SMOOTH ORTHOGONAL PROJECTIONS ON RIEMANNIAN
MANIFOLD

MARCIN BOWNIK, KAROL DZIEDZIUL, AND ANNA KAMONT

ABSTRACT. We construct a decomposition of the identity operator on a Riemannian mani-
fold M as a sum of smooth orthogonal projections subordinate to an open cover of M. This
extends a decomposition of the real line by smooth orthogonal projection due to Coifman,
Meyer [9] and Auscher, Weiss, Wickerhauser [3], and a similar decomposition when M is
the sphere by the first two authors [4].

1. INTRODUCTION AND MAIN RESULT

The goal of the paper is to construct a decomposition of the identity operator on the
Riemannian manifold M as a sum of smooth orthogonal projections with desired localization
properties. This can be thought as an operator analogue of the ubiquitous smooth partition
of unity subordinate to an open cover of a manifold. However, smooth partitions of unity
do not give rise in any obvious way to orthogonal projections and much more complicated
constructions are needed to achieve this goal.

Smooth projections on the real line have appeared implicitly in the construction of local
sine and cosine bases by Coifman and Meyer [9]. They were systematically studied by
Auscher, Weiss, and Wickerhauser [3] in the construction of smooth wavelet bases in L?(R).
For a detailed exposition on smooth projections on the real line we refer to the book by
Herndndez and Weiss [14]. A standard tensoring procedure can be used to extend smooth
projections to the Euclidean space R¢. However, an extension of smooth projections to the
sphere S? is already far less trivial. This was shown recently by the first two authors in [4]. In
this paper we show a general construction of smooth orthogonal projections on Riemannian
manifolds, which is based in part on Morse theory. In order to formulate our main result we
need to define the class of Hestenes operators.

Let (M, g) be a smooth connected Riemannian manifold with a Riemannian metric g on
M. We consider for simplicity that the manifold is without boundary. The metric g induces
a Riemannian measure v = vy, on M. For any 1 < p < oo, let LP(M) be the real Lebesgue
space on the measure space (M, v). In the special case p = 2, L*(M) is a Hilbert space with
the inner product

(f.h) = /M f(@)h(a)dv(z).
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We will employ a class of Hestenes [15] operators, which was originally introduced in the
work of Ciesielski and Figiel [7, Section 5]. However, we shall use a simplified variant of the
class of H-operators introduced in [4].

Definition 1.1. Let M be a smooth connected Riemannian manifold (without boundary).
Let ® : V — V'’ be a C* diffeomorphism between two open subsets V,V’ C M. Let
¢ : M — R be a compactly supported C'™ function such that

suppp = {x € M : p(x) #0} C V.
We define a simple H-operator H, ¢y acting on a function f : M — R by

_Je@)f(®(x) eV
(1.1) Hewv ) = {0 reM\V.

Let Co(M) be the space of continuous functions on M that are vanishing at infinity, which
is equipped with the supremum norm. Clearly, a simple H-operator induces a continuous
linear map of the space Cy(M) into itself. We define an H-operator to be an operator
T : Co(M) — Co(M) which is a finite combination of such simple H-operators. The space
of all H-operators is denoted by H(M).

It can be checked that H-operators map the space of smooth functions C*°(M) into itself.
Our main result is a generalization of the result of the first two authors [4] from the setting
of the sphere S? to a Riemannian manifold M.

Theorem 1.1. Let M be a smooth connected Riemannian manifold (without boundary).
Suppose U is an open and precompact cover of M. Then, there exists a family of operators

{Py}ueu defined on Co(M) such that:

(1) family {Py}uey is locally finite, i.e., for any compact K C M, all but finitely many
operators Py such that U N K # (), are zero,
(ii) each Py € H(M) is localized on an open set U € U; in particular, for any f € Co(M),

(1.2) supp Py f C U,
(1.3) supp fNU =0 = Pyf=0,

(iii) each Py has a unique extension to an operator Py : L*(M) — L?*(M) that is an
orthogonal projection,

(iv) the projections { Py }ueu are mutually orthogonal and they form a decomposition of the
identity operator I on L*(M),

(1.4) PyoPy =0 forU#U and ZPU:I.

A family of operators { Py }yey satisfying conclusions of Theorem 1.1 is said to be a smooth
orthogonal decomposition of identity in L?(M) subordinate to an open cover U of a manifold
M. This concept should be contrasted with the ubiquitous smooth partition of unity. This
is a family of smooth nonnegative functions {¢y }yey such that supp oy C U, Yo dv = 1,
and for every x € M there is a neighborhood O, such that supp ¢y N O, = () for all but
finitely many U. While the corresponding family of multiplication operators Sy (f) = ¢y f is

localized and satisfies ) ., Sv = I, Sy can not be a projection unless ¢y is discontinuous.
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By constructing operators from a larger class of Hestenes operators H (M), we will preserve all
of these properties and additionally guarantee that operators Py are orthogonal projections.

The proof of Theorem 1.1 is quite long and involved as it occupies most of the paper. In
Section 2 we show several properties of H-operators including the key concept of localization.
Localized H-operators are shown to be bounded on the space of smooth functions C"(M)
and the Sobolev Space W; (M), 1 < p < oo, r € N.. We also introduce the concept of
smooth decomposition of identity in LP(M), which is a natural generalization of orthogonal
decomposition of identity in L?(M) as in Theorem 1.1. We show that this concept behaves
well under diffeomorphisms and change of weights. In Section 3 we show several results
based on Morse theory, which are measure-theoretic analogues of well-known topological
results, such as the regular interval lemma. In particular, we establish the critical point
lemma which, outside of a small neighborhood of a critical point, provides a convenient
parametrization of the Riemann measure as a product measure of an interval and a level
submanifold. In Section 4 we construct latitudinal projections which decompose a manifold
M along level sets of a Morse function. These are manifold analogues of smooth projections
on the real line [3] and on the sphere [4].

The most technical results are contained in Section 5, which develops the method of lifting
an H-operator acting on a level submanifold to the whole manifold M. The resulting global
lifting operator commutes with latitudinal projections and their composition is again an H-
operator. As a result we show that a smooth decomposition of identity on a level submanifold
can be lifted to a smooth decomposition of a latitudinal projection, which is localized on a
strip between level sets of a Morse function. Though rather long and tedious, this procedure
is straightforward for regular intervals. However, intervals containing critical values are very
problematic since there is no direct method of lifting projections which are localized near
a critical point. Fortunately, this problem affects only one projection which can lifted in a
roundabout way using all other projections localized outside of this critical point. The least
trivial aspect of this procedure involves showing the required localization property.

In Section 6 we put together our results to prove the existence of a smooth decomposition
of identity in LP(M), which is subordinate to an open and precompact cover of M. The
main result of the paper is Theorem 6.2, which extends Theorem 1.1 to LP(M) spaces.
This requires an inductive procedure which produces a smooth decomposition of a manifold
M of dimension d based on smooth decompositions of carefully chosen level submanifolds
of dimension d — 1. In addition, we show that the overlaps of supports of the resulting
projections are uniformly bounded by a constant independent of a cover of M and depending
only on a dimension d. Finally, in Section 7 we give applications of the main theorem in the
study of Sobolev spaces on manifolds.

2. PROPERTIES OF HESTENES OPERATORS

In this section we establish several properties of H-operators. Some of them were already
shown in [4]. For example, H (M) is an algebra of operators that is closed under tensoring
operation, see [4, Lemma 3.1]. In particular, we have the following formula for a composition
of two simple H-operators Hy, o, v, © Hy, .1, = Hye,v, Where

s {@1(37)902@1(%)) o d=0y0y V=07 (Th).

0 otherwise,
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2.1. Localization of H-operators. We start by defining the concept of a localized H-
operator.

Definition 2.1. We say that an operator T € H(M) is localized on an open set U C M, if it

has a representation as a finite combination of simple H-operators H, ¢y satisfying V C U
and (V) C U.

The following lemma provides an intrinsic characterization of localized operators as it
does not refer to a decomposition into simple H-operators. As an immediate consequence,
we deduce that if Py € H(M) is localized on open and precompact U C M, then (1.2) and
(1.3) hold.

Lemma 2.1. Let T € H(M) and let U C M be open and precompact. Then, T is localized
on U if and only if there exists a compact set K C U such that for any f € Cy(M)

(2.1) suppT'f C K,
(2.2) suppfNK =0 = Tf=0.
Proof. Let T' =T +. ..+ T,,, where each T is a simple H-operator of the form T; = H, s, v,

i=1,...,m, where suppp; C V; and ®; : V; — V/ is a diffeomorphism. Suppose first that
T is localized on U. By Definition 2.1, for each i we have V; C U and ®;(V;) C U. Define

Ky = Usupp o; U U ®,(supp ;) C U.

i=1 i=1
Then, a simple calculation shows that (2.1) and (2.2) hold for K = K.

Conversely, assume that (2.1) and (2.2) hold for some K. Pick an open set U’ such that
KcU cU cU. Let ¢ : M — [0,1] be a C* function such that

(2.3) suppyp C U and o(x) =1forall z € U’
We claim that
(2.4) T(f) =T (¢f) for all f e Cy(M).

Indeed, since supp(l — )N K = (), by (2.2) we have T'((1—¢)f) = 0. Hence, T'(f) = T(¢f).
On the other hand, by (2.1) and (2.3) we have T'(¢f) = ¢T(¢f). Thus, (2.4) is shown.
Using (2.3) yields

ei(x)(x)o(Pi(2)) f(Pi(z) =€V,
0 otherwise.

(@) Ti(pf)(x) = {

_ {soi(x)so(x)so(q%(:c))f(@i(x)) reV,nUNd; Y (U),
0 otherwise.

Hence, f +— ¢T;(p¢f) is a simple H-operator localized on U. Combining this with

Tf=¢T(of) = Z@Ti(wf),

shows that T is also localized on U. [l



In case of a simple H-operator H = H, 4, localized on some open and precompact set
there is a minimal compact set K (H) with respect to the inclusion relation satisfying (2.1)
and (2.2). Namely,

K(H) = Ki(H)U Ky(H),
where K1(H) = supp ¢ and Ko(H) = ®(supp ). This remark and Lemma 2.1 motivate the
following definition.

Definition 2.2. Let T' € H(M) be localized on some open and precompact set. Let
Ky(T) = ﬂ {K; : K; is a compact set satisfying (2.1) for all f € Co(M) },

Ky(T) = ﬂ {K; : K, is a compact set satisfying (2.2) for all f € Co(M) }.
We define a localizing set for T' as
K(T) = Ki(T) U K»(T).

