MATH 635 PROOF OF EXCISION FEBRUARY 2024 ## ROBERT LIPSHITZ This is an expanded version of the proof of excision from class, using relatively few formulas. This is not meant to be entirely self-contained, but rather to be read in addition to Hatcher's more explicit argument. This has not been proofread, and likely has typos. Our goal was to prove: **Proposition 1.** Let \mathcal{U} be a collection of subsets of X whose interiors cover X, and let $C_*^{\mathcal{U}}(X)$ be the subcomplex of $C_*(X)$ generated by the singular simplices $\sigma \colon \Delta^n \to X$ so that $\sigma(\Delta^n)$ is contained in some $U_i \in \mathcal{U}$. Then the inclusion $C_*^{\mathcal{U}}(X) \hookrightarrow C_*(X)$ is a chain homotopy equivalence. Recall that we defined the barycentric subdivision of a simplex as in Hatcher. We then defined a barycentric subdivision operator B_n on $C_n(X)$ by $$B_n(\sigma) = \sum_{\delta^n} \pm \sigma|_{\delta^n}$$ where the sum is over the *n*-simplices of the barycentric subdivision of Δ^n . Implicitly, we are identifying each δ with the standard *n*-simplex. It's important we do this in a somewhat consistent way. A simplex δ corresponds to a sequence of faces of Δ^n , $f_0 \subseteq f_1 \subseteq \cdots \subseteq f_n = \Delta^n$: the vertices of δ are the barycenters of these faces. Identify δ^n with the standard simplex by the unique linear homeomorphism which sends (the vertex corresponding to) f_0 to v_0 , (the vertex corresponding to) f_1 to v_1 , and so on. **Lemma 2.** There are choice of signs in the definition of B_n so that the B_n form a chain map, and B_0 is the identity. Proof. We prove this by induction on n. Suppose we have chosen signs so that for i < n, $\partial \circ B_i = B_{i-1} \circ \partial$. Let Y denote the barycentric subdivision of Δ^n . We distinguish two kinds of (n-1)-simplices in Y: boundary facets, which lie on ∂Y , and internal facets, which do not. More precisely, a facet of Y corresponds to a sequence $f_0 \subsetneq f_1 \subsetneq \cdots \subsetneq f_{n-1}$ of faces of Δ^n . A facet is internal if $f_{n-1} = \Delta^n$, the top-dimensional face, and is a boundary face if dim $f_{n-1} = n-1$. There is a bijection between boundary facets of Y and n-simplices in Y: a boundary facet $f_0 \subsetneq f_1 \subsetneq \cdots \subsetneq f_{n-1} \subset \Delta^n$. By construction, $B_{n-1}(\partial(\sigma))$ is the sum of the restrictions of σ to the boundary facets of Y, with some signs. So, there is a unique way to choose signs in the definition of B_n so that $$\partial B_n(\sigma) = B_{n-1}(\partial \sigma) + \alpha$$ where α is a linear combination of (restrictions of σ to) internal facets. We will show that $\alpha = 0$, completing the proof. (Actually, there's a unique way to choose signs as long as σ is, say, injective; in general (e.g., if $X = \{pt\}$), there might be some unexpected cancellation. Date: February 1, 2024. 2 LIPSHITZ Here and in the rest of the proof, we'll assume we're making the universal choice, i.e., the one that doesn't depend on some extra cancellation from something specific about σ .) We have $$0 = \partial(\partial(B_n(\sigma))) = \partial(B_{n-1}(\partial(\sigma))) + \partial(\alpha) = B_{n-1}(\partial(\partial(\sigma))) + \partial(\alpha) = \partial(\alpha),$$ so α is a cycle. However, each internal facet has a unique boundary facet on the boundary of Δ^n : given an internal facet $f_0 \subsetneq f_1 \subsetneq \cdots \subsetneq f_{n-1} = \Delta^n$, one of its boundaries is $f_0 \subsetneq f_1 \subsetneq \cdots \subsetneq f_{n-2}$. Moreover, each internal facet corresponds to a different codimension-2 face on the boundary of Δ^n . So, the fact that $\partial(\alpha) = 0$ implies that, in fact, $\alpha = 0$. (Really, the same caveat as just above applies.) The construction of B does not really depend on X: it really happened inside the simplex Δ^n . This is made precise by two observations: - Write $[\Delta^n]$ to mean the identity map of Δ^n , viewed as an element of $C_n(\Delta^n)$. Then for any singular simplex $\sigma \colon \Delta^n \to X$, $\sigma = \sigma_\#([\Delta^n])$. - The operation B is natural in the sense that given a map $f: X \to Y$, $f_{\#} \circ B = B \circ f_{\#}$. Both properties are immediate from our construction. Combined, they mean that $B(\sigma) = \sigma_{\#}B([\Delta^n])$, so B is determined by what it does to Δ^n . One reason B helps is that repeating it enough times does subdivide a simplex. That is: **Lemma 3.** Given a singular n-simplex $\sigma: \Delta^n \to X$, there is an integer k so that $B \circ \cdots \circ B(\sigma)$ lies in $C_n^{\mathcal{U}}(X)$. *Proof sketch.