MATH 636 SPRING 2024
 HOMEWORK 3
 DUE APRIL 22, 2024

INSTRUCTOR: ROBERT LIPSHITZ

Required problems:

(1) Hatcher 3.3.16 (p. 259).
(2) Hatcher 3.3.24 (p. 259).
(3) Hatcher 3.3.30 (p. 260).
(4) Hatcher 3.3.33 (p. 260).

Optional problems:

Some good qual-level problems:

- Hatcher 3.3.20, 3.3.21 (minus the parenthetical question), 3.3.25, 3.3.26.

Some more problems to think about but not turn in:

- Hatcher 3.3.22, 3.3.23, 3.3.27-29.
- Let X be a topological space. A locally-finite singular n-chain in X is a (possibly infinite) formal linear combination $\sum k_{\sigma} \sigma \in \prod_{\sigma: \Delta^{n} \rightarrow X} \mathbb{Z}$ so that for each compact set $C \subset X$,

$$
\left\{\sigma \mid k_{\sigma} \neq 0 \text { and } \sigma^{-1}(C) \neq \emptyset\right\}
$$

is finite. Let $C_{n}^{B M}(X)$ denote the abelian group of locally-finite singular n-chains in X.
(1) Show that the "obvious" boundary operator $\partial: C_{n}^{B M}(X) \rightarrow C_{n-1}^{B M}(X)$,

$$
\partial \sum_{\sigma} k_{\sigma} \sigma=\left.\sum_{\sigma} \sum_{i=0}^{n}(-1)^{i} k_{\sigma} \sigma\right|_{\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]}
$$

is well-defined and makes $C_{n}^{B M}(X)$ into a chain complex. (Hint. This would not be true without the "locally-finite" condition, so your proof had better use it!)
(2) The homology of $\left(C_{*}^{B M}, \partial\right)$ is called the Borel-Moore homology of M, and denoted $H_{*}^{B M}(X)$. Observe that if X is compact then $H_{*}^{B M}(X) \cong H_{*}(X)$. Compute $H_{*}^{B M}(\mathbb{R})$.
(3) Show that if M is a connected, orientable n-manifold, not necessarily compact, then $H_{n}^{B M}(M) \cong \mathbb{Z}$. In particular, any oriented n-manifold M has a fundamental class $[M] \in H_{n}^{B M}(M)$.
(4) Show that there is a well-defined cap product

$$
H_{i+j}^{B M}(X) \otimes H^{i}(X) \rightarrow H_{j}^{B M}(X) .
$$

(5) Imitate Hatcher's proof of Poincaré duality to show that for any oriented n manifold M,

$$
[M] \cap \cdot: H^{i}(X) \rightarrow H_{n-i}^{B M}(X)
$$

is an isomorphism. In particular, this gives an alternative proof of Poincaré duality for compact manifolds.
Email address: lipshitz@uoregon.edu