It is clear that a set K;(7") satisfies (2.1). In the course of proving Lemma 2.3 we show a
set K5(T') satisfies (2.2). For this we need the following technical lemma.

Lemma 2.2. Suppose that T € H(M) is localized on an open and precompact set. Let Ky
be compact. Then Ky satisfies (2.2) for all f € Co(M) if and only if for all x ¢ Ko, there
exists U, open and precompact such that x € U,, U, N Ky = (), and

(2.5) suppfCcU, = Tf=0 for all f € Co(M).

Proof. The implication (2.2) = (2.5) is clear. To check the converse, let U be some open
and precompact set on which 7" is localized. It follows by Definition 2.1 that if f, g € Co(M)
and f =g on U then Tf = Tg on M. Now let f € Co(M) be such that supp f N Ky = 0.
For each = ¢ K, let U, be as in (2.5). Moreover, let V' be an open and precompact set such
that Ko C V and VNsupp f = 0. Let {a, : v € M \ Ky} U {ay} be a partition of unity
subordinate to the open cover {U, : © € M\ K2}U{V'}. By compactness there are xy,...,x,
such that oy + > a,, = 1 on U. Since supp ay Nsupp f = @, we have

fo(OéeriOézi):ifazi on U.
i—1 =1

Since supp(fa,,) C U,,, we have T'(fa,,) = 0 by (2.5). Therefore
Tf=> T(fa,)=0.
i=1

This proves Lemma 2.2. 0

Lemma 2.3. Suppose that T € H(M) is localized on an open and precompact set. Let
U C M be open and precompact. Then T is localized on U if and only if K(T) C U.

Proof. Tt follows by Lemma 2.1 that if T is localized on U then K(T) C U. To prove the
converse we need to show that K (7') satisfies (2.1) and (2.2). Clearly (2.1) is satisfied by
K1(T) and hence by K(7T). It remains to show that Ky(T') satisfies (2.2).

Take any x ¢ K5(T). Then there exists K, satisfying (2.2) and x ¢ K5. By Lemma 2.2
we find U, such that U, N Ky = () and (2.5) is satisfied. Note that U, N Ky = () implies
U, N K5(T) = 0. Hence, by Lemma 2.2 K5(T') satisfies (2.2). O
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An immediate consequence of Lemma 2.3 is the following.

Lemma 2.4. Suppose thazﬁ T € H(M) is localized at the same time on two open and pre-
compact sets U C M and U C M. Then, T is localized on U NU.

In the sequel we need the following lemma.

Lemma 2.5. Let T1, Ty be two commuting H-operators localized on open and precompact
sets Uy, Uy, respectively. Then, their composition T o Ty = Ty o T} s localized on Uy N Us.

Proof. By Lemma 2.1, there exists compact subsets K; C U; such that for all f € Cy(M)
and ¢ = 1,2,

(2.6) supp T; f C K,
(2.7) suppf NK; =0 = T,f =0.
Let T =Ty 0Ty, =Ty 0T;. By (2.6) we have
suppT'f = supp 11 (1o f) C K.
Moreover, if f € Cy(M) is such that supp f N K; = ), then by (2.7)
Tf =To(Tif) = 0.

This implies that T is localized on U; by Lemma 2.1. The same argument shows that 7' is
also localized on U,. Hence, T is localized on U; N U; by Lemma 2.4. ]

2.2. Boundedness of H-operators. We start by reminding the definition of Sobolev spaces
on Riemannian manifolds [2, 13].

Definition 2.3. Let (M,g) be a smooth Riemannian manifold. There exists a unique
torsion-free connection V on M having the property that Vg = 0, known as the Levi-Civita
connection. Let f : M — R be a smooth function. Let V¥ f(z) be a covariant derivative of f
of order k € N at point z € M in a local chart (U, ); the coordinates of V¥ f(x) are denoted
by V¥ f(x)i,. i, (see (2.14)). Then the norm |V* f| is independent of a choice of chart (U, )

and is given by
(28) VPG 23 Z g (@) - g @)V F ()i, V@)

where we write g in the local chart as g(z) = (¢:5(2))1<ij<a and ¢"(x) are such that

> Ginl@)g™ () = 6.

Recall that V¥ f(z) is (k,0)-tensor on T,(M). The Banach space C"(M) consists of all C”
functions f : M — R with the norm

[l eran ZSUP\V'“ )| < oo

Let v be the Riemannian measure on M. leen 1 < p < 0o we define the norm

(2.9 Hmwzg(éwvmwmﬂw<m



Let
CP(M) = {f € C®(M) : || fllw; < oo} .

The Sobolev space W (M) is the completion of C}(M) with respect to the norm || - |[y, see
[13].

The following analogue of [7, Lemma 5.38 and Corollary 5.39], see [4, Lemma 3.2], plays
a crucial role in our considerations.

Theorem 2.6. Suppose that H € H(M) is localized on open and precompact set U C M.

Then, for any r =0,1,..., the operator H induces a bounded linear operator
(2.10) H:C'(M)— C'(M), where r =0,1,...,
(2.11) H: W, (M) — W, (M), where 1 <p <oo, r=0,1,....

For completeness we present all arguments used in the proof of Theorem 2.6. The technical
lemma below is usually given without a proof, see [2, Theorem 2.20], [13, Proposition 2.2],
[23, Theorem 7.4.5].

Lemma 2.7. Let (U 1) be a chart of M. Let K C U be compact and r € N. Then, there is
a constant C > 0 such that:

(i) for all f € C"(M) and all z € K

(2.12) 1/CY [VEf@)] < ) ID(fod™ ) (W(x) < C Y [VHf(a)

1Bl<r
(i) for all f € W) (M), 1 < p < oo, with supp f C K,

(2.13) L/COILf o™ lwyey < Iflwyan < ClLf o™ lwy g

Proof. A remark is needed to explain the precise meaning of f o' in (2.13). We extend
the domain of this function to the entire R? by

Foul(y) = {fow‘l(y) y € (U),

0 otherwise.

We start with the proof of (i). Take f € C"(M). In the local chart (U,) the covariant
derivative of order k at x € U is defined recursively by

(2-14) ka(x)il-..ik = (Vilvkilf)(x)ig...ik
P d k
ax (Vk 1f l2 Ak Z Z Fllll Vk 1f( )lz...il,lail+1...ik7
i a=1 [=2

where 'Y, are Christoffel symbols given by

(o) =590 (),



see [13, page 6]. Now by an induction argument there are smooth functions Afl
on U such that for all x € U

e defined

2

(2.15) N > A ()5 1)
. 1.0k 8:L‘i1 - 8mlk 11...0k OB .

|B|<k-1
Recall that for a multi-index 8 = (34, ..., 84) € N¢ we have

Rl
(2.16) 5.5/ (@) = D (f o ™) (¥(x)).

Note that functions Afl i, 0 (2.15) are some products of derivatives of Christoffel symbols.

Since K is compact, there exists a positive constant C' such that
1/C6 < g<Co on K,

where § = (9;)1<ij<a 1s identity (2,0)-tensor and the above inequalities are understood in
the sense of bilinear symmetric forms. Consequently,

1/C6<gt<C§ on K.

Combining the above inequalities with (2.8) we get

d d

(2.17) Lt Y V(@i S IVEF@)P < CE Y IVEF(@)ial

By (2.15), (2.17), and the equivalence of ¢? and ¢! norms in finitely dimensional spaces

d o o8l
(2.18) VEf@) = ) mf(l") - > Afl...ik(f’f)wf(l")
i1yeyip=1 o 1Bl<k—1

Using (2.16) we note that (2.12) is equivalent with the following claim for all x € K

U ok N o8l o8l
(2.19) > | Z mf(x) -y i1...ik(x)wf(x> =y a—xﬂf(l’)
e 1Bl<kh—1 B1<r
To prove (2.19) observe that for z € K
ok 5 ol8l ok ol8
S - () =— < | -
ox;, ...0x;, /() Z A () 0xh (7)) = 0wy, ...0x;, f@)| +C Z 8arﬂf(x) '
1B1<k—1 [BI<k—1

Hence, the left side of (2.19) is dominated by the right side of (2.19). We will show the
converse inequality by an induction argument. The base case r = 0 is obvious. Next, we
observe the following inequality

(2.20)

ak

oF 8 BIE] BIE
< |— — o — - )
~ |0z, ... Oy, f@) Z Airs (@) JzP ()] +¢ Z &rﬁf(x)‘
|BI<k—1 |Bl<k—1
8




By the induction hypothesis assume that (2.19) is true for r — 1,

(2.21) >

|B|<r—1

98l oF o8l
Wf(ff)‘ < ZZ:_ mf(f’?)— Z Aﬁzk(x)wf@)

|BI<k—1

Then, the inequalities (2.20) and (2.21) yield the remaining part of (2.19).
It remains to show (ii). Take f € C"(M) with supp f C K. By (2.12) and the equivalence
of /' and ¢P norms in finitely dimensional spaces we have

r 1/p 1/p
(2.22) (kaf(wymp) X(Zwﬁ(fowl)w) for y € H(U),

I8]<r

By the definition of the Riemannian measure v and by (2.9) we have

pTMIT VEFIP o~ Hy) dy.
17 g ;/W)Q 7P/l 0w (w) dy

By the compactness of K, there are constant C, Cy > 0 such that
C1 < Vlgl(z) < Cy for all x € K.

Thus, integrating (2.22) over ¢(U) implies (2.13) for f € C"(M). By a density argument we
obtain (2.13) for all f € W} (M) with supp f C K. O

In the proof of Theorem 2.6 we also need following lemma.

Lemma 2.8. Let Hy, oy be a simple H-operator localized on a precompact set U. Then there
is a finite collection of simple H-operators {H,, o.v, : s € S} localized on the set U such
that for every s € S:

(1) ps € C°(M) satisfies supp s C Vs and &g : Vi — Vi,

(ii) open sets Vs, and ®,(V,) = V, are contained in domains of some charts on M, and
(iit) Hoov = ) ses Hp . vi-

Proof. Since V' and V' are contained in U, there exists a finite collection of charts (£2;,,),
J € F such that
vuvic o,
jeF
Define for 7,57 € F
Qi,j - Q] N (I)_l(Qi N V’)
Let K =suppy C V. Consider a collection of sets €, ;, 7, j € F', which together with M \ K

form an open cover of M. Let o j, ¢, € F be functions from a partition of unity subordinate
to this open cover. From the above definition we have

Howy(f)lw) = D ¢@)ous(@)f(2(x))  forallz e V.
i,jEF
Consequently
Hyoy = Z Hey, 005,905
1,jEF
9



where ¢; ; = ¢, ; and ®; ; is a restriction of the diffecomorphism @ to €2; ;. Observe that
Qi ; C Qjand @;;(€;;) C Q. Taking V;; = €, ;, where (i,j) € S := F x F concludes the
proof. O

Proof of Theorem 2.6. Without loss of generality we may assume that H = H, ey is an
H-operator satisfying conditions of Lemma 2.8. That is, H is localized on a precompact set
U such that
.V =V,
where charts (V) and (V’,4,) belong to the atlas of M. Introduce
P=1odoyy™ W — W,

where W = ¢(V) and W, = ;(V') are open and precompact subset of R?. Let

Lo JpodTiy) yeW

P(y) = d

0 ye R\ W.

