8.2a If X is finite, then every set is open and X has the discrete topology. Thus if $x \neq y$, the open sets $U = \{x\}$ and $V = \{y\}$ separate x and y.

Conversely, suppose X is Hausdorff and let $x \neq y$. Choose disjoint U and V with $x \in U$ and $y \in V$. Notice that $U = X - A$ and $V = X - B$ where A and B are finite. Then $U \cap V = X - (A \cup B) = \emptyset$ and so $X = A \cup B$ is also finite.

8.14a Since $f : X \to Y$ is continuous, $U \subseteq Y$ open implies $f^{-1}(U)$ open. Conversely, suppose $f^{-1}(U)$ open. Then $X - f^{-1}(U)$ is closed in the compact set X, so compact. By one of our theorems, $f(X - f^{-1}(U)) \subseteq Y$ is compact in the Hausdorff space Y, so closed. But $f(X - f^{-1}(U)) = Y - U$ since f is onto. So $Y - U$ is closed and U is open.

8.14b Suppose Y is Hausdorff. Whenever $x \times y \notin D$ we have $x \neq y$ and we can find open $x \in U$ and $y \in V$ with $U \cap V = \emptyset$. It follows that $x \times y \in U \times V \subseteq Y \times Y$ and $(U \times V) \cap D = \emptyset$. The union of all such $U \times V$ is an open set which is exactly $Y \times Y - D$, so D is closed.

Conversely, suppose D is closed. Then $W = Y \times Y - D$ is open. If $x \neq y$, then $x \times y \in W$, so by definition of open sets in the product topology there is a rectangle $U \times V$ with $x \times y \in U \times V \subseteq Y \times Y - D$. Since $U \times V$ does not intersect D, $U \cap V = \emptyset$.

8.14c Consider the map $f \times f : X \times X \to Y \times Y$. Since Y is Hausdorff, the diagonal $D \subseteq Y \times Y$ is closed, so $(f \times f)^{-1}(D)$ is closed. But this is exactly the set of all $x \times y \in X \times X$ such that $f(x) \times f(y) \in D$, that is $f(x) = f(y)$.

8.14e Suppose X is compact, Y is Hausdorff, and $f : X \to Y$ is continuous and onto. If $A \subseteq X$ is closed, then A is compact, so $f(A) \subseteq Y$ is compact in a Hausdorff space and so closed.

Conversely, suppose f takes closed sets to closed sets. Apply theorem 8.11: If Y is the quotient space of the compact Hausdorff space X determined by an onto map $f : X \to Y$, and if f is a closed mapping, then Y is Hausdorff.

Continuation of 8.14e Now we must prove that under the same hypotheses, Y is Hausdorff if and only if $E = \{ x_1 \times x_2 \ | \ f(x_1) = f(x_2) \}$ is closed. Half of this was proved in 8.14c. We must still prove that if this set is closed, then Y is Hausdorff. This will follow from the first part of the problem if we can prove that E closed implies that f is a closed mapping.

So suppose $A \subseteq X$ is closed. We must prove that $f(A)$ is closed; since Y has the quotient topology, we must prove that $f^{-1}(f(A))$ is closed, and thus that

$$\{ x \in X \ | \ \exists a \in A \text{ with } f(x) = f(a) \}$$
is closed. But \(A \) closed in \(X \) implies that \(X \times A \) is closed in \(X \times X \). We are assuming \(E \) is closed, so \((X \times A) \cap E \) is closed. This set is \(\{x \times a \mid f(x) = f(a)\} \). Since the natural projection \(\pi : X \times X \to X \) is continuous and since \(X \) is compact Hausdorff, \(\pi \) maps closed sets to closed sets, so \(\pi(A \cap E) \) is closed. But this set is exactly \(\{x \in X \mid \exists a \in A \text{ with } f(x) = f(a)\} \).

8.14i Notice that \(x \sim x \) since \(x - x = 0 \in Q \). If \(x \sim y \), then \(x - y \in Q \) and so \(-(x - y) = y - x \in Q \), so \(y \sim x \). Finally if \(x \sim y \) and \(y \sim z \), then \(x - y \in Q \) and \(y - z \in Q \), so \((x - y) + (y - z) = x - z \in Q \), so \(x \sim z \).

