Math 251

Final Exam - Spring 2013
Your name: \qquad Student ID \#: \qquad

Instructions:

- To receive credit, you must neatly and clearly show work that justifies your answer. All notation must be correct.
- No electronic devices may be used. (No calculators, phones, electronic dictionaries, headphones, etc.)
- Please silence your cell phone. If your phone is a distraction to others, you may lose points on your exam.
- Pace yourself. You have approximately 10 minutes per page to complete the exam. The total number of points is 100 .
- Check your work once you have worked through all of the problems.

1	(10)	
2	(5)	
3	(5)	
4	(4)	
5	(8)	
6	(8)	
7	(10)	
8	(10)	
9	(8)	
10	(12)	
Total	(100)	
11	(10)	
12	(10)	

(1) (10 pts) Wire with a total length of 300 inches will be used to construct the edges of a rectangular box, and thus provide the frame for the box. The bottom of the box must have a width that is twice the length. Find the maximum volume that such a box can have.

(2) (5 pts) Evaluate each limit, justifying your answers.
(a) $\lim _{x \rightarrow 0^{+}} e^{1 / x}$
(b) $\lim _{x \rightarrow 0^{-}} e^{1 / x}$
(c) $\lim _{x \rightarrow 0} e^{1 / x}$
(3) (5 pts) Find the absolute maximum and absolute minimum values of the function

$$
f(x)=x^{3}-12 x+|x|
$$

on the interval $[0,4]$.
(4) (4 pts) Let $a(t)$ be a function satisfying $a^{\prime}(t)=3 a(t)-3$. Let $f(t)=\ln (a(t))$. Give $f^{\prime}(t)$. You may need to write this in terms of $a(t)$.
(5) (8 pts) The cost to produce x units of a certain product is given by $C(x)=10,000+8 x+\frac{1}{16} x^{2}$. Find the value of x that gives the minimum average cost. Average cost is given by $\frac{C(x)}{x}$. Be sure to justify that the value of x does give a minimum.
(6) (8 pts) Compute the following limits exactly (no rounding). You must show your work. In some cases thé correct answer may be $\infty,-\infty$ or the limit may not exist.
(a) $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\pi \theta)}$
(b) $\lim _{x \rightarrow \infty} x e^{-3 x}$
(c) $\lim _{t \rightarrow 0} \frac{\cos (t)}{t^{2}}$
(7) (10 pts) A rocket is launched at time $t=0$ and after launch it is moving upward at a constant speed. Let $\theta(t)$ denote the angle from a stationary observer up to the base of the rocket after t minutes.

Do the following:
(a) Find $\theta(0)$ and $\lim _{t \rightarrow \infty} \theta(t)$.
(b) Determine whether $\theta(t)$ is increasing or decreasing and whether $\theta(t)$ is concave up or concave down.
(c) Use the above information to sketch a graph of $\theta(t)$ for $t \geq 0$.
(8) (10 pts) For a certain pain medication, the size of the dose D depends on the weight of the patient W. We can write $D=f(W)$, where D is measured in milligrams and W is measured in pounds.
(a) Interpret $f(150)=125$ and $f^{\prime}(150)=3$ in terms of this pain medication.
(b) Use the tangent line to $y=f(x)$ at $x=150$ to estimate $f(155)$.
(c) Given that $f^{\prime \prime}(W)<0$, is your estimation in (b) too big or too small? Justify your answer. (Hint: draw a picture.)
(9) (8 pts) Below is the graph of the derivative $g^{\prime}(x)$ on the interval $[0,11]$

Be careful, the questions below are about $g(x)$, but the graph is for $g^{\prime}(x)$.
(a) For what intervals is $g(x)$ increasing?
(b) For what x is the graph of $g(x)$ concave down? Give your answer in interval notation.
(c) Give a reasonable sketch for $g(x)$ satisfying $g(0)=0$. Make sure to label the x-axis.

(10) (12 pts) Find the indicated derivatives. You do not need to simplify.
(a) For $g(t)=1+\tan \left(\frac{t-3}{2}\right)$, find $g^{\prime}(t)$.
(b) For $f(r)=\left(r^{3}-3 r\right) e^{2 r}+e^{2}$, find $f^{\prime}(r)$.
(c) Find $\frac{d y}{d x}$ for $y=\sqrt{\frac{a x+1}{b x+1}}$ and constants a, b.
(d) Find $\frac{d y}{d u}$ for $y=\arcsin \left(u^{2}\right)$.
(11) (10 pts) A water tank has the shape of an inverted cone (point down) with base radius 250 cm and height of 900 cm . Initially, the tank is full of water. If the water level is falling at the rate of $7 \mathrm{~cm} / \mathrm{min}$, how fast is the tank losing water when the water is 520 cm deep? Include units in your answer.
(12) (10 pts) A candle is placed $x \mathrm{~cm}$ from a convex lens. If the distance of the focused image is $y \mathrm{~cm}$ from the lens (see diagram), then x and y are related by the equation

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{L}
$$

where the constant L denotes the focal length of the lens.
(a) Find $\frac{d y}{d x}$.
(b) Using your answer from (a), justify that $\frac{d y}{d x}<0$.
(c) If the candle is moved farther away from the lens, will the focused image move towards or away from the lens? Justify your answer.

