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This is an expanded version of the proof of excision from class, using relatively few for-
mulas. This is not meant to be entirely self-contained, but rather to be read in addition to
Hatcher’s more explicit argument. This has not been proofread, and likely has typos.

Our goal was to prove:

Proposition 1. Let U be a collection of subsets of X whose interiors cover X, and let CU
∗ (X)

be the subcomplex of C∗(X) generated by the singular simplices σ : ∆n → X so that σ(∆n)
is contained in some Ui ∈ U . Then the inclusion CU

∗ (X) ↪→ C∗(X) is a chain homotopy
equivalence.

Recall that we defined the barycentric subdivision of a simplex as in Hatcher. We then
defined a barycentric subdivision operator Bn on Cn(X) by

Bn(σ) =
∑
δn

±σ|δn

where the sum is over the n-simplices of the barycentric subdivision of ∆n. Implicitly, we
are identifying each δ with the standard n-simplex. It’s important we do this in a somewhat
consistent way. A simplex δ corresponds to a sequence of faces of ∆n, f0 ⊊ f1 ⊊ · · · ⊊
fn = ∆n: the vertices of δ are the barycenters of these faces. Identify δn with the standard
simplex by the unique linear homeomorphism which sends (the vertex corresponding to) f0
to v0, (the vertex corresponding to) f1 to v1, and so on.

Lemma 2. There are choice of signs in the definition of Bn so that the Bn form a chain
map, and B0 is the identity.

Proof. We prove this by induction on n. Suppose we have chosen signs so that for i < n,
∂ ◦Bi = Bi−1 ◦∂. Let Y denote the barycentric subdivision of ∆n. We distinguish two kinds
of (n − 1)-simplices in Y : boundary facets, which lie on ∂Y , and internal facets, which do
not. More precisely, a facet of Y corresponds to a sequence f0 ⊊ f1 ⊊ · · · ⊊ fn−1 of faces
of ∆n. A facet is internal if fn−1 = ∆n, the top-dimensional face, and is a boundary face if
dim fn−1 = n− 1. There is a bijection between boundary facets of Y and n-simplices in Y :
a boundary facet f0 ⊊ f1 ⊊ · · · ⊊ fn−1 corresponds to f0 ⊊ f1 ⊊ · · · ⊊ fn−1 ⊊ ∆n.
By construction, Bn−1(∂(σ)) is the sum of the restrictions of σ to the boundary facets of

Y , with some signs. So, there is a unique way to choose signs in the definition of Bn so that

∂Bn(σ) = Bn−1(∂σ) + α

where α is a linear combination of (restrictions of σ to) internal facets. We will show that
α = 0, completing the proof. (Actually, there’s a unique way to choose signs as long as σ is,
say, injective; in general (e.g., if X = {pt}), there might be some unexpected cancellation.
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Here and in the rest of the proof, we’ll assume we’re making the universal choice, i.e., the
one that doesn’t depend on some extra cancellation from something specific about σ.) We
have

0 = ∂(∂(Bn(σ))) = ∂(Bn−1(∂(σ))) + ∂(α) = Bn−1(∂(∂(σ))) + ∂(α) = ∂(α),

so α is a cycle. However, each internal facet has a unique boundary facet on the boundary
of ∆n: given an internal facet f0 ⊊ f1 ⊊ · · · ⊊ fn−1 = ∆n, one of its boundaries is
f0 ⊊ f1 ⊊ · · · ⊊ fn−2. Moreover, each internal facet corresponds to a different codimension-2
face on the boundary of ∆n. So, the fact that ∂(α) = 0 implies that, in fact, α = 0. (Really,
the same caveat as just above applies.) □

The construction of B does not really depend on X: it really happened inside the simplex
∆n. This is made precise by two observations:

• Write [∆n] to mean the identity map of ∆n, viewed as an element of Cn(∆
n). Then

for any singular simplex σ : ∆n → X, σ = σ#([∆
n]).

• The operation B is natural in the sense that given a map f : X → Y , f#◦B = B◦f#.
Both properties are immediate from our construction. Combined, they mean that B(σ) =
σ#B([∆n]), so B is determined by what it does to ∆n.
One reason B helps is that repeating it enough times does subdivide a simplex. That is:

Lemma 3. Given a singular n-simplex σ : ∆n → X, there is an integer k so that

k︷ ︸︸ ︷
B ◦ · · · ◦B(σ)

lies in CU
n (X).