* First, if we take repeated barycentric subdivisions of the *n*-simplex then the diameters of the sub-simplices go to zero uniformly. Now, consider the cover $\sigma^{-1}\mathcal{U}$ of Δ^n . By the Lebesgue number lemma, there is an ϵ so that any ball of radius ϵ is contained in some element of this cover. Choose k so that in the k^{th} barycentric subdivision of Δ^n , every simplex has diameter less than $$\epsilon$$. Then $B \circ \cdots \circ B(\sigma)$ lies in $C_n^{\mathcal{U}}(X)$. The other key ingredient we needed was a chain homotopy S between B and the identity map: **Lemma 4.** There is a chain homotopy S between B and the identity map. Moreover, we can choose S so that: - (1) The chain homotopy S is natural in the sense that given $f: X \to Y$, $f_{\#} \circ S = S \circ f_{\#}$. - (2) Given a singular n-simplex $\sigma \colon \Delta^n \to X$, the image of $S(\sigma)$ agrees with the image of σ . *Proof.* Write S_n^X for the map $S: C_n(X) \to C_{n+1}(X)$, so Point (1) reads more precisely $$f_{\#} \circ S_n^X = S_n^Y \circ f_{\#}.$$ To satisfy Point (1), we must define $S_n^X(\sigma) = \sigma_\# S_n^{\Delta^n}([\Delta^n])$. Moreover, such an S_n will automatically satisfy Point (2). We will construct the S_n inductively. Since $B_0 = \mathbb{I}$, we can take $S_0 = 0$. Now, suppose we have constructed S_i for i < n, so that Point (1) is satisfied and $$\partial S_i + S_{i-1} \circ \partial = B_i - \mathbb{I}$$ for i < n. We first construct $S_n^{\Delta}([\Delta^n])$, so that $$\partial(S_n^{\Delta^n}([\Delta^n])) = B_n([\Delta^n]) - [\Delta^n] - S_{n-1}^{\Delta^n}(\partial[\Delta^n]).$$ To do so, observe that $$\begin{split} \partial \left(B_n([\Delta^n]) - [\Delta^n] - S_{n-1}^{\Delta^n}(\partial[\Delta^n])\right) &= \partial B_n([\Delta^n]) - \partial[\Delta^n] - \partial S_{n-1}^{\Delta^n}(\partial[\Delta^n]) \\ &= B_{n-1}(\partial[\Delta^n]) - \partial[\Delta^n] + S_{n-2}^{\Delta^n}(\partial^2[\Delta^n]) - B_{n-1}(\partial[\Delta^n]) + \partial[\Delta^n] \\ &= 0 \end{split}$$ But since $H_n(\Delta^n) = 0$, this implies that $B_n([\Delta^n]) - [\Delta^n] - S_{n-1}^{\Delta^n}(\partial[\Delta^n])$ is a boundary. So, we can define $S_n^{\Delta}([\Delta^n])$ to be an n+1-chain whose boundary is $B_n([\Delta^n]) - [\Delta^n] - S_{n-1}^{\Delta^n}(\partial[\Delta^n])$. Now, define S_n^X using Point (1), i.e., by $S_n^X(\sigma) = \sigma_\# S_n^{\Delta^n}([\Delta^n])$. We claim that the result is a chain homotopy between B_n and \mathbb{I} , for any X. Indeed, $$\partial S_n^X(\sigma) + S_{n-1}^X(\partial \sigma) = \partial \sigma_\# S_n^{\Delta^n}([\Delta^n]) + \sigma_\# S_{n-1}^{[\Delta^n]}(\partial [\Delta^n])$$ $$= \sigma_\# \partial S_n^{\Delta^n}([\Delta^n]) + \sigma_\# S_{n-1}^{[\Delta^n]}(\partial [\Delta^n])$$ $$= \sigma_\# (B_n([\Delta^n]) - [\Delta^n]) = B_n(\sigma) - \sigma.$$ (The first equality takes a little thought.) Finally, it is immediate from the definitions that Point (1) holds for any map $f: X \to Y$. It's now easy to see that the inclusion $C_*^{\mathcal{U}}(X) \hookrightarrow C_*(X)$ induces an isomorphism on homology. To see the map on homology is surjective, suppose α is a cycle in $C_n(X)$, representing some homology class $[\alpha]$. Then we can write α as a finite linear combination of singular n-simplices in X. So, by Lemma 3, there is a k so that $B^k(\alpha) \in C_n^{\mathcal{U}}(X)$. But by Lemma 4, $$B(\alpha) - \alpha = \partial(S(\alpha)) + S(\partial(\alpha)) = \partial(S(\alpha)),$$ so $[B(\alpha)] = [\alpha]$ and, inductively, $[B^k(\alpha)] = [\alpha]$. Similarly, to see that the map on homology is injective, suppose $\alpha \in C_n^{\mathcal{U}}(X)$ is the boundary of some $\beta \in C_{n+1}(X)$. Then $$\alpha = \partial(\beta) = \partial(B(\beta) - S(\partial(\beta)) - \partial(S(\beta))) = \partial(B(\beta)) - \partial(S(\alpha)).$$ Since $S(\alpha) \in C_*^{\mathcal{U}}(X)$, α and $\alpha + \partial(S(\alpha)) = \partial(B(\beta))$ represent the same element of $H_n^{\mathcal{U}}(X)$, and this is the boundary of $B(\beta)$. Repeating this k times, α and $\partial(B^k(\beta))$ represent the same element of $H_n^{\mathcal{U}}(X)$. But for large enough $k, B^k(\beta) \in C_{n+1}^{\mathcal{U}}(X)$, so $[\partial(B^k(\beta))] = 0$ in $H_n^{\mathcal{U}}(X)$. So, α represents the trivial class, as desired. Finally, to get that the map is a homotopy equivalence, we invoked: **Lemma 5.** If a chain map $f: C_* \to D_*$ of bounded-below chain complexes of free modules induces an isomorphism on homology then it is a chain homotopy equivalence. I promised a proof soon, and still do. Email address: lipshitz@uoregon.edu