Observe that ¢ is a compactly supported C>=(R%) function and ® is a diffeomorphism. We
define H = H; 5y, a simple H-operator, i.e.,

i {@(y)g@(y)) yew
0 y € RT\ W.
Note that if f: V' — R then for
gi= fourl W, 5 R,
H(f)(z) = H(g)(®¥(x)). Indeed, for z € V,
H(g)(¥(2)) = ¢(¢(2))9(2((2)) = p() f oty 0 0 @ 0™ (Y(a)) = H f ().
Hence,
(2.23) H(f)ou™ = H(g).

By the chain rule, a change of variables, and compactness of supp ¢, we obtain that
H = H;  y is a bounded linear operator

ﬁmw : F(RY) — F(RY),

where F(R?) is C"(R?) or W (R%). Now let f € C"(M) be such that supp f C K, where

K C V' is compact. Then by following arguments: Lemma 2.7, (2.23), boundedness of H,
and once more Lemma 2.7 we have

(2.24) IH (N Fan = HS) 0 07 r@ay = [Hll @y < Cllgllrea = £l 700

To complete the proof of Theorem 2.6 take n € C°°(M) such that n = 1 on ®(supp ¢) and
suppn C V’. Then, for any f € C"(M) we have

H(f)=Hnf) and |Infllran < CllfllFan-
Applying (2.24) for nf and K = suppn finishes the proof of Theorem 2.6. U

The following lemma shows that the bounded extension H : LP(M) — LP(M), 1 < p < oo,

in Theorem 2.6 coincides with a pointwise formula in Definition 1.1.
10



Lemma 2.9. Suppose that H € H(M) is localized on open and precompact set U C M.
That is, H : Co(M) — Co(M) is a finite sum of simple H-operators

k
(2.25) H=Y Hy o
=1

where ®; are diffeomorphisms defined on open subsets V; C M such that V;, ®;(V;) C U
and @; € C*°(M) have supports suppy; C Vi, @ = 1,... k. Then, the bounded extension
H:LP(M)— LP(M), 1 <p< oo, is given for all f € LP(M) by

k
(2.26) Hf(x) =Y Hyaevflx)  forae xel
=1

Proof. Choose a sequence of function {f,}nen in Co(M) such that f, — f in LP(M) norm
and pointwise a.e. asn — oo. Then H f,, — H f in L” as n — co. By choosing a subsequence
we can assume that Hf,, — Hf pointwise a.e. as n — oo. Now it suffices to apply (2.26)
for each f,, € C.(M) and take a limit as n — oo. O

As a consequence of Definition 1.1 and Lemma 2.9 we have the following useful fact. The
proof of Lemma 2.10 is left to the reader. Let L} (M) be the space of locally integrable

loc
functions with respect to the Riemannian measure v on M.

Lemma 2.10. Let Py € H(M) be localized on an open and precompact set U C M. Then,
for any two open sets Wi, Wo C M of finite measure and containing U we have

Py(flw,) = Pu(flw,)  for f € Ly, (M).
Hence, we can extend the domain of Py by defining for f € L}, (M),

loc

(2.27) Py(f) = Pu(flw) where W D U is open and v(W) < oo.
In particular, we have
(2.28) Pyf(x)=0  forae xe€ M\U.

2.3. Adjoints to H-operators. Ciesielski and Figiel [7] used their version of Hestenes
operators to define a decomposition of function spaces on a compact smooth manifold. One
of the steps in their proof was the fact that the adjoint to a Hestenes operator is again a
Hestenes operator, see [7, Lemma 5.8]. We show an analogous property for our version of
H-operators.

Let P € H(M) be localized on an open and precompact set U. Then, P, which is defined
initially as P : Cy(M) — Cy(M), extends to a bounded linear operator P, = P : LP(M) —
LP(M). Our goal is to identify (BP,)* : L” (M) — L (M) as a Hestenes operator which is
localized on the same set U.

We begin with a convenient formulation of the change of variables formula for diffeomor-
phisms between Riemannian manifolds.

Lemma 2.11. Let F : M — N be a diffeomorphism between two smooth Riemannian
manifolds M and N with Riemannian measures vy and vy, resp. Let wy € C*°(M) be a
weight, which defines a measure pyy on M by duyy = wyrdvyy. Let wy € C*°(N) be a positive
weight satisfying

(2.29) wy () = wy(F(z))] det(lsz(x))], for all x € M,



where DF(x) denotes the differential of F' at x. Define pun := Fi(ua) as a push-forward

measure of uyr, i.e., for any Borel set B C N, we have un(B) = up(F~1(B)). Then,
duy = wydry and for any f € C.(N) we have
(2.30) | fantudvsty) = [ o Faon()ng(o)

N M

Proof. Lemma 2.11 is a consequence of the change of variables formula, see [5, Theorem

1.3.4],
vn(B) = /Fl(B) | det(DF(x))|dvas(x) for Borel sets B C N.

Hence, for any integrable function g on N with respect to vy we have

(2.31) [ swivs(w) = [ (90 P)@)|det(DF () ldvar(a).
N M
Applying the above for g = fwy yields (2.11). O
The following lemma identifies an adjoint of a simple H-operator.

Lemma 2.12. Let U C M be an open and precompact subset of M. Let ® : V — V' be
a C* diffeomorphism between two open subsets V.V’ C U and let ¢ : M — R be a C™ be
function such that

suppp ={zx € M : p(x) #0} C V.
Consider operators H = H, v and G = H,, -1y, where

o(y) = {g@—%y)m(y) / ; KIT

and Yy is any C*°(M) function such that
Ui(y) = [det D27 (y)]  for y € B(suppp).

Then, G is a simple H-operator localized on U. Moreover, treating H and G as operators
H, = H : LP(M) — LP(M) and Gy = G : L¥' (M) — LV (M), where 1 < p < oo and
1/p+1/p =1, we have (H,)* = G.

Remark 2.1. Using a standard partition of unity argument, it is possible to construct a
function 1, appearing in Lemma 2.12.

Proof. The fact that G is a simple Hestenes operator localized on U is a consequence of the
formula defining G. Next, Lemma 2.11 implies that for all f, g € C.(M)

/M H()(2)g(x)dv(x) = / (1) £ (®(x))g(x)dv(2)
- / (B (9)) £ (4)g(®(y))] det DB (y)|d(y)

/f av(y).

Since C.(M) is dense both in LP(M) and L¥' (M), this equality yields G = (H,)*. O
12



Remark 2.2. Lemma 2.12 justifies the following notation, which we use in the sequel: if H
is a simple H-operator and G is a simple H-operator defined as in Lemma 2.12, then we
write H* = G. Likewise, we shall use the same convention for general H-operators which is
justified by the following consequence of Lemma 2.12.

Corollary 2.13. Let P € H(M) be localized on open and precompact set U. That is,
P = %" H,;, where each H; = Hy, o,v, is a simple H-operator satisfying V;, ®;(V;) C U.
Then, Q@ = >.7" (H;)* € H(M) is localized on U and (P,)* = Qp for all 1 < p < oo.
In particular, the action of Q on Co(M) does not depend on a representation of P as a
combination of simple H -operators.

Proof. Since P € H(M) is localized on U, so by definition there are simple H-operators
H; = H,, ¢,v, with V;, ®;(V;) C U such that P = """ H;. Let Q = )" ,(H;)*. Then by
Lemma 2.12, () is a Hestenes operator localized on U, and it follows that (P,)* = @),y for all
1 <p<oo. U

2.4. Smooth decomposition of identity. We are interested in obtaining a version of
Theorem 1.1 for spaces LP(M), 1 < p < oo and Cy(M). For this we introduce the con-
cept of smooth decomposition of identity which is a generalization of smooth orthogonal
decomposition of identity in L?*(M) from Theorem 1.1.

Definition 2.4. Let U be an open and precompact cover of a Riemannian manifold M.
We say that a family of operators { Py }yey is a smooth decomposition of identity in LP(M),
1 < p < 00, subordinate to an open cover U if:

(i) family {Py}yey is locally finite, i.e., for any compact K C M, all but finitely many
operators Py such that U N K # (), are zero,
(ii) each Py € H(M) is localized on an open set U € U,
(iii) each Py : LP(M) — LP(M) is a projection,
(iv) Pyo Py =0forany U #U' €U,
(v) > vey Pv = I, where I is the identity in LP(M) and the convergence is unconditional
in strong operator topology,
(vi) there exists a constant C' > 0 such that

1/p
@ s (S Imdly) scil,  orangeron,

uecu

Remark 2.3. The above definition can be extended to p = oo by replacing LP(M) by Co(M)
and (2.32) by

1
(1Pv flloc)veu € cotd) and — Z[fllee < sup 1Puflloe < Cllfllee forall f & Co(M).
S

The constant C' appearing above or in (2.32) is called a decomposition constant for { Py }uey
in Co(M) or in LP(M), 1 < p < oo, respectively.

When p = 2, we shall require that the decomposition constant C' = 1, which forces
projections Py to be orthogonal and satisfy (1.4). Consequently, when p = 2, Definition
2.4 is consistent with the concept of a smooth decomposition orthogonal decomposition of

identity in L*(M) as in Theorem 1.1.
13



The following proposition shows that property (v) in Definition 2.4 is automatically implied
by the other conditions.

Proposition 2.14. Let 1 < p < oo. Suppose that {Py}uey is a family of operators on
LP(M) satisfying conditions (iii), (iv), and (vi) in Definition 2.4. Then, (v) holds. The
same holds for p = oo by replacing LP(M) by Co(M) as in Remark 2.3.

