_p), x_{34}(1)], x_{45}(1)], \cdots, x_{n1}(1)] = x_{21}(\mathbb{F}_p)$ (since n is bounded!). Now $r_1 = x_{12}(1)x_{21}(-1)x_{12}(1)$ has length $O(\log p)$, and then so does $g' := gr_1$, where $x_{12}(a)^g = x_{12}(a\theta^2)$. Now proceed as before.

Case: q is even. This time let $g := r_1 \cdot h_4(\theta) r_4 \cdot x_{78}(1)$ and $S := \{s, g\}$. Then

$$g' := gg^s = r_1 r_2 h_4(\theta) r_4 h_5(\theta) r_5 x_{78}(1) x_{89}(1)$$

$$(g^6)^s^{-6} g = [x_{78}(1), x_{89}(1)] x^{-6} g = x_{78}(1) x^{-6} g = x_{13}(1) g = x_{23}(1).$$
Thus, $x_{78}(1) = x_{23}(1)^3$ and $g x_{78}(1) = r_1 h_4(\theta) r_4$ have length $O(1)$, and hence so does $u = gx_{78}(1) (gx_{78}(1))^3 = r_1 h_4(\theta) r_7$. Since $x_{45}(a) = x_{45}(a\theta^2)$ for all a, by using Horner's Rule we find that all elements of X_{45} have length $O(\log q)$, and hence so do all elements of $X_{54} = (X_{45})^8$.

Now proceed as before. □

It should be noted that a major difference between the cases of odd and even q is that, in the former, in order to use the Horner's Rule argument from [BKL] we needed to have available $h_i(2)$ in addition to $h_i(\theta)$ for some i and j. Those elements were introduced by having the additional dimensions.

A very crude estimate for the diameter obtained in the above argument is $d(G,S) < 10^7 \log |G|$.

Remark. The analogue of the Theorem holds for the groups $G = A_n$ and S_n. We will only indicate this here with an example. It is straightforward to use the methods in [BKL] to modify this in order to handle the general case.

Let $G = S_n$ with $n = 2k+1-1$ and k odd. Identify the set $X = \{0,1,\ldots,2k-2\}$ with \mathbb{Z}_{2k-1}, and let $X' = \{x' \mid x \in X\}$ be another copy of X. Consider the n-set $\{\infty\} \cup X \cup X'$ and (letting x range over X) the permutations

$$t: x \mapsto x', \infty \mapsto \infty,$$

$$g: = (\infty,0)(x \mapsto ax)(x' \mapsto [ax + a - 1]),$$

where $a = 2^{k+1}$ so that $a^2 \equiv 2 \pmod{2k-1}$. (Note that $x \mapsto ax$ fixes 0.) We claim that $S = \{t, g\}$ behaves as required: $|S \cup S^{-1}| = 3$ and $d(G,S) = O(\log |G|)$. First note that

$$g^2 = (x \mapsto 2x)(x' \mapsto [2x+1])$$

and

$$(g^2)^k = (x \mapsto 2x+1)(x' \mapsto [2x'])$$

Every $x \in X$ is the image of 0 by a word $w(x)$ in $\{g^2, (g^2)^k\}$ of length $O(k) = O(\log n)$: using Horner's Rule we can write $x = \sum_{i=0}^{k} a_i 2^i = 0^w(x)$ where $w(x) = (g^2)^{a_k} (g^2)^{a_{k-1}} \cdots (g^2)^{a_0}$ with all $a_i \in \{0,1\}$ (cf. [BKL]). Also, $g^k = (\infty,0)$ since k is odd, so that $(\infty,0)$ has length $O(\log n)$. If $x \in X$ then the transposition $(\infty,x) = (\infty,0)^w(x)$ also has length $O(\log n)$. Then the same is true of every transposition $(\infty,x') = (\infty,x)^k$, $x \in X$. Since each element of S_n is a word of length $O(n)$ in the transpositions just constructed, this proves the claim. This time crude estimates yield that $d(G,S) < 25 n \log n$.

References