Proof sketch. First, if we take repeated barycentric subdivisions of the n-simplex then the
diameters of the sub-simplices go to zero uniformly. Now, consider the cover σ−1U of ∆n.
By the Lebesgue number lemma, there is an ϵ so that any ball of radius ϵ is contained in
some element of this cover. Choose k so that in the kth barycentric subdivision of ∆n, every

simplex has diameter less than ϵ. Then

k︷ ︸︸ ︷
B ◦ · · · ◦B(σ) lies in CU

n (X). □

The other key ingredient we needed was a chain homotopy S between B and the identity
map:

Lemma 4. There is a chain homotopy S between B and the identity map. Moreover, we
can choose S so that:

(1) The chain homotopy S is natural in the sense that given f : X → Y , f# ◦S = S ◦f#.
(2) Given a singular n-simplex σ : ∆n → X, the image of S(σ) agrees with the image of

σ.

Proof. Write SX
n for the map S : Cn(X) → Cn+1(X), so Point (1) reads more precisely

f# ◦ SX
n = SY

n ◦ f#.

To satisfy Point (1), we must define SX
n (σ) = σ#S

∆n

n ([∆n]). Moreover, such an Sn will
automatically satisfy Point (2).

We will construct the Sn inductively. Since B0 = I, we can take S0 = 0. Now, suppose we
have constructed Si for i < n, so that Point (1) is satisfied and

∂Si + Si−1 ◦ ∂ = Bi − I
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for i < n. We first construct S∆
n ([∆

n]), so that

∂(S∆n

n ([∆n])) = Bn([∆
n])− [∆n]− S∆n

n−1(∂[∆
n]).

To do so, observe that

∂
(
Bn([∆

n])− [∆n]− S∆n

n−1(∂[∆
n])

)
= ∂Bn([∆

n])− ∂[∆n]− ∂S∆n

n−1(∂[∆
n])

= Bn−1(∂[∆
n])− ∂[∆n] + S∆n

n−2(∂
2[∆n])−Bn−1(∂[∆

n]) + ∂[∆n]

= 0.

But since Hn(∆
n) = 0, this implies that Bn([∆

n])− [∆n]−S∆n

n−1(∂[∆
n]) is a boundary. So, we

can define S∆
n ([∆

n]) to be an n+1-chain whose boundary is Bn([∆
n])− [∆n]−S∆n

n−1(∂[∆
n]).

Now, define SX
n using Point (1), i.e., by SX

n (σ) = σ#S
∆n

n ([∆n]). We claim that the result
is a chain homotopy between Bn and I, for any X. Indeed,

∂SX
n (σ) + SX

n−1(∂σ) = ∂σ#S
∆n

n ([∆n]) + σ#S
[∆n]
n−1 (∂[∆

n])

= σ#∂S
∆n

n ([∆n]) + σ#S
[∆n]
n−1 (∂[∆

n])

= σ#(Bn([∆
n])− [∆n]) = Bn(σ)− σ.

(The first equality takes a little thought.) Finally, it is immediate from the definitions that
Point (1) holds for any map f : X → Y . □

It’s now easy to see that the inclusion CU
∗ (X) ↪→ C∗(X) induces an isomorphism on homol-

ogy. To see the map on homology is surjective, suppose α is a cycle in Cn(X), representing
some homology class [α]. Then we can write α as a finite linear combination of singular
n-simplices in X. So, by Lemma 3, there is a k so that Bk(α) ∈ CU

n (X). But by Lemma 4,

B(α)− α = ∂(S(α)) + S(∂(α)) = ∂(S(α)),

so [B(α)] = [α] and, inductively, [Bk(α)] = [α].
Similarly, to see that the map on homology is injective, suppose α ∈ CU

n (X) is the bound-
ary of some β ∈ Cn+1(X). Then

α = ∂(β) = ∂(B(β)− S(∂(β))− ∂(S(β))) = ∂(B(β))− ∂(S(α)).

Since S(α) ∈ CU
∗ (X), α and α + ∂(S(α)) = ∂(B(β)) represent the same element of HU

n (X),
and this is the boundary of B(β). Repeating this k times, α and ∂(Bk(β)) represent the
same element of HU

n (X). But for large enough k, Bk(β) ∈ CU
n+1(X), so [∂(Bk(β))] = 0 in

HU
n (X). So, α represents the trivial class, as desired.
Finally, to get that the map is a homotopy equivalence, we invoked:

Lemma 5. If a chain map f : C∗ → D∗ of bounded-below chain complexes of free modules
induces an isomorphism on homology then it is a chain homotopy equivalence.

I promised a proof soon, and still do.
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