Proof. Without loss of generality we can assume that U is at most countable and each Py,
U € U is non-zero. For U € U, define a closed subspace Xy C LP(M) by Xy = Py(LP(M)).
Then, properties (iii), (iv), and (vi) imply that the linear span of subspaces Xy, U € U, is
dense in LP(M). Moreover, the collection { Xy }yey is a strong unconditional basis of LP(M)
in the sense of Nazarov and Treil [19, Section 4] for the sequence space Y = ¢?(U). This is a
special case of an unconditional Schauder decomposition, see [17, Section 1.g]. Alternatively,
LP(M) is isomorphic with ¢P-direct sum of subspaces Xy, U € U,

LP(M) = (@ XU>p,

veu

see [24, Section II1.B.21]. Then, [19, Proposition 4.1] implies the property (v). The case
p = oo is shown the same way. 0

We have the following duality of smooth decompositions of identity.

Theorem 2.15. Suppose that a family of operators {Py}ueu is a smooth decomposition
of identity in LP(M), 1 < p < oo, as in Definition 2.4. Then, {(Py)*}veu is a smooth
decomposition of identity in LP (M), 1/p+1/p' = 1.

Proof. By [19, Proposition 4.5], the properties (iii)—(vi) for {Py}yey in LP(M) imply the
same properties for {(Py)*}yey in LY (M). The property (i) for adjoints {(Py)*}yey is an

immediate consequence of (i) for { Py }yey. Finally, Corollary 2.13 implies that if Py € H(M)
is localized on U, then the same holds for (Py)*. O

In Section 6 we shall establish the existence of a smooth decomposition of identity in
LP(M), 1 < p < oo, and in Cy(M), which is subordinate to any open and precompact cover
of M, see Theorem 6.2.

2.5. Technical Lemmas. We need to use some standard “abstract nonsense” facts about
weighted Lebesgue spaces on general measure spaces.

Proposition 2.16. Let (Q, ) be a positive measure space and let k : Q — (0,00) be a
measurable weight. Let 1 < p < co. Define a multiplication operator

M, 1 LP(dp) — LP(kdp), M _ipf =r"YPS
Then:
(i) M, -1/ is an isometric isomorphism
(M—1p)" = M, 1jp - LP(kdp) — LP(dp) and

(M, —1/p)" = M 1/ : LP (kdp) — LP (dps).
14



(i1) If T : LP(dp) — LP(du) is bounded linear operator, then
T=M_1/,0T oM, : LP(kdp) — LP(kdp),
is also a bounded linear operator with the same norm ||T|| = ||T].

(iii) If Ty, Ty : LP(dp) — LP(dp) are bounded linear operators, then (Ty o Ty} = T o Tb.
(i) If T, : LP(dp) — LP(dp), i € I, are bounded linear operators such that

1/p
Il = (SUTsl,) - for it € L7(d
iel
then
. 1/p
lall = (S IFiall) — or att g € e
iel
with the same equivalence constants.
(v) If T : LP(dp) — LP(dp) is bounded linear operator, then let S = T* : L (du) — L (dp),
1/p+1/p' =1, be its adjoint. Then
S=M_1/y080M.,, : LF(kdu) — L (kdp)
is the adjoint of T, i.e., S = (T)*.
(vi) If T,T; : LP(dp) — LP(dp), i € N, are bounded linear operators such that

Z T, =T in strong operator topology in LP(du),
i=1

then

~.

=T in strong operator topology in LP(kdu).

oo
i=1

In our arguments we will consider weighted Lebesgue spaces LP(M,w), 1 < p < oo, where
weight w € C*°(M) is a positive smooth function on Riemannian manifold M. The norm of
a measurable function f on M is given by

1/p
Il ey = (/ |f|pwdu) ,
M

where v is the Riemannian measure on M. In particular, L?(M,w) is a Hilbert space with
the inner product

<ﬁmw=4/ummwmmww.

The following lemma allows transferring of smooth decompositions of identity for any
weight.

Lemma 2.17. Let M be a smooth Riemannian manifold. Let w,w € C*°(M) be two positive
weights on M and 1 < p < o0.

(i) Suppose that Py € H(M) is localized on an open set U C M, which induces a projection
on LP(M,w). Define an operator Py by

(2.33) éﬂﬁszf«me%f?pr for f € Co(M).



Then, an operator Py € H(M) is localized on U, which induces a projection on

LP(M,®), and

(2.34) HPU|\LP(M,@)—>LP(M,&;) = |’PUHLP(M,w)—>LP(M7w)'
(11) Suppose {Py}uecy is a smooth decomposition of identity in LP(M,w) in the sense of
Definition 2.4. Then, the family {Py}ueu, that is defined by (2.33), is a smooth de-
composition of identity in LP(M, o) with the same decomposition constant.

Proof. Since Py € H(M), Py is a finite sum of simple H-operators H, ¢ as in Definition
1.1. Note that for z € V and f € Cy(M)

b (1) () - ()" ) e

Hence, Py is also a finite sum of simple H-operators Hj ¢ with appropriately modified
@’s. This proves that Py € H(M) is localized on U by Definition 2.1. To complete the
proof of (i), we consider a weight x = 5 and a measure p on M given by dp = wdr. Then,
kdp = @dv and Proposition 2.16(ii)(iii) shows that Py is a projection satisfying (2.34).
Finally, part (ii) follows by direct verification of all properties of smooth decomposition of
identity in Definition 2.4 using Proposition 2.16. 0

Using Lemma 2.11 smooth decompositions of identity can be transferred via diffeomor-
phisms.

Lemma 2.18. Let F : M — N be a diffeomorphism between two smooth Riemannian
manifolds M and N. Let wy € C®°(M) and wy € C®(N) be positive weights satisfying
(2.29) and 1 < p < 0.

(i) Suppose that Py € H(M) is localized on an open set U C M and it induces a projection
on LP(M,wyr). Define an operator Qp, where B = F(U) by

(2.35) Qp(f)=Py(foF)oF! for f € Co(N).

Then, an operator Qp € H(N) is localized on B and it induces a projection on
LP(N,wy) with the same norm as Py.

(i1) Let {Py}ueu be a smooth decomposition of identity in LP(M,wy;). For every B € B in
the open cover B := F(U) of N, define operators Qp by (2.35). Then {Qp}pes is a

smooth decomposition of identity in LP(N,wy) with the same decomposition constant.

Proof. Since Py € H(M), Py is a finite sum of simple H-operators H = H,qy as in
Definition 1.1. Define an operator G acting on functions f € Cy(N) by
o(FY2))f(Fodo Fl(z)) zeF(V)

0 otherwise.

G(f)(@) == H(f o F) o F~() = {

Hence, G is a simple H-operator,
HY(f) = H55(f)

with ¢ = po F71, V= F(V), ® = Fo®o F~'. Thus, Qg € H(N), where B = F(U). Since
Py is localized on U, it is easy to verify that () is localized on B by Definition 2.1.
16



The diffeomorphism F' : M — N is a measure preserving transformation between measure
spaces (M, wyrdvyy) and (N, wydry). For each p, it induces an isometric isomorphism

T:LP(M,wy) — LP(N,wy),  T(f)=foF "

By (2.35), Qp : LP(N,wy) — LP(N,wy) satisfies Qg = T o Py o T~!. Hence, Qp induces
a projection on LP(N,wy) with the same norm as Py. Likewise, it is a matter of a simple
verification that if properties (i)-(vi) in Definition 2.4 hold for family {Py}yey, then they
also hold for {Q 5} es. O

3. BACKGROUND ABOUT MORSE FUNCTIONS

In this section we will show some rudimentary facts in Morse Theory following the books
of Hirsch [16, §6] and Milnor [18, §6]. Instead of studying topological properties of smooth
manifolds M as in [16], we will merely employ Morse functions to obtain a convenient local
decomposition of a Riemannian measure on M as a product of measures on an interval and
a level surface of M. In the absence of critical points this is a consequence of the regular
interval theorem, see [16, Theorem 2.2 in §6]. In the presence of a critical point, it is a
measure-theoretic analogue of topological result on attaching cells, see [16, Theorem 3.1 in
§6].

Let M be a Riemannian manifold of dimension d. We say that m : M — R is a Morse
function if all critical points of m are nondegenerate. That is, the d x d Hessian matrix of m
has rank d at every critical point. The following fact can be easily deduced from well-known
properties of Morse functions, see [16] and [18].

Theorem 3.1. Suppose that M is a connected Riemannian manifold (without boundary).
Then, there ezists a Morse function m : M — [0,00) such that:

e preimages m~([0,0]), b > 0, are compact; in particular, level sets m™(t) are compact
for each t >0,
e cvery critical value corresponds to exactly one critical point.

Moreover, m maps M onto [0,00) or [0,1], if M is non-compact or compact, respectively.

Proof. By [18, Corollary 6.7] on any differentiable manifold there exists a Morse function
with compact level sets. In fact, Milnor’s argument shows that preimages m='([0,58]), b > 0,
are compact. By Morse’s lemma [16, Lemma 1.1 in §6], critical values are isolated and each
critical value corresponds to finitely many critical points. Moreover, by [16, Theorem 1.2 in
§6] Morse functions form a dense open set in C*°(M,R) in a suitable strong topology [16,
Ch. 2.1]. Hence, a perturbation argument as in [16, p. 162] yields a Morse function with
critical values corresponding to exactly one critical point. 0

For a regular value t, let J, = m~!(¢) be a level submanifold equipped with the Riemannian

metric inherited from M. The following result is a variant of the regular interval theorem
[16, Theorem 2.2 in §6].

Theorem 3.2. Let m : M — [0,00) be a Morse function as in Theorem 3.1. Let I = (a,b)
be an open interval such that m has no critical values in I. Then there exists a family of
diffeomorphisms {Fy+}o1er between level submanifolds Fy; = Jy — J; such that:

(31) Fﬂitl = Ft’/ﬂ : Jt — Jﬁ,
17



(32) Ez,tg OFtl,tQ = Ftl,tg fOT t17t27t3 € IJ
and for each ¥ € I, the formula Fy(t,x) = Fy(x), (t,x) € I X Jy defines a diffeomorphism

(3.3) Fy:1xJy— My =m(I)=|JJ c M.

tel
For any 9 € I there exists a smooth function 1 = 1y on I X Jy such that the pushforward of
the Riemannian measure vy under Fﬁ_1 18

(3.4) (Fyh)e(var) = (A x vg),
where X is the Lebesque measure on I and vy is the Riemannian measure on Jy. Moreover,
if m has no critical values in I = |a,b], then there there exist constants cy,co > 0 such that

(3.5) o <Y(t,x) <co  forall (t,x) € I x Jy.

