MATH 636 SPRING 2024
 HOMEWORK 1 DUE APRIL 8, 2024

INSTRUCTOR: ROBERT LIPSHITZ

Required problems:

(1) Use the Künneth theorem to compute the homology groups of the following spaces. Then use the universal coefficient theorem to compute their cohomology groups:
(a) $S^{1} \times M_{g}$, where M_{g} is the closed, orientable surface of genus g.
(b) $K \times K$, where K is the Klein bottle.
(c) $M(\mathbb{Z} / p \mathbb{Z}, m) \times M(\mathbb{Z} / q \mathbb{Z}, n)$ (a product of two Moore spaces), where p and q are (not necessarily distinct) primes.
(d) $M(\mathbb{Z} / 4 \mathbb{Z}, 2) \times M(\mathbb{Z} / 6 \mathbb{Z}, 3)$.
(2) Hatcher 3.2.15 (p. 230). (You can skip the "and the spaces in the preceding three exercises" part.)
(3) Hatcher 3.B. 3 (p. 280).

Optional problems:

Some good qual-level problems:
(4) Some good qual-level problems: Hatcher 3.2.16, 3.2.18, 3.B.1.

Some more problems to think about but not turn in:
(5) Let $F, G: C_{*}(X) \otimes C_{*}(Y) \rightarrow C_{*}(X) \otimes C_{*}(Y)$ be chain maps, for each pair of spaces X, Y, with the following properties:
(a) F and G are natural, in the sense that given $f: X \rightarrow X^{\prime}, g: Y \rightarrow Y^{\prime}$,

$$
\begin{gathered}
F\left(f_{*}(\alpha) \otimes g_{*}(\beta)\right)=\left(f_{*} \otimes g_{*}\right)(F(\alpha \otimes \beta)) \\
G\left(f_{*}(\alpha) \otimes g_{*}(\beta)\right)=\left(f_{*} \otimes g_{*}\right)(G(\alpha \otimes \beta)) .
\end{gathered}
$$

(b) On $C_{0}(X) \otimes C_{0}(Y), F$ and G are the identity map.

Prove that F is chain homotopic to G. (This was one of the steps in our brief sketch of the Eilenberg-Zilber theorem.)
(6) By the Eilenberg-Zilber theorem, $C_{*}(X \times Y) \simeq C_{*}(X) \otimes C_{*}(Y)$; let $E: C_{*}(X \times Y) \rightarrow$ $C_{*}(X) \otimes C_{*}(Y)$ be a one of the chain homotopy equivalences constructed in the proof of the Eilenberg-Zilber theorem. There is an induced chain homotopy equivalence

$$
E^{T}: C^{*}(X) \otimes C^{*}(Y) \rightarrow C^{*}(X \times Y)
$$

Now, define a map $\cup: C^{i}(X) \otimes C^{j}(X) \rightarrow C^{i+j}(X)$ to be the composition

$$
C^{i}(X) \otimes C^{j}(X) \xrightarrow{E^{T}} C^{i+j}(X \times X) \xrightarrow{\Delta^{*}} C^{i+j}(X),
$$

where $\Delta: X \rightarrow X \times X$ is the diagonal map.
(a) Show that \cup induces a map $\cup: H^{i}(X) \otimes H^{j}(X) \rightarrow H^{i+j}(X)$.
(b) Show that the map \cup on homology is independent of the choice of chain homotopy equivalence E.
(c) Show that the this cup product on cohomology is natural, unital, and associative. (Associativity probably takes a little work.)
(d) Show that this definition of the cup product agrees with the one given in Hatcher. Email address: lipshitz@uoregon.edu

