Assignment 7; Due Friday, November 11

Read section nine on connected spaces, and the beginning of section ten on pancake problems. Then do the following problems:

- 9.8 abd
- 9.8 ef (graduate students only)
- 9.8 h
- 9.8 i (graduate students only)
- 10.7 a

- Let \(p \in X \). Prove that the union of all connected subsets of \(X \) containing \(p \) is itself connected. This union is thus the largest connected subset of \(X \) containing \(p \). It is called the connected component of \(p \).

- If \(p, q \in X \), prove that the connected component of \(p \) and the connected component of \(q \) are either equal or else disjoint. Conclude that \(X \) can be written uniquely as a disjoint union of connected components.

- What are the connected components of \(\{ (x, y) \in \mathbb{R}^2 \mid y \neq 0 \} \)? What are the connected components of \(\mathbb{Q} \)?

- (graduate students only) Show that each connected component is closed. Show by example that connected components may or may not be open.

- (graduate students only) Let \(O(n) \) be the set of all linear transformations \(A : \mathbb{R}^n \to \mathbb{R}^n \) which preserve distance, so \(||Av|| = ||v|| \). This set is a group, the orthogonal group. Denote the standard dot product on \(\mathbb{R}^n \) by \(<v, w> \). Prove that \(||v + w||^2 - ||v||^2 - ||w||^2 = 2<v, w> \). Conclude that a linear transformation \(A \) is in \(O(n) \) if and only if \(<Av, Aw> = <v, w> \) for all vectors \(v \) and \(w \). Using this result, prove that a matrix \(A \) represents an element of \(O(n) \) if and only if \(A^tA = I \).

Give \(O(n) \) a topology by noticing that each \(n \times n \) matrix has \(n^2 \) components, so \(O(n) \subseteq \mathbb{R}^{n^2} \). Prove that \(O(n) \) is compact.

Find the connected components of \(O(n) \). I’ll give two hints:

Suppose \(A \subseteq X \) and suppose that whenever \(p \) and \(q \) are points in \(A \), there is a continuous map \(\gamma : [0, 1] \to A \) such that \(\gamma(0) = p \) and \(\gamma(1) = q \). Then \(A \) is connected. This result is easy to prove.
You may use without proof the following result from linear algebra: If $A \in O(n)$, there exist matrices B and C in $O(n)$ such that $A = BC B^{-1}$ where C has 1×1 and 2×2 blocks on the diagonal and is otherwise zero, and the 1×1 blocks are (± 1) and the 2×2 blocks are
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]