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This is an expanded version of the proof of excision from class, using relatively few for-
mulas. This is not meant to be entirely self-contained, but rather to be read in addition to
Hatcher’s more explicit argument. This has not been proofread, and likely has typos.

Our goal was to prove:

Proposition 1. Let U be a collection of subsets of X whose interiors cover X, and let C%(X)
be the subcomplex of C.(X) generated by the singular simplices o: A" — X so that o(A™)
is contained in some U; € U. Then the inclusion CY(X) — C.(X) is a chain homotopy
equivalence.

Recall that we defined the barycentric subdivision of a simplex as in Hatcher. We then
defined a barycentric subdivision operator B, on C,(X) by

O') = Zﬂ:0|5n
in

where the sum is over the n-simplices of the barycentric subdivision of A™. Implicitly, we
are identifying each ¢ with the standard n-simplex. It’s important we do this in a somewhat
consistent way. A simplex § corresponds to a sequence of faces of A", fo C f1 € -+ C
fn = A™: the vertices of ¢ are the barycenters of these faces. Identify 5” Wlth the standard
simplex by the unique linear homeomorphism which sends (the vertex corresponding to) fo
to v, (the vertex corresponding to) f; to vy, and so on.

Lemma 2. There are choice of signs in the definition of B, so that the B, form a chain
map, and By s the identity.

Proof. We prove this by induction on n. Suppose we have chosen signs so that for ¢ < n,
0o B; = B;_100. Let Y denote the barycentric subdivision of A”. We distinguish two kinds
of (n — 1)-simplices in Y: boundary facets, which lie on 9Y, and internal facets, which do
not. More precisely, a facet of Y corresponds to a sequence fo C f; € --- C f,—1 of faces
of A™. A facet is internal if f,,_; = A", the top-dimensional face, and is a boundary face if
dim f,,_1 = n — 1. There is a bijection between boundary facets of Y and n-simplices in Y:
a boundary facet fo C fi € -+ € f,_1 corresponds to fo C f1 € --- C fro1 © A™

By construction, B,_1(9(¢)) is the sum of the restrictions of ¢ to the boundary facets of
Y, with some signs. So, there is a unique way to choose signs in the definition of B,, so that

0B,(0) = B,_1(00) + «

where « is a linear combination of (restrictions of o to) internal facets. We will show that
a = 0, completing the proof. (Actually, there’s a unique way to choose signs as long as o is,
say, injective; in general (e.g., if X = {pt}), there might be some unexpected cancellation.
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Here and in the rest of the proof, we’ll assume we’re making the universal choice, i.e., the
one that doesn’t depend on some extra cancellation from something specific about ¢.) We
have

0= 0(9(Bn(0))) = d(Bn-1(9(0))) + 0(e) = Bn1(0(9(0))) + () = 9(a),

so « is a cycle. However, each internal facet has a unique boundary facet on the boundary
of A™: given an internal facet fo C fi € --- € f,.1 = A", one of its boundaries is
fo S f1 € --- C fa_o. Moreover, each internal facet corresponds to a different codimension-2
face on the boundary of A™. So, the fact that d(«) = 0 implies that, in fact, « = 0. (Really,
the same caveat as just above applies.) 0

The construction of B does not really depend on X: it really happened inside the simplex
A™. This is made precise by two observations:

e Write [A"] to mean the identity map of A", viewed as an element of C,,(A™). Then

for any singular simplex o: A" — X, 0 = g4 ([A"]).

e The operation B is natural in the sense that givenamap f: X =Y, fyoB = Bo f,.
Both properties are immediate from our construction. Combined, they mean that B(o) =
04+ B([A™]), so B is determined by what it does to A™.

One reason B helps is that repeating it enough times does subdivide a simplex. That is:

k

. . . . . *
Lemma 3. Given a singular n-simplex o: A™ — X, there is an integer k so that Bo - -- o B(0)
lies in CY(X).

Proof sketch. First, if we take repeated barycentric subdivisions of the n-simplex then the
diameters of the sub-simplices go to zero uniformly. Now, consider the cover o~U of A™.
By the Lebesgue number lemma, there is an € so that any ball of radius € is contained in

some element of this cover. Choose k so that in the k" barycentric subdivision of A", every
k

—f
simplex has diameter less than €. Then Bo ---o0 B(o) lies in CY(X). O

The other key ingredient we needed was a chain homotopy S between B and the identity
map:

Lemma 4. There is a chain homotopy S between B and the identity map. Moreover, we
can choose S so that:

(1) The chain homotopy S is natural in the sense that given f: X =Y, fa0S = So fu..
(2) Given a singular n-simplex o: A™ — X, the image of S(c) agrees with the image of
0.

Proof. Write SX for the map S: C,,(X) — Cp,1(X), so Point (1) reads more precisely

furo Sy =250 fau

To satisfy Point (1), we must define S (o) = 04S2"([A"]). Moreover, such an S, will
automatically satisfy Point (2).

We will construct the S,, inductively. Since By = I, we can take Sy = 0. Now, suppose we
have constructed S; for i < n, so that Point (1) is satisfied and
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for i < n. We first construct S5 ([A"]), so that
(S ([A™M)) = Bu([A"]) — [A"] = S35 (9[A™).
To do so, observe that
O(Ba([A™]) = [A"] = S5 (9[A™)) = 0B.([A"]) — O[A"] — 08, (9[A™))
= B1(0[A"]) = 9[A"] + S75(0%[A"]) — Ba-1(9[A™)) + O[A"]

=0.
But since H,,(A™) = 0, this implies that B, ([A"]) — [A"] —S2",(9]A"]) is a boundary. So, we
can define S2([A"]) to be an n + 1-chain whose boundary is B, ([A"]) — [A"] — S2", (O[A"]).

Now, define SX using Point (1), i.e., by S2X(c) = 0452" ([A"]). We claim that the result
is a chain homotopy between B,, and I, for any X. Indeed,

0 (9) + S)1(00) = Doy 53" ([A") + 045,77 (9]A")
= 7408, ([A") + 045,71 (91A")
= 04(By([A"]) = [A"]) = Bu(o) — 0.
(The first equality takes a little thought.) Finally, it is immediate from the definitions that
Point (1) holds for any map f: X — Y. O

It’s now easy to see that the inclusion C%(X) < C,(X) induces an isomorphism on homol-
ogy. To see the map on homology is surjective, suppose « is a cycle in C,(X), representing
some homology class [a]. Then we can write o as a finite linear combination of singular
n-simplices in X. So, by Lemma 3, there is a k so that B*(a) € C%(X). But by Lemma 4,

B(a) — a = 3(S(a)) + 5(3(a)) = A(S(a)),

so [B(a)] = [a] and, inductively, [B*(a)] = [a].
Similarly, to see that the map on homology is injective, suppose o € C%(X) is the bound-
ary of some 8 € C,41(X). Then

a=9(8) = (B(B) = 5(2(8)) = (5(8))) = (B(B)) = (5(e)).
Since S(a) € C¥(X), a and a + 9(S(a)) = O(B(f)) represent the same element of HY(X),
and this is the boundary of B(). Repeating this k times, a and 9(B*(3)) represent the
same element of HY(X). But for large enough k, B*(8) € CY,,(X), so [0(B*(3))] = 0 in
HY(X). So, a represents the trivial class, as desired.
Finally, to get that the map is a homotopy equivalence, we invoked:

Lemma 5. If a chain map f: C, — D, of bounded-below chain complexes of free modules
induces an isomorphism on homology then it is a chain homotopy equivalence.

I promised a proof soon, and still do.
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