MATH 692 SPRING 2024
 HOMEWORK 2 DUE MAY 18, 2024.

INSTRUCTOR: ROBERT LIPSHITZ

Solve any five of these problems. (Problems marked with stars are also available as minipaper topics.)

Note: this is a preliminary version of the homework; I will add more problems at the end.
(1) Consider a Kirby diagram consisting entirely of 2-handles, say, with integer framings. What is the homology of the 4-manifold-with-boundary it specifies? Of the 3-manifold it specifies?
(2) What closed 4-manifold does the following Kirby diagram represent?

(3) What 3-manifold does the following Kirby diagram represent?

(4) *Suppose a Kirby diagram contains a knot K (with some integral framing) and a meridian μ of K with framing 0 :

Prove that erasing both K and μ gives a new Kirby diagram representing the same 3manifold. (Hint: there are several ways to do this. One is directly from the definition
of Dehn surgery, thinking about what μ represents after performing surgery on K. Another is to observe that replacing μ by a 1 -handle as in the picture below gives the same 3 -manifold. A third is to observe that you can use handleslides over μ to unknot K and unlink K from the rest of the Kirby diagram, and then to change the framing of K to 0 or 1 and use a special case of Exercise (3).)

(5) Given Kirby diagrams for 3-manifolds Y_{1} and Y_{2}, explain how to produce a Kirby diagram for $Y_{1} \# Y_{2}$.
(6) Given Kirby diagrams for 4-manifolds-with-boundary W_{1} and W_{2}, explain how to produce a Kirby diagram for their boundary sum $W_{1} \not W_{2}$.
(7) Given Kirby diagrams for 4-manifolds-with-boundary W_{1} and W_{2}, explain how to produce a Kirby diagram for their connected sum $W_{1} \# W_{2}$.
(8) Find Kirby diagrams with integer surgery coefficients (framings) representing the lens spaces $L(3,2)$ and $L(7,3)$.
(9) Consider the Kirby diagram:

Here, there are 2024 1-framed unknots hanging off, in a row. What 3-manifold does this represent?
(10) Problems 1 or 2 in Chapter 3 of Saveliev's book. We haven't defined the Brieskorn spheres $\Sigma(2,3,5)$ and $\Sigma(2,3,7)$, but he wants you to take the plumbing diagram on the top row of his Figure 19 as the definition of $\Sigma(2,3,7)$, and the first diagram 3.15 as the definition of $\Sigma(2,3,5)$. (The two pictures in the top row of Figure 19 are two ways of writing the same Kirby diagram. It's a bit confusing that he's exchanged the labels -2 and -3 in them.)
(11) Show that there is an involution of S^{3} exchanging the components of the following link:

(Hint: draw the link in a more symmetric way.) Use that to construct an involution of the boundary of the following 4-manifold:

(This is an example of an Akbulut cork. It turns out that the involution you constructed does not extend smoothly over the 4 -manifold itself, and this can be used to construct exotic smooth structures.)
(12) Compute the homology of the 4-manifold described in the previous problem, and of its boundary.
(13) *Consider the Kirby diagram consisting of just an n-framed unknot. Show that it represents the D^{2}-bundle over S^{2} with Euler number n. In particular, for $n= \pm 1$ this Kirby diagram represents $\mathbb{C} P^{2}$ and $\overline{\mathbb{C}}^{2}$ (or the complement of a 4 -ball inside them.)
(14) Consider a handle decomposition for a (closed, say) 4-manifold containing a cancelable 2 - and 3 -handle in the sense that the attaching sphere for the 3 -handle runs over the 2-handle once. Show that one can do handleslides so that the 2-handle is represented by an unknotted circle disjoint from the rest of the diagram. (Hint: let K be the attaching circle for the 2 -handle. The attaching sphere for the 3 -handle is an S^{2} that intersects the core of the 2-handle in one point. Deleting a neighborhood of that point gives a 2 -disk inside the rest of the Kirby diagram. Shrink K along this 2-disk.) Also, give an example where some handleslides are needed.
(15) (Gompf-Stipsicz Exercise 5.1.12(b).) Let L and L^{\prime} be framed links in \mathbb{R}^{3} with integral framings so that L^{\prime} is obtained from L by a handleslide. Prove that L^{\prime} can be obtained from L by a sequence of blow-ups and blow-downs. (Hint: first consider the case of sliding over a +1 -framed unknot. Then use the fact that you can reverse crossings by blowing up.) (Remark: Gompf-Stipsicz note that this result is due to Fenn and Rourke, and that it is false if \mathbb{R}^{3} is replaced by another 3-manifold.)
(16) Let $K \subset S^{3}$ be the trefoil knot. Find a framed link L inside the solid torus $S^{1} \times D^{2}$ so that performing surgery on L gives $S^{3} \backslash \operatorname{nbd}(K)$.
Email address: lipshitz@uoregon.edu