Proof. The proof follows along the lines of the proof of [16, Theorem 2.2 in §6]. Let grad m
be the gradient vector field corresponding to m. Let X be a renormalized gradient vector
field on M given by

grad m(x)

3.6 X(x) = ——F—=.

39 = Tgradm(z)P

The vector field is well-defined and smooth everywhere on M except the critical points of m.
For any ¥ € I =R and x € M, we consider the initial value problem

1'(t) = X(n(t))
n(¥) = .

By the existence and uniqueness theorem for ordinary differential equations (ODEs), for ev-
ery x € M, which is not a critical point, there exists a maximal open interval /(z) containing
9, such that the solution n(t) satisfying (3.7) exists for all ¢ € I(z).

In addition, if ¥ € I = (a,b) and « € Jy, then a direct calculation as in [16] shows that
n(t) € J;. In particular, for any = € J(¢), the maximal existence interval I(x) contains
I. Hence, the solution curves satisfying (3.7) define a mapping Fy : I x Jy — M given by
Fy(t,z) = n(t). By the differentiability of solutions of ODEs, the mapping Fy is smooth and
satisfies

(3.8) Fy(W,x) =x and Fyu(x):= Fy(t,x) € J; for (t,z) € I x Jy.

Since Fiy(Fyi(r)) = x, the mapping Fy; : Jy — J; is a diffeomorphism satisfying (3.1).
Likewise, (3.2) follows from the uniqueness of solution curves of the vector field X. Since
the solution curves of the gradient vector field are transverse to level submanifolds, Fy is an
immersion. Hence, Fy is a diffeomorphism between I x Jy and M;.

Define a weight 1 by

(3.9) Y(t,x) = |det DFy(t, )| for (t,x) € I x Jy.
By the change of variables formula (2.31) for any f € Cy(Mj),

(3.10) /ml(]) x)dvy (z //Jﬁ f o Fy)(t,x)(t, x)dtdvy(x).

This implies that the pushforward measure relation (Fy).(¢¥(A X vy)) = vy. Hence, (3.4)

holds. If m has no critical values in I, then we can extend Fj to I x Jy, where I is an open
18
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FIGURE 1. Visualization of properties (3.11) and (3.12) in Theorem 3.3. Green
curves represents portions of the level sets J; \ J;, [t —t.| < d., near the critical
point z. The solution curves of the flow between level sets are in red.

interval containing I. Since I x Jy is compact, the differential of Fy is uniformly bounded
and has uniformly bounded inverse on I x Jy, which implies (3.5). O

We shall need an analogue of Theorem 3.2 that deals with critical points.

Theorem 3.3. Let m : M — [0,00) be a Morse function as in Theorem 3.1. Let I = (a,b) C
m(M) be an open interval and t, € I be a unique critical value of m in I = [a,b], which
corresponds to a single critical point z € M. Let U, be an open neighborhood of z € M.

Then the following holds:
(i) There ezist open submanifolds J, C J,, t €I, and a family of diffeomorphisms Fy, -
Jy — J; such that the analogues of (3.1), (3.2), and (3.3) are satisfied with J; replaced

(i1) ?hi?t’(; exists an open neighborhood V, of z € M and §, > 0 such that
(3.11) J\NJ, cV.cV.cU, foraltelt,—2d,,t,+0.],
and
(3.12) J\ Foe(Jo \ V) C U, for allV,t € [t, —0d,,t, + 0,].

(i1i) For any v € I there exists a smooth function 1) = thy on I><~J~19 such that the pushforward
of the Riemannian measure vy, restricted to My = J,c; Ji, under F,l;l 15 given by

(3.13) (Fy Y)alvar) = (X x vy),

where vy 1s the Riemannian measure restricted to jg C Jy. Moreover, (3.5) holds with
Jy replaced by Jy.

In the proof of Theorem 3.3 we shall employ the following elementary lemma about tran-
sition times of solution curves. Let B(z,r) be an open ball centered at z € M and radius

r > 0 with respect to a geodesic distance d on M.
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Lemma 3.4. Let = € M and v > 0 be such that the closed ball B(z,2r) is compact in
M. Let X be a smooth and non-zero vector field defined on some open neighborhood of

B(z,2r)\ B(z,r). Then, there exists 6 > 0, such that whenever n : [to,t;] — M is a solution
curve of X such that

(1) = X(n(1)),
(3.14) {n(to) € B(z,r) and n(t) & B(z,2r),

then |tg — t1] > 6.

Proof. Since K = B(z,2r)\ B(z,r) is compact in M, there exists a constant ¢ > 0 such that
(3.15) |1 X(2)]| == Vg(z)- (X(2),X(2)) <c forallze K.

Let [so, s1] C [to,t1] be a subinterval on which 7 travels through K. That is,

d(z,n(s0)) =, d(z,m(s1)) = 2r, and 7(s) € K for all s € [sg, s1].

Then,
S1 S1
r < d(n(s0). n(s1)) < / 1/(3)lds = / 1X(1(s))]lds < (51 — so)e.
S0 S0
Hence, we conclude Lemma 3.4 with 6 =r/c. U

Proof of Theorem 3.3. Choose r > 0 such that B(z,8r) C U, is precompact. Let X be a
normalized gradient vector field of m given by (3.6). Let d; be the minimum transition time
for the annulus B(z,2'r) \ B(z,2"!r), where i = 1,2, or 3, which is given by Lemma 3.4.
Fix0< 6, < %min(él, d2,03) such that [t, — d,,t, +9.] C (a,b).

For any v € [t, — d.,t, + J.], let n be the solution curve to the initial value problem

n'(t) = X(n(t))
(3.16) {77(?9) =z, xz € Jy\ B(z,2r),

We claim that the solution 7 exists on the interval I and it satisfies
(3.17) n(t) € J;\ B(z,r) forallt € [t, — d.,t. + 6,].

On the contrary, suppose that there exists a trajectory satisfying n(t) € B(z,r) for some t €
[t.—0.,t.+0.]. Applying Lemma 3.4 on the annulus B(z,2r)\ B(z, ) yields a contradiction
with 2, < ;. Hence, (3.17) is a consequence of (3.6), which guarantees that trajectories
n(t) of the vector field X travel through level submanifolds J; precisely at time ¢ as in the
proof of Theorem 3.2. Since the solution n stays away from the critical point z, which is the
only singularity of X on m™'(I), it exists on the interval I.

For some fixed choice of ¥y € [t, — d,,t, + 0,], we define

j,go = J,go \B(z, 27’).

By the above claim, for any ¢t € I, we can define

(3.18) J; = {n(t) : n is a solution of (3.16) for some z € Jy,}.
By (3.17) we have
(3.19) J,NB(z,r)=10 for t € [t, — d.,t. + 6,
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It is less obvious that
(3.20) J\ J, C B(z,4r) fortet,—d,,t,+9.]

On the contrary, suppose that for some t and y € J; \ J, we have y & B (z,4r). Consider the
solution curve 1 of the vector field X with the initial condition 7(¢) = y. Then, the solution
n exists on I and by Lemma 3.4 on the annulus B(z,4r) \ B(z,2r), it satisfies

n(s) & B(z,2r) for all s € [t, — d.,t. + 0,

In particular, © = 1(dy) & B(z,2r). Hence, x € Jy,. By (3.18), this forces y € .J;, which is a
contradiction. This proves (3.20), and hence (3.11) holds for V, = B(z,4r).
For any ¢ € I, we define the mapping

Fy:IxJy— M =|JJcM
tel
in the same way as in the proof of Theorem 3.2. When moving along the trajectories of
(3.16) between the level sets .J; near the critical value |t — t,| < J,, we stay away from the
ball B(z,7) by (3.19). Hence, Fy is well-defined and Fy, : Jy — J; given by Fy () = Fy(t,z)
satisfies (3.1) and (3.2). Moreover, Fy is a diffeomorphism for the same reasons as in the
proof of Theorem 3.2.

Note that Fj extends smoothly to the closure of I x Jy. Hence, the differential of Fj is
uniformly bounded and has uniformly bounded inverse for all (¢, x) € I x Jy. As in the proof
of Theorem 3.2 this yields (3.13) with the weight v given by (3.9).

Finally, to prove (3.12), take any y € J; \ B(z,8r), where t € [t, — 0,,t. + J.]. Since the
transition time of the vector field X for annulus B(z, 8r)\ B(z,4r) is at least 34,, we deduce
that x = Fy(y) € B(z,4r) for any 9 € [t, —6,,t,+9.]. Hence, we have y = Fy,(z) for some
x € Jy \ V., where V, = B(z,4r). Since B(z,8r) C U,, this shows (3.12). O

Remark 3.1. As a corollary of (3.11) and (3.13), for any f € Cy(M) such that f vanishes on
U., we have

t.+02
(3.21) / ) dvas (o / / F o Fy)(t, 2)b(t, x)dtdvy (x).
m_l((tzf6z,tz+6z)) tr— j’ﬂ

Combining Theorems 3.2 and 3.3 we can extend the above formula to a larger portion of the
manifold M. Indeed, suppose that interval I = (a,b) contains exactly one critical point ¢,.
Choose ¥ € I such that ¥ > t,. Then, for any ¢ > t,, the diffeomorphisms Fy; in Theorem
3.3 are merely restrictions of diffeomorphisms in Theorem 3.2. However, if ¢ < t,, then Fy
can be extended by

Folt, z) = Fyix) t>t,orze Js,
NI, tgtzandeJﬁ\jﬁ.

Under this convention, Fy : I x Jy — M is well-defined and its restriction to I x j,g is a
diffeomorphism onto its image. Likewise, we extend weight function ¢ to I x Jy in any
way. Combining (3.10) and (3.21) we have that for any f € Cy(M) that vanish on open
neighborhood of U, of a critical point z, we have

(3.22) / 2)dv(z / / F o Fy)(t 2)b(t, 2)dtdvy (x).
m—l((tz—5z,b)) to—8. J Jy



Likewise, if ¢ € I is such that ¢ < t,, then under the same assumptions we have

tz+0-
(3.23) \/Tnl((a,tz+6z)) f(z)dvy(x) = /a /Jﬁ(f o Fy)(t, ) (t, x)dtdvy(z).

Applying Theorem 3.2 or Theorem 3.3 for another regular value s € I yields another
smooth function ¢ on I x Js or respectively on [ x Js. It turns out that 1y and 13 must
satisfy the following relationship.