Let \(\pi : R \to R/\sim \) and give \(R/\sim \) the quotient topology. Call the resulting space \(Y \). Notice that \(Y \) is uncountable, since each equivalence class contains only countably many elements. In particular, \(Y \) has two distinct points. I will prove that \(Y \) has the concrete topology: the only open sets are \(\emptyset \) and \(Y \). If so, it will follow that \(Y \) is not Hausdorff because there exist distinct elements \(y_1 \neq y_2 \) and yet the only possible open neighborhoods of \(y_1 \) and \(y_2 \) are \(Y \) and \(Y \) and these are not disjoint.

Let \(U \subseteq Y \) be nonempty and open. We will prove \(U = Y \). Notice first that \(\pi^{-1}(U) \) is nonempty and open; call this set \(V \). The set \(V \) contains a nontrivial interval \((a, b) \). I claim that every real number is equivalent to an element in \((a, b) \). Indeed, if \(r \in R \) then the interval \((a - r, b - r) \) contains a rational \(q \), so \(a - r < q < b - r \) and then \(a < r + q < b \) and \(r + q \sim r \). Any \(y \in Y \) is represented by some real number, which we can assume is in \((a, b) \) and thus \(y \in \pi(\pi^{-1}(U)) = U \). So \(U = Y \).

8.14j To understand this problem, consider first the case when \(X \) is a large closed rectangle about the origin and \(U \) is a smaller open disk inside this rectangle.
The space $X/(X-U)$ is formed by gluing all points in $X-U$ together. This means that all of the points which are darker gray become a single point. In particular, all the points on the boundary of U become a single point, so the light gray disk becomes a sphere. Notice that U^∞ is also a sphere, since U is homeomorphic to \mathbb{R}^n and thus U^∞ is homeomorphic to $(\mathbb{R}^n)^\infty$, which is a sphere.

Now we give the general argument. As a set, $U^\infty = U \cup \{\infty\}$. Next we analyze $X/(X-U)$ as a set. Notice that $X = U \cup (X-U)$. Each point in U represents a unique point in $X/(X-U)$ and all of the points in $X-U$ represent the same point, p. Therefore, as a set $X/(X-U)$ is $U \cup \{p\}$ where p is the point represented by all elements of $X-U$. Map U^∞ to $X/(X-U)$ by sending points in U to themselves and sending ∞ to p. This map is clearly one-to-one and onto. We must show that this map induces a one-to-one correspondence between open sets $V \subseteq U^\infty$ and open sets $W \subseteq X/(X-U)$.

Incidentally, the previous argument assumes that $X-U$ is nonempty. Otherwise there would be no p and we would be in trouble.

There are two types of open sets in U^∞. First there are open sets $V \subseteq U$. Second there are open sets of the form $V = (U-A) \cup \{\infty\}$ where $A \subseteq U$ is compact and closed.

There are also two types of open sets in $X/(X-U)$, namely open sets which do not contain the special point p and open sets which contain this point. Each point of a subset W which does not contain p is represented by a unique point in U, so we can identify such subsets of $X/(X-U)$ with subsets $W \subseteq U$, and such a set is open in $X/(X-U)$ exactly when its inverse image in X is open, i.e., exactly when $W \subseteq U$ is open.

The open sets of $X/(X-U)$ which contain p have the form $W = V \cup \{p\}$ where $V \subseteq U$. This set is open exactly when its inverse image in X is open. The inverse image is $V \cup (X-U) = X - (U \cap V^c)$ and is open just in case $U \cap V^c$ is closed in X. Since X is compact Hausdorff, this happens just in case $U \cap V^c$ is compact. Call this set A and notice that $V = U-A$.

To summarize, the open sets in $X/(X-U)$ have the form $W \subseteq U$ where W is open, or $W = (U-A) \cup \{p\}$ where $A \subseteq U$ is closed and compact.

It is immediately clear that our map sets up a one-to-one correspondence between open sets in U^∞ and open sets in $X/(X-U)$.

Continuation of 8.14j Consider the special case $U = X-\{p\}$. Then $U^\infty = (X-\{p\})^\infty$ is homeomorphic to $X/(X-(X-\{p\})) = X/\{p\}$. This last space is X with the point p glued to itself, i.e., just X.

3