MATH 635 WINTER 2024
 HOMEWORK 2 DUE JANUARY 26, 2024

INSTRUCTOR: ROBERT LIPSHITZ

Required problems:

(1) Give abstract simplicial complexes whose geometric realizations are the following simplicial complexes. Compute the simplicial homology and cohomology groups of these complexes over \mathbb{Z}. (Note: the shaded triangles are 2-simplices.)

(a)

(b)
(2) Find a simplicial complex homeomorphic to $\mathbb{R} P^{2}$.
(3) Suppose $X=\left\{X_{n}\right\}$ and $Y=\left\{Y_{n}\right\}$ are abstract simplicial complexes. A simplicial map $f: X \rightarrow Y$ is a map $f: X_{0} \rightarrow Y_{0}$ so that if $\left\{v_{1}, \ldots, v_{n}\right\} \in X_{n}$ then $\left\{f\left(v_{0}\right), \ldots, f\left(v_{n}\right)\right\} \in Y_{k}$ (where k is the cardinality of $\left.\left\{f\left(v_{0}\right), \ldots, f\left(v_{n}\right)\right\}\right)$. Given a simplicial map $f: X \rightarrow Y$, define a map $f_{\#}: C_{n}(X ; \mathbb{Z} /(2)) \rightarrow C_{n}(Y ; \mathbb{Z} /(2))$ by

$$
f_{\#}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)= \begin{cases}\left\{f\left(v_{0}\right), \ldots, f\left(v_{n}\right)\right\} & \left|\left\{f\left(v_{0}\right), \ldots, f\left(v_{n}\right)\right\}\right|=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that the maps $f_{\#}$ form a chain map, so induce a map f_{*} on simplicial homology and a map f^{*} on simplicial cohomology.
(Note: the fact that we are using $\mathbb{Z} /(2)$-coefficients means you do not have to keep track of signs. With an appropriate sign in the formula for $f_{\#}$, the result also holds over \mathbb{Z}, but the signs are a little tedious.)
(4) Let X_{\bullet} be an abstract simplicial complex and $v_{0}, \ldots, v_{n} \in X_{0}$ be vertices of X_{\bullet} and suppose that there is a $0 \leq k \leq n$ so that $\left\{v_{0}, \ldots, \widehat{v_{k}}, \ldots, v_{n}\right\} \notin X_{n-1}$ but $\left\{v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right\} \in X_{n-1}$ for all $i \neq k$. Then we can form a new simplicial complex Y • with
(a) $Y_{m}=X_{m}$ for $m \notin\{n-1, n\}$,
(b) $Y_{n-1}=X_{n-1} \cup\left\{\left\{v_{0}, \ldots, \widehat{v_{k}}, \ldots, v_{n}\right\}\right\}$, and
(c) $Y_{n}=X_{n} \cup\left\{\left\{v_{0}, \ldots, v_{k}, \ldots, v_{n}\right\}\right\}$.
(In the special case $n=1, Y_{\bullet}$ is obtained by adding a single new vertex w to X_{0} and an edge from some vertex v_{0} to w.) We say that Y_{\bullet} is obtained from X_{\bullet} by an
n-dimensional elementary expansion and X_{\bullet} is obtained from Y_{\bullet} by an n-dimensional elementary collapse. More generally, given abstract simplicial complexes X_{\bullet} and Y_{\bullet}, we say that X_{\bullet} is simple homotopy equivalent to Y_{\bullet} if you can get from X_{\bullet} to Y_{\bullet} by a sequence of elementary expansions and elementary collapses of any dimension (and re-ordering vertices).

For example, here is a simple homotopy equivalence between two complexes:

(a) Sketch a proof that if X_{\bullet} is simple homotopy equivalent to Y_{\bullet} then their geometric realizations are homotopy equivalent. (The converse is false.)
(b) If Y_{\bullet} is obtained from X_{\bullet} is obtained from X_{\bullet} by an elementary expansion, there is an inclusion map $i_{m}: C_{m}\left(X_{\bullet} ; \mathbb{Z} /(2)\right) \hookrightarrow C_{m}\left(Y_{\bullet} ; \mathbb{Z} /(2)\right)$. Construct a quotient $\operatorname{map} q_{m}: C_{m}\left(Y_{\bullet} ; \mathbb{Z} /(2)\right) \rightarrow C_{m}\left(X_{\bullet} ; \mathbb{Z} /(2)\right)$ so that
(i) the q_{m} form a chain map,
(ii) $q_{m} \circ i_{m}=\mathbb{I}_{C_{m}\left(X_{\bullet}\right)}$ and
(iii) there are maps $h_{m}: C_{m}\left(Y_{\bullet}\right) \rightarrow C_{m+1}\left(Y_{\bullet}\right)$ with

$$
i_{m} \circ q_{m}-\mathbb{I}_{C_{m}\left(Y_{\bullet}\right)}=\partial \circ h_{m}+h_{m-1} \circ \partial
$$

(Hint: for most simplices σ, you will probably define $h_{m}(\sigma)=0$.)
To save time, it's okay if you only consider the case of an n-dimensional elementary expansion for $n>1$: the 1-dimensional case is similar, but maybe the notation is a bit different.
(Again, the $\mathbb{Z} /(2)$-coefficients is so you don't have to keep track of signs; the result also holds over \mathbb{Z}.)
(c) Conclude that $H_{m}\left(Y_{\bullet} ; \mathbb{Z} /(2)\right) \cong H_{m}\left(X_{\bullet} ; \mathbb{Z} /(2)\right)$ for each m and, consequently, that simple homotopy equivalent simplicial complexes have isomorphic homology groups.
(5) Show that if X is path connected then its singular cohomology satisfies $H^{0}(X) \cong \mathbb{Z}$.
(6) Let $\gamma_{1}, \gamma_{2}: S^{1} \rightarrow X$ be homotopic loops in X. Regarding S^{1} as the quotient space $\Delta^{1} /\left(\partial \Delta^{1}\right)$, we can think of each γ_{i} as a singular 1-chain in X. Prove that these 1-chains are cycles, so induce elements of $H_{1}(X)$, and moreover $\left[\gamma_{1}\right]=\left[\gamma_{2}\right] \in H_{1}(X)$.

Optional problems:

Think about these, but you don't have to turn them in.
(7) Let X be a simplicial complex and $A \subset X$ a subcomplex.
(a) Define the relatively simplicial homology and cohomology groups $H_{n}^{\operatorname{simp}}(X, A)$ and $H_{\text {simp }}^{n}(X, A)$.
(b) Compute the simplicial homology and cohomology groups for the pair (X, A) where X is a 2 -simplex (viewed as a simplicial complex with 30 -simplices, 3 1 -simplices, and 12 -simplex) and A is:
(i) A single vertex.
(ii) Two vertices.
(iii) An edge (and the two vertices at its ends).
(iv) The entire boundary of the 2-simplex.
(8) Give a simplicial complex homeomorphic to the n-sphere and compute its simplicial homology and cohomology groups over \mathbb{Z}.
(9) Give a simplicial complex homeomorphic to $\mathbb{R} P^{3}$ and compute its simplicial homology and cohomology.
Email address: lipshitz@uoregon.edu