Lemma 3.5. For any ¥, s € I, the weight functions iy and ¥ from Theorem 3.2 or Theorem
3.3 satisfy

Po(ty, Foo(x))  ¢s(ty, @)
77/)19<t0,F5’19(:L’)) ¢8(t07x)

Proof. As a consequence of Theorem 3.3 we have the following commutative diagram of
diffeomorphisms

(3.24) for all ty,t, € Tand x € J, or resp. x € J,.

idXngs

([ X jﬁ,wﬁ()\ X Vﬁ)) > (I X js;ws()‘ X Vs))

(3.25) m -

(M[, l/d) C M.
Indeed, the rule (3.2) yields
Fy(t, Fys(x)) = Fy(t, x), for (t,z) € I x Jy.

Moreover, the pushforward measure by these diffeomorphisms are indicated in the diagram
(3.25). Hence,

(Fo,s)«(a(t, - )vg) = o(t, Fso() (Fos)(vo) = ¥s(t, - )vs.

Since t € [ is arbitrary, (3.24) follows immediately. In the setting of Theorem 3.2 the proof
is analogous. 0

Finally, we shall describe how results of this section behave under stretching of a Morse
function.

Theorem 3.6. Suppose m : M — [0,00) is a Morse function as in Theorem 3.1. Let
q:[0,00) = [0,00) be an increasing C* function such that ¢(0) = 0. Define m : M — [0, 00)
by m = qgom. Then m also satisfies conclusions of Theorem 35.1.

More precisely, suppose that I = (a,b) contains only reqular values of m. Then, the same
is true for m and I = (q(a),q(b)). Level submanifolds of m and m are the same after the
change of parameter,

A

(3.26) Js =m"(s) = Jy1s) forallsel.

Moreover, the diffeomorphisms F978 cJp — Js, 0,5 €1, corresponding to m and I from
Theorem 3.2 satisfy

(3.27) Fps(x) = Fygyg1s(x)  forz € Jy.

Likewise, suppose that I contains only one critical value t, of m. Then, t, = q(t,) is a

unique critical value of m in I and the above conclusions hold with J, replaced by J, from
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Theorem 3.3. In particular, the conclusions (3.11) and (3.12) for the Morse function m with
value 6, > 0 transfer to the same conclusions for m with critical value t, and value

(3.28) 0, = min(q(t,) — q(t. — 8.),q(t. +6,) — q(t.)) > 0.

Proof. Let X be a renormalized gradient vector field of m given by
. grad m(x) 1

3.29 X(z) = . = X(x).

529 D= Tarad ()P~ @)

For any v € I and © € M consider the initial value problem (3.7). Likewise, consider the

same problem for X given by

(3.30) {ﬁ’(t) = X (3(®))

n(q()) = z.

We claim that n(t) = 7(q(t)) for all ¢ in the interval of existence of solution 1. Indeed, let
n(t) = n(q(t)). By the chain rule and (3.29), we have

~/ A~/ ! [~ ! q/<t> ~ ~

i) = 7' (q(t)q'(t) = X ((q(1))q () = —————55 X (1(1)) = X(7(1)).

q'(m(n(q(t))))

In the last step we used the fact that 7(s) moves through level submanifolds J,. That is,
m(n(s)) = s. Hence, the uniqueness of solutions of (3.7) yields 7(t) = n(t). The identity
n =1 o q leads to properties (3.26) and (3.27) by the proof of Theorem 3.2. We leave filling
the remaining details of the proof to the reader. OJ

4. LATITUDINAL PROJECTIONS ON A MANIFOLD

In this section we show the existence of a family of projections dissecting a manifold M
along level sets of a Morse function m. The standing assumption is that a Morse function
m : M — [0, 00) satisfies the conclusions of Theorem 3.1. The assumption that each critical
value corresponds to only one critical point can be removed. However, it becomes essential
in the next section.

4.1. One dimensional smooth decomposition of identity. We start by recalling smooth
projections on the real line originally introduced by Auscher, Weiss, and Wickerhauser [3]
and Coifman and Meyer [9], see also [4]

Definition 4.1. Let § > 0 and ¥ € R. Let s : R — [0, 1] be a smooth function such that

(4.1) supp s C (=9, +00)
and
(4.2) s2(t) + s*(—t) =1 for all ¢t € R.

For the construction of such function, see [14]. We define Auscher, Weiss, and Wickerhauser
(AWW) operator E5 acting on a function h on R by

EF(h)(t) = s*(t — O)h(t) £ s(t — 9)s(—t + I)h(20 —t), teR.

The choice of =+ is referred as the polarity of Ef;. If polarity is not indicated, we shall assume
it is positive, i.e., By = Ej.
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By [4, Proposition 2.1] we have that
(43 EE(C*(R)) € C*(R)
and Eﬂi is an orthogonal projection as an operator
(4.4) EF : L*(R) — L*(R).

The following lemma shows that AWW operators are uniformly bounded on LP(R).
Lemma 4.1. Let 1 < p < oo. The operator E;t extends to a bounded projection

EF : [’(R) —» LP(R)

with the norm is given by

[ £ £vE(1 =€)
+VE(1=¢) 1-¢ |

Furthermore, the norm of operator Ej : Co(R) — Co(R) is given by

IEfllcic, = sw (e+ vET-9) = 572

Proof. Without loss of generality, we can assume 9 = 0 and we let E* = EF. Let h € LP(R)
and 1 < p < 0o. Since

||Ef9c||LP—>LP = sup ||A2t||p_>p, where AjE
0<€<1

h(t) fort >,
0 for t < —9,

(15 E*(h)(t) = {
we need to estimate

L= [ B m@ra =[G mop -+ e o
Observe that

[E=(R) ()" + | E*(R)(—t)|" = HA;E(@ [ h(_t) ] < 1A% lhop (IR + [h(=1)[")

p

< (Bp)P(Ih@)P + [h(=t)["),  where B, = Sup [1AE [1p-p-

Integrating over the interval [0, §] yields

1
B, /_ (P

Combining this with (4.5) yields that

(4.6) |E*||1o—rr < By
To show equality in (4.6), we find 1/2 < & < 1 and (a,b) € R? with ||(a,b)||, = 1 such that
a
By = 114l = 42}
p
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Let 0 <ty < & be such that s*(ty) = &. Take any £ > 0. By continuity we find > 0 such

that
+ a
[0 ]

Define a function h by
(47) h = a’]-[to,to+77] + b]‘[*tO*m*tO}'

Then,
ermwpa— [ ||z, [ 10 d o
/ | ()Pdt = 20 | h(—t) t= /t )

+ a
ASQ(t) |:b:|
> (1 2)(Byyn = (1 - )(BPIIAIE,
This shows equality in (4.6).
The case p = oo follows by the duality ||E=| i1 = [[E¥|| 11~ since B : L2(R) —
L3(R) is self-adjoint. Note that for a given 0 < £ <1

JAZ [[somsoo = max(§ + /E(1 =€), 1 — & +1/E(1 = €)).

>(1—-¢)B, for [t —to| <.
p

P
dt

p

Hence,

&I

B, = sup ||A l|loosoo = max§+\/ £(1—-¢

0<e£<1 0<g<1

Finally, to treat the case of Cy(R), it suffices to take a function h € CO( ) such that ||h|le = 1
and h(ty) = 1 and h(—ty) = =1, where ¢, is as above. This proves that

HEiHCO‘>00 = HEi”L“ﬁLOO-

We leave the details to the reader. [l

Remark 4.1. The proof of Lemma 4.1 implies that

D+5 9+6
| Esropa <@y [Clrora o e re),

(4.8) 9—3 9—6
sup  |EXf(t) < Bw sup |f(H)]  for f € Co(R).
te[9—0,0+40] te[9—0,940)
Since
(4.9) (I— Ef)f = RyE; Rgf,  where Ryf(t) = f(20 —t),t € R,

we also have

0+6 9+6
/ (T - B f(t)Pdt < (B,) / F@OPdt for f e I(R),
[V [V

—6

sup  |(I—-EJ)f(t)] < B sup |f(t)]  for f € Co(R).
te[9—6,940] te[v—6,9+44]

(4.10)

Remark 4.2. Since matrix 2 X 2 matrix A¢ has rank 1, it is possible to compute its norm as
a mapping F — (P where 1 < p < co. However, the formula is rather complicated

A2y = (€72 4+ (1 - 5)1’/2)1@((1%5) n 1) (F - g(li_g) " JE)
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Consequently, the norm of the projection Eﬂi

1E5 e = By = sup [|AZ ||y
0<e<1

can only be computed numerically for p # 2.

Definition 4.2. Suppose a sequence of points ¥; € R, j € Z is such that for all j € Z,
19]‘—&-1 — ’L9j > 25,

lim ¥; = +o00, lim ¥; = —o0.
j—00 j——o0

Define a family of AWW operators by
Qo;0,1 = By, — Ey,,, JEL

Note that
0 tS’l%-(SOI"tZQ?]‘_H—f—é,
Ey f(t W, — 6 <t<v;+5,
(4.11) Qy, f(1) = 4 EF ) j j
f(t) 05+ <t <dj =4,

(I — Elgj+l)f(t) 19]'+1 —i<t< ﬁj+1 + 0.
Lemma 4.2. Let 1 < p < oo. The family of operators {Qy,9,,, }jez is a smooth decomposi-
tion of identity in LP(R), or Co(R) if p = oo, subordinate to an open cover {(¥; — 6,941 +
d)}jez in the sense of Definition 2.4. The decomposition constant in (2.32) is independent
of a partition {9;};ez and § > 0.
Proof. By Definitions 4.1 and 4.2, Qyg,9,., € H(R) is localized on (J; — 6,041 +9), j € Z.
Hence, by (4.8), (4.10), and (4.11) we have
(412) ||Q19j,19j+1f||17 < Bp||f1[19j—5,19j+1+5]||17 for all f € LP(R)

The fact that Qy,9,,, : L*(R) — L*(R) is an orthogonal projection can be found in [14].
Moreover, projections Qy,v,.,,, J € Z, are mutually orthogonal and they form a decomposi-
tion of identity in L?(R). We also have pointwise equality for any f € L} (R),

(4.13) flz) = Z Qo;9,..f () for a.e. x € R.

jez
This implies properties (iii)—(v) in Definition 2.4. It remains to show the last property (vi).
By (4.12), for any f € LP?(R),

Vjt1+6
D Q0,00 f 1D < (Bp)pZ/ [F17 < 2(By)?[I f1I5-

jez jez 7 0i=0
To show the converse inequality take any f € LP(R). Since for each z € R the sum in (4.13)
has at most two non-zero terms, we have

F@)P =1 Qo f (@)

JET

<23 Qo F@

jET

Integrating over R yields
1F11 <2770 ) 11Qo 0,0 F -
JEZ
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This proves (vi). We use similar arguments for Cy(R) with the supremum norm. O

Definition 4.3. Suppose that 0 =¥y < ¥y < ... <9, = 1 is such that ¥;;; —9; > 20 for
all 7 =0,...,n, with the understanding that 9,1 = 1+ ¢;. This corresponds to a partition
of the unit circle S' = {z € C : |z| = 1} into arcs

U(ﬁjﬂﬁj_ﬂ) = {62mt : 79]‘ —i<t< ’l9j+1 + 5}
Define a family of AWW operators acting on functions f € C(S') by
QU(ﬁjﬁjJrl)f(Z) = Qﬂjﬂngrl (f o 627ri.)(t), where z = 627rit, ’19]' —0<t <1+ 7.9j — 0.

