MATH 635 WINTER 2024 HOMEWORK 2 DUE JANUARY 26, 2024

INSTRUCTOR: ROBERT LIPSHITZ

Required problems:

(1) Give abstract simplicial complexes whose geometric realizations are the following simplicial complexes. Compute the simplicial homology and cohomology groups of these complexes over Z. (Note: the shaded triangles are 2-simplices.)

- (2) Find a simplicial complex homeomorphic to $\mathbb{R}P^2$.
- (3) Suppose $X = \{X_n\}$ and $Y = \{Y_n\}$ are abstract simplicial complexes. A simplicial map $f: X \to Y$ is a map $f: X_0 \to Y_0$ so that if $\{v_1, \ldots, v_n\} \in X_n$ then $\{f(v_0), \ldots, f(v_n)\} \in Y_k$ (where k is the cardinality of $\{f(v_0), \ldots, f(v_n)\}$). Given a simplicial map $f: X \to Y$, define a map $f_{\#}: C_n(X; \mathbb{Z}/(2)) \to C_n(Y; \mathbb{Z}/(2))$ by

$$f_{\#}(\{v_0, \dots, v_n\}) = \begin{cases} \{f(v_0), \dots, f(v_n)\} & |\{f(v_0), \dots, f(v_n)\}| = n+1\\ 0 & \text{otherwise.} \end{cases}$$

Prove that the maps $f_{\#}$ form a chain map, so induce a map f_* on simplicial homology and a map f^* on simplicial cohomology.

(Note: the fact that we are using $\mathbb{Z}/(2)$ -coefficients means you do not have to keep track of signs. With an appropriate sign in the formula for $f_{\#}$, the result also holds over \mathbb{Z} , but the signs are a little tedious.)

- (4) Let X_{\bullet} be an abstract simplicial complex and $v_0, \ldots, v_n \in X_0$ be vertices of X_{\bullet} and suppose that there is a $0 \leq k \leq n$ so that $\{v_0, \ldots, \hat{v_k}, \ldots, v_n\} \notin X_{n-1}$ but $\{v_0, \ldots, \hat{v_i}, \ldots, v_n\} \in X_{n-1}$ for all $i \neq k$. Then we can form a new simplicial complex Y_{\bullet} with
 - (a) $Y_m = X_m$ for $m \notin \{n-1, n\},\$
 - (b) $Y_{n-1} = X_{n-1} \cup \{\{v_0, \dots, \hat{v_k}, \dots, v_n\}\}$, and
 - (c) $Y_n = X_n \cup \{\{v_0, \dots, v_k, \dots, v_n\}\}.$

(In the special case n = 1, Y_{\bullet} is obtained by adding a single new vertex w to X_0 and an edge from some vertex v_0 to w.) We say that Y_{\bullet} is obtained from X_{\bullet} by an

n-dimensional elementary expansion and X_{\bullet} is obtained from Y_{\bullet} by an *n*-dimensional elementary collapse. More generally, given abstract simplicial complexes X_{\bullet} and Y_{\bullet} , we say that X_{\bullet} is simple homotopy equivalent to Y_{\bullet} if you can get from X_{\bullet} to Y_{\bullet} by a sequence of elementary expansions and elementary collapses of any dimension (and re-ordering vertices).

For example, here is a simple homotopy equivalence between two complexes:

- (a) Sketch a proof that if X_{\bullet} is simple homotopy equivalent to Y_{\bullet} then their geometric realizations are homotopy equivalent. (The converse is false.)
- (b) If Y_{\bullet} is obtained from X_{\bullet} is obtained from X_{\bullet} by an elementary expansion, there is an inclusion map $i_m \colon C_m(X_{\bullet}; \mathbb{Z}/(2)) \hookrightarrow C_m(Y_{\bullet}; \mathbb{Z}/(2))$. Construct a quotient map $q_m \colon C_m(Y_{\bullet}; \mathbb{Z}/(2)) \to C_m(X_{\bullet}; \mathbb{Z}/(2))$ so that
 - (i) the q_m form a chain map,
 - (ii) $q_m \circ i_m = \mathbb{I}_{C_m(X_{\bullet})}$ and
 - (iii) there are maps $h_m: C_m(Y_{\bullet}) \to C_{m+1}(Y_{\bullet})$ with

$$i_m \circ q_m - \mathbb{I}_{C_m(Y_{\bullet})} = \partial \circ h_m + h_{m-1} \circ \partial.$$

(Hint: for most simplices σ , you will probably define $h_m(\sigma) = 0$.)

To save time, it's okay if you only consider the case of an *n*-dimensional elementary expansion for n > 1: the 1-dimensional case is similar, but maybe the notation is a bit different.

(Again, the $\mathbb{Z}/(2)$ -coefficients is so you don't have to keep track of signs; the result also holds over \mathbb{Z} .)

- (c) Conclude that $H_m(Y_{\bullet}; \mathbb{Z}/(2)) \cong H_m(X_{\bullet}; \mathbb{Z}/(2))$ for each *m* and, consequently, that simple homotopy equivalent simplicial complexes have isomorphic homology groups.
- (5) Show that if X is path connected then its singular cohomology satisfies $H^0(X) \cong \mathbb{Z}$.
- (6) Let $\gamma_1, \gamma_2: S^1 \to X$ be homotopic loops in X. Regarding S^1 as the quotient space $\Delta^1/(\partial \Delta^1)$, we can think of each γ_i as a singular 1-chain in X. Prove that these 1-chains are cycles, so induce elements of $H_1(X)$, and moreover $[\gamma_1] = [\gamma_2] \in H_1(X)$.

Optional problems:

Think about these, but you don't have to turn them in.

- (7) Let X be a simplicial complex and $A \subset X$ a subcomplex.
 - (a) Define the relatively simplicial homology and cohomology groups $H_n^{\text{simp}}(X, A)$ and $H_{\text{simp}}^n(X, A)$.
 - (b) Compute the simplicial homology and cohomology groups for the pair (X, A) where X is a 2-simplex (viewed as a simplicial complex with 3 0-simplices, 3 1-simplices, and 1 2-simplex) and A is:
 - (i) A single vertex.
 - (ii) Two vertices.
 - (iii) An edge (and the two vertices at its ends).

(iv) The entire boundary of the 2-simplex.

- (8) Give a simplicial complex homeomorphic to the *n*-sphere and compute its simplicial homology and cohomology groups over Z.
 (9) Give a simplicial complex homeomorphic to RP³ and compute its simplicial homology
- (9) Give a simplicial complex homeomorphic to RP³ and compute its simplicial homology and cohomology.

Email address: lipshitz@uoregon.edu