MATH 635 WINTER 2024 HOMEWORK 3 DUE FEBRUARY 5, 2024

INSTRUCTOR: ROBERT LIPSHITZ

Required problems:

- (1) Let C_* and D_* be chain complexes of *R*-modules, and *M* any *R*-module. Prove that if $f, g: C_* \to D_*$ are chain homotopic chain maps then the induced maps $f^T, g^T:$ $\operatorname{Hom}(D_*, M) \to \operatorname{Hom}(C_*, M)$ are chain homotopic.
- (2) (Homotopy invariance of cohomology) Prove that if $f, g: X \to Y$ are homotopic maps then $f^* = g^*: H^n(Y) \to H^n(X)$. Conclude that if $X \simeq Y$ then $H^n(X) \cong H^n(Y)$ for each n.
- (3) (Excision for cohomology) Recall that for $A \subset X$,

$$C^{n}(X, A) = \{ c \in C^{n}(X) \mid c(\sigma) = 0 \text{ for all } \sigma \colon \Delta^{n} \to A \}.$$

- (a) Prove that $C^*(X, A)$ is a subcomplex of $C^*(X)$. So, we can define $H^n(X, A) = \ker(\delta|_{C^n(X,A)})/\operatorname{Im}(\delta|_{C^{n-1}(X,A)}).$
- (b) Suppose $Z \subset A \subset X$ with the closure of Z contained in the interior of A. Prove that $H^n(X, A) \cong H^n(X \setminus Z, A \setminus Z)$. (This isomorphism is induced by the inclusion map $(X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$, though you don't have to prove that if you don't want to.)
- (4) Hatcher 2.1.17 (p. 132).
- (5) Hatcher 2.1.20 (p. 132). (The first half of this is an important observation.)
- (6) Hatcher 2.1.27 (p. 133).
- (7) Imitate our computation of $H_*(S^n)$ to compute the singular cohomology groups $H^*(S^n)$.

Optional problems:

Some homological algebra. This is optional for now. Next week I will do some of this in class, and the rest will probably be non-optional homework.

- (1) Given a chain map $f: C_* \to D_*$, the mapping cone of f is the chain complex Cone(f) with Cone $(f)_n = C_{n-1} \oplus D_n$ and differential $\partial(c, d) = (-\partial(c), f(c) + \partial(d))$.
 - (a) Suppose X and Y are simplicial complexes and $f: X \to Y$ is a simplicial map. Explain how the mapping cone of f, $\operatorname{Cone}(f)$, is a simplicial complex and show that the simplicial chain complex of $\operatorname{Cone}(f)$ is isomorphic to $\operatorname{Cone}(f_{\#}: C_*^{simp}(X) \to C_*^{simp}(X))$.
 - (b) Let C_* and D_* be chain complexes, and f a collection of homomorphisms $f_n: C_n \to D_n$. Even if f_n is not a chain map, we can still form Cone(f) as above. Show that the differential on Cone(f) satisfies $\partial^2 = 0$ if and only if f is a chain map.

- (c) Show that the chain map $f: C_* \to D_*$ induces an isomorphism on homology if and only if $\operatorname{Cone}(f)$ is acyclic (i.e., has trivial homology). (Hint: there is an obvious short exact sequence involving C_* , D_* , and $\operatorname{Cone}(f)$.)
- (2) Let C_* and D_* be a chain complexes with $C_n = D_n = 0$ for n < 0, C_n free for all n, and $H_*(D) = 0$. Let $f: C_* \to D_*$ be a chain map. Prove that f is nullhomotopic. (Hint: construct a nullhomotopy h of f inductively, starting with $h_0: C_0 \to D_1$.)
- (3) Let C_* and D_* be chain complexes with $C_n = D_n = 0$ for n < 0. Assume further that each D_n is a free *R*-module. Let $f: C_* \to D_*$ be a chain map so that the induced map $f_*: H_*(C) \to H_*(D)$ on homology is an isomorphism. Prove that there is a map $g: D_* \to P_*$ so that $g \circ f$ is chain homotopic to the identity map. (Hint: consider Cone(f). By the previous problem, the canonical map $D_* \hookrightarrow \text{Cone}(f)$ is nullhomotopic. A nullhomotopy is a pair of maps $\alpha: D_* \to C_*, \beta: D_* \to D_*$. Unpack the fact that (α, β) is a chain map to obtain the result.)
- (4) Let C_* and D_* be chain complexes over R so that $C_n = D_n = 0$ for n < 0 and C_n and D_n are free R-modules for each n. Suppose $f: C_* \to D_*$ is a chain map which induces an isomorphism on homology. Prove that f is a chain homotopy equivalence. (Hint: this should be easy from the previous problem.)
- (5) Let C_* and D_* be chain complexes over R so that $C_n = D_n = 0$ for n < 0, each C_n is free, and $H_n(D) = 0$ for n > 0. Prove that if $f, g: C_* \to D_*$ induce the same map $H_0(C) \to H_0(D)$ then they are chain homotopic. (Hint: let $M = H_0(D)$. Consider the complex $0 \leftarrow M \leftarrow D_0 \leftarrow D_1 \leftarrow D_2 \leftarrow \cdots$. Observe that f g induces a map from C_* to this extended version of D and use Problem 2.)

Some other optional problems; think about these, but you don't have to turn them in.

- (6) Hatcher 2.1.26 (p. 133).
- (7) Hatcher 2.1.29 (p. 133).

Email address: lipshitz@uoregon.edu