Lemma 4.2 has an analogue for the circle in the L? case, see [4, Theorem 2.1]. Conse-
quently, we have the following lemma on S*.

Lemma 4.3. Let 1 < p < oo. The family of operators {QU(§j7ﬁj+1)}?;& is a smooth
decomposition of identity in LP(S'), or C(S') if p = oo, subordinate to an open cover
{UW;—0,9;41+9) ;-‘:_& in the sense of Definition 2.4. Moreover, the decomposition constant
in (2.32) is independent of {¥;}7_, and § > 0.

The proof of Lemma 4.3 is an easy adaptation from the real line.

4.2. Smooth decomposition into latitudinal projections. Recall that m : M — [0, c0)
is a Morse function on a manifold M satisfying the conclusions of Theorem 3.1. In what
follows we shall tacitly assume that the dimension of M is at least 2.

Definition 4.4. Let ¥ be a regular value of m and 6 > 0 is such that I, where I5 = (0 —
d,9 + §), contains no critical values. Let s : R — [0, 1] be a smooth function satisfying (4.1)
and (4.2). Let ¢ be a smooth function on I5 x Jy as in Theorem 3.2. For a fixed 1 < p < o0,
we define Auscher, Weiss, and Wickerhauser (AWW) operator Ey : Co(M) — Co(M) with
cut-off ¥ as follows.

Define an operator £y acting on a function h € Cy(I5 x Jy) by

»(29 —t,x)
Y(t, )

where (¢, ) € IsxJy. By the support condition (4.1), we extend the domain to h € Cy(Rx Jy)
by setting

1/p
(4.14) Eyg(h)(t,z) = 2t — Dh(t,x) + s(t —9)s(—t + 1) ( ) h(29 —t, x),

ht,z) t>19+9,
4.15 Ey9h(t =
Finally, we define AWW operator Ey on the whole manifold M by setting for f € Co(M),
fy) m(y) =9+ 6
(4.16) Ey(f)(y) = Epwo(fo Fy)(t,x) y= Fy(t,x),(t,x) € Is x Jy,
0 m(y) <9 — 0.

We emphasize that operators Ey g in (4.14), (4.15) and Ey in (4.16) depend on the fixed
value of 1 < p < oco. But this dependence is omitted in our notation.
The following lemma is a generalization of the corresponding result on the sphere [4,

Lemma 3.3].
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Lemma 4.4. Let m : M — [0,00) be a Morse function as in Theorem 3.1. Let ¥ > 0 and
d > 0 be such that the interval [¢ — 0,9+ 0| contains only reqular values of a Morse function
m. Fix 1 < p<oo. Let Ey be an AWW operator as in Definition 4.4 with this value of p.
Then,

(4.17) By : LP(M) — LP(M)

18 a projection, which is orthogonal if p = 2. Its norm coincides with the norm of operator
EF on LP(R) in Lemma 4.1. In the case p = 0o, the same holds for Ey: Co(M) — Co(M).

Proof. By Definition 4.4, observe that Fy is a sum of two operators. By (4.14) and (4.16),
one of these operators is a multiplication operator by the smooth function ¢ given by

1 m(y) >0+,
ply) = s*(t—1) t=m(y) €,
0 m(y) <9 —o.

By (4.1), (4.14), and (4.16), the other is a simple H-operator localized on an open set
m~ (9 — 6,9 + 9)
To prove that Ey is a projection on LP(M), observe that LP(M) decomposes as an ¥ sum

LP(M) = LP(m= (0,9 — 0]) @, L*(m~'[0 — 6,0 + 0]) @, L*(m~"[0 + 5, 00)),

/ fPdy = / fPdv+ / o+ / Py f e (M),
M m~1[0,9—4] m—[9—8,9+4] m—1[9+5,00)

Since Fy is the zero operator 0 and the identity operator I on the first and the last component,
respectively, we can restrict our attention to the middle subspace. We claim that

(4.18) / |Eyf|Pdv < (Bp)p/ | f|Pdv,
m~1(9-8,9+6) m~1(9-8,9+6)

where B, is the same constant as in the proof of Lemma 4.1. By Theorem 3.2, Fy : Is X Jy —
m~ (¥ — 6,9 + J) induces an isometric isomorphism between LP(I5 x Jg, (X x vy)) and
LP(m™1 (Y — 6,9 + 0),v). Hence, it suffices to show that for h € Co(I5 x Jy),

/ |Egoh(t, )P0 (t, x)dtdvy < (B,)" / \h(t, 2)[P(t, o) dtdvs.
IsxJy

15><J19
For this, it is enough to show that
(4.19) |Eyoh(t,z)[PY(t, x)dt < (Bp,)P | |h(t,x)[Py(t, z)dt € Jy.
Is Is
Let Ey be the one dimensional AWW operator from Definition 4.1. Then, by (4.14) we have
the following identity
(4.20) Eyoh(t,z) = [My-1/p( 1) © Ego Myp(. ) (h(-,2))(t) (t,z) € 15 x Jy,

where M, denotes the multiplication operator by a function s on I5. Combining Proposition
2.16(ii), (4.8), and (4.20) yields (4.19). Likewise, Proposition 2.16(iii), Lemma 4.1 and (4.20)
implies that
(E¢’ﬂ)2h = Eq/,ﬂgh for h € C()(](; X Jﬁ)
Hence, Ey : LP(M) — LP(M). To see that Ey is an orthogonal projection when p = 2, we
apply Proposition 2.16(v). O
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Remark 4.3. Using (4.10), an analogue of (4.20) for I — E 4, and repeating the argument
in the proof of (4.18) yields a manifold variant of (4.10)

/ (- Espav < (B, | P
m=1(9—8,9+5) m=1(9—8,9+3)

Lemma 4.5. Let m : M — [0,00) be a Morse function as in Theorem 3.1. Suppose 91,109 >
0 are such that:

e Uy +0 <y —9,

e intervals [9; — 6,0; + d], i = 1,2, contain only regular values of m.
Let Ey, and Ey, be AWW operators for some fized value 1 < p < oo. Then, Ey, and Ejy,
commute

(4.22)

(4.21)

EﬂzEﬁl = El‘h E192 = E192

and the operator

(4.23) Qo,.0, = By, — Ey, € H(M)

is localized on the open subset m™' (91 — 8,95 +08) C M. Moreover, Qy, v, : LP(M) — LP(M)
s a projection, which satisfies

0 z € m ([0, — ] U [J2 + 6,00)),

Eﬂlf(l‘) T € m’1(191 — 0,01 + 5),

f(zx) z €m [V + 8,95 — d]),

(I — Eﬁz)f(l’) S m_l("ﬁg — (5, Wy + 5)

The norm of Qg, 9, acting on LP(M) is the same as the norm of Ef on LP(R) in Lemma

4.1. In particular, if p = 2, Qg,9, is an orthogonal projection on L*(M). The analogous
statement holds for Qg, 9, : Co(M) — Co(M).

(424) Qﬁl,ﬁ2f<x) =

Proof. Using ¥4 + 9 < ¥ — 6 and (4.16), one can show (4.22). Hence, Qy, s, is a projection
(orthogonal if p = 2) by Lemma 4.4. The localization of Qy, », is the consequence of the
first part of the proof of Lemma 4.4. That is, )y, 9, is a sum of three simple H-operators.
Two of them are localized on sets m™!(d; — §,9; + §), i = 1,2. The third simple H-operator
is a multiplication operator H, ;4 by the smooth function

(0 m(y) € [Ja + §,00),

1— 82y —t) =82y —t) t=m(y) € (o — 0,92 +9),
e(y) =11 m(y) € [V + 96,9 — 0],

s2(t — ) t=m(y) € (V1 — 6,91 +9),

L0 m(y) € [0,9; — 9.

Therefore, (4.24) is an immediate consequence of this observation. Finally, the conclusion
on the norm of Qy, », is spelled out by the following remark. O

Remark 4.4. Combining (4.18), (4.21), and (4.24) yields for f € L?(M),

/ Qo f@Pdv(z) < (B, | @) dv(z).
m=1(91—8,92+9) m=1(91—8,92+9)
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We also have an analogue for p = oo,

(4.26) sup |Q9,.0,f ()] < B sup |f(z)] for f € Co(M).
z€m =91 —8,02+9] €M~ —6,02-+9]

In addition, Lemma 4.5 holds if 1; = 0 under the convention that £y =T and Qg = I — Ejy.

We shall refer to Qy, 9, as a latitudinal projection. As a consequence of Lemma 4.5 and
the telescoping argument we obtain a generalization of [4, Lemma 3.4].

Corollary 4.6. Suppose that M is a non-compact Riemannian manifold and m : M —
[0,00) is a surjective Morse function. Suppose that 0 = ¥y < ¥ < ¥y < ... is a partition of
[0,00) such that:

o 19i+5<19i+1—5f07"all@'20,

e cach interval [¢¥; — 0,9; + 0], i > 1, contains only reqular points of m.

Fiz 1 < p < oco. Then, the family of operators {Qy,.s,,,}2y as in Lemma 4.5 is a smooth
decomposition of identity in LP(M), 1 < p < oo, subordinate to the open cover

U= {TTLil(ﬁi — (5, (91'+1 + 5) 11 € Z}

In particular,

(4.27) Z Qo001 =L,
i=0

where 1 is the identity on LP(M) and the convergence is unconditional in strong operator
topology. The decomposition in (2.32) satisfies

1/p

(4.28) Ql/pflufl‘p < (Z HQﬁj,ﬁHlf”g) < 21/PBprHp for all f € LP(M).
j=0

Moreover, if p = 2, {Qy,9,,, }i2o forms an orthogonal decomposition of the identity operator
I on L3*(M). In the case of p = oo the same conclusion holds for Co(M).

Proof. Lemma 4.5 shows properties (ii) and (iii) in Definition 2.4. Property (iv)
Qﬂi,ﬁi+1 o Q’L?j,’l?j_‘_l - 0 7’ # j’

is a consequence of (4.22). By the telescoping argument and Lemma 2.10 we have pointwise
equality for any f € L (M),

(4.29) flz) = iQﬁj,ngf(a:) for a.e. x € M,

with at most two non-zero terms for each z. It remains to show property (vi).
By (4.25), for any f € LP(M),

S 11Qu, 0, fI < Z / FlPdv < 2B,
= (5,05 41+0)

To show the converse inequality take any f € LP(M), we apply (4.29) to get

Z Qo,0,4.f(x)] <207 Z |Qo,,0;,, ().
j=0 Jj=0
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Integrating over M yields
Hng < 2r! Z ”Qﬂjﬂjﬂf’lg'
j=0

This proves (vi). We use similar arguments for Cy(M) with the supremum norm. O

For compact manifolds we have the following variant of Corollary 4.6, where we use the
convention that Fy = I and E; = 0, which implies that Qo 9, = I— Ey, and Qy =FLy, ..

n—1,1

Corollary 4.7. Suppose that M is a compact Riemannian manifold and m : M — [0,1] is
a surjective Morse function. Suppose that 0 = vy < ¥y < ... < ¥, =1 is a partition of the
interval [0, 1] such that:

eV, +0<viy1—0 foralli=0,..., n—1,

e cach interval [¢; — 0,9; + 0], i =1,...,n — 1, contains only reqular points of m.
Fiz 1 <p < oo. Then, the family of operators {Qﬁi,ﬁiﬂ}gol as in Lemma 4.5 is a smooth
decomposition of identity in LP(M), 1 < p < oo, subordinate to the open cover

U={m 19— 801 +0):i=0,...,n—1}.

The decomposition constant in (2.32) is universal. Moreover, if p = 2, {Qgi719i+l}?:_01 forms
an orthogonal decomposition of the identity operator 1 on L?(M). In case of p = oo the same

conclusion holds for C(M).

5. LIFTING OF H-OPERATORS FROM A LEVEL SUBMANIFOLD

In this section we introduce the method of lifting an operator acting on a level subman-
ifold to an operator on the whole manifold. To achieve this we shall rely heavily on local
parameterizations as in Theorems 3.2 and 3.3. Again the standing assumption is that a
Morse function m : M — [0, 00) satisfies the conclusions of Theorem 3.1. Throughout this
section we fix 1 < p < oc.

Definition 5.1. Let I = (a,b) be an interval and let ¥ € I be a regular value of m. Let
jﬁ C Jy be an open subset of a level submanifold manifold Jy = m~1(d). Let ¢ = 1y :
I x Jyg — (0,00) be a smooth function satisfying (3.5). Suppose that P € H(Jy) is an
H-operator that is localized on Jy. For any ¢ € I, define an operator P, by

N ($() \ 1P $(9,2)\1/p 7
5.1)  B(f)(z) = PUOGES) D@ GEs) " € da for f € C(Jy).
0 x € Jy \ Jy,
Define the corresponding local lifting operator 11 by
(5.2) II(h)(t,x) = Py(h(t,-))(x), h e Co(Ix Jy),(t,x) €I x Jy.

The operators P; in (5.1) and I in (5.2) depend on the fixed value of 1 < p < oo, but this
dependence is omitted in our notation. In the sequel, when we consider simultaneously the
operators II from Definition 5.1 and Ey y from Definition 4.4, then they correspond to the
same value of p.

Remark 5.1. Despite that the function (%)UP is defined only on Jy, the formula (5.1) is
well-defined since the operator P is assumed to be localized on Jy. Indeed, by Definition
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2.1 and (1.1), the values of an input outside of .J are completely irrelevant and P; € H(Jy).
Moreover, we have the following useful formula

A\ /P 2)\ /P ~
(5.3) II(h)(t,x) = P<h(t, ) <Z}((Z;: ))) >(:c) (Ziif:xi) for (t,z) € I x Jy.
Naturally, II(h)(t,z) = 0 for all (t,z) € I x (Jy \ Jg).

First we shall establish basic properties of a local lifting operator II.

Lemma 5.1. Let IT be a local lifting operator as in Definition 5.1 corresponding to P €
H(Jy), which is localized on Jy. The following holds:

(i) Forn e CX(I x Jy) we define
IL,(f) =nlI(f),  for f € Co(I x Jg).

Then 11, belongs to H(I x Jy) and is localized on I x Jg.
(ii) If P induces a projection

(5.4) P LP(Jy, (0, -)wg) = LP(Jg, (0, - )vp), 1 <p<oo,
then 11 is also a projection
(5.5) IT: LP(I X Jg, 0\ X vg) = LP(I X Jg, 0\ X vg).

Here, X is a Lebesgue measure on I and vy is the Riemannian measure on Jy. Moreover,
the norms of P and 11 are the same. In particular, if p = 2 and P is an orthogonal
projection, then so s I1.

(111) If 0 < 6 < min(|9—al, |b—1|) and interval [¥—0,0+0] contains only regular values of m,
then II commutes with AWW operators Ey 9 as in Definition 4.4, i.e., [1Ey 3 = Ey Il

Lemma 5.1(ii) also holds for p = co. That is, if P : Cy(Jy) — C(Jy) is a projection, then
IT: Co(I x Jy) = Co(I x Jy) is also a projection and the norms of P and II are the same.

Proof. Since P € H(Jy) and it is localized on Jy in the sense of Definition 2.1, it suffices to
consider the case where P = H, 4y is as in Definition 1.1 and V' C Jy is an open subset
with ®(V)) C Jy. A simple calculation using (5.1) and (5.2) shows that II,, = H; 4 i, where

9 1/p Bz 1/p
n(t, z)e(x) (wéfy(@(i))) (wg(t:;)))> zeV,
0 T € Jy \ Va

O(t,x) = (t,P(x)) for (t,2) €V =1x1V.

@(tv l’) =

Consequently, II,, € H(I x Jy) and II, is localized on I X Jy. Note the presence of 7 is
necessary to guarantee that supp ¢ C I x Jy is compact. This proves (i).
To prove (ii), observe that an operator P in (5.4) has the same norm as

(5.6) Py LP(Jg, (1, -)v) — LP(Jy, (1, -)v).
This is a consequence of Proposition 2.16(ii) for a measure p and a weight x; on Jy given by
P(t, )

du(x) = (0, z)dvy(x), ri(x) = for z € Jy.
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Hence, by (5.2) for any h € Cy(I x Jy) we have

(5.7) OA(E, ) [PU(t, z)dvy(z) < ||P|P [ |h(t, 2)[P(t, 2)dvy(x) tel.

Jy Jy

Integrating over ¢t € I shows that the norm of II in (5.5) is the same as the norm of P in
(5.4).

In addition, suppose that P acting as in (5.4) is a projection. We shall use similar methods
as in the proof of Lemma 2.17 to show that II is a projection. Namely, let h € Co(I x Jy)
and (t,z) € I x Jy. By (5.3)

Wwwwzpnmww(

The same holds trivially for (t,z) € I x (Jg \ Jy).

Now, if p = 2 and P is an orthogonal projection, then by Proposition 2.16(v) operators P :
L2(Jg,0(t, - )vg) — L2(Jg,(t,-)vg) are orthogonal projections. Consequently, by Fubini’s
Theorem for any f,h € Co(I X Jy)

MﬁMZZLBU@WMMMW@WMWW

:/1 j f(t,z)P(h(t, ) (t, 2)Y(t, x)dvy(x)dt = (f,I1h).

This shows that

I1: L2(1 x Jg, ¥\ X vg) — L2(I X Jg, 0\ X 1g)

is self-adjoint, hence an orthogonal projection.
In the case p = co observe that

[T (t, x)| < [|P[| sup [A(t, y)]

yEJy

This implies that if h € Cy(I x Jy), then I1h € Co(I x Jy).
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It remains to show that that the operators £y and II commute. The key part lies in the
following calculation for (¢,z) € (9 — 9,9 + ) X Jy,

)\ P AN L/
I(Eywh)(t,x) = P (Epsh)(t,-)) (x) = (W’ )) P((Ew,ﬁh)(t,c) (W’ )) )(:,;)

¢(t,l’) 1/}<19’)
@)\ (e, )\
St ( o) (555)
PRI
st — 9)s(—t + ) (%) h20 —t, -)> (z)

V(20 — t,a:)>1/p

U(t, )
)\ VP
%) = Ed,ﬂgﬂh(t, l’)

=52t — )P (h(t,")) (x) + s(t — 9)s(—t + ) Pay_; (R(20 — t,)) () <

= s%(t — NIIh(t, z) + s(t — 9)s(—t + 9)Th(29 — t, 2) (

Since operator P is localized on Jy, we automatically have
IIE, gh(t,x) = Eygllh(t,z) =0 for (t,x) € (9 — 0,0+ 6) x (Jg \ Jg).
Finally, the case when t > ¥+ or t < 9 — ¢ follows from (4.15) and is left to the reader. [

We are now ready to give a global definition of a lifting operator by specializing Definition
5.1 to that of Theorem 3.2 or 3.3.

Definition 5.2. Let m : M — [0,00) be a Morse function as in Theorem 3.1. Let I =
(a,b) C [0,00) be an interval such that I = [a,b] contains at most one critical value of m;
if it exists, then we assume this critical value corresponds to a single critical point. For a
regular value 9 € I, let Jy be the corresponding level submanifold of M and let Jy be as in
Theorem 3.3 or simply Jy = Jy if m has no critical values in I. Let 1) = 1y be a function
on I x Jy and Fy be a diffeomorphism as in Theorem 3.2 or 3.3, if m has either zero or one
critical point, resp.

Suppose that P € H(Jy) is an H-operator that is localized on Jy. Let II be the local lifting
operator as in Definition 5.1. Define the corresponding global lifting operator IIM acting on
a function f: M — R by

I(f o Fy)(t,x) y=Fy(t,x), (t,x) €l x Jy,

(5.8) M (f)ly) = {o y € M\ My, where M; = J,., J,.

Note that in general II™ is not an H-operator due to sharp cut-off at level submanifolds
Jy, t = a,b. However, if P is an orthogonal projection, then so is I in light of Lemma
5.3. Moreover, IIM becomes an H-operator after we compose it with appropriate latitudinal
projections from Lemma 4.5. To prove this we need to calculate the operator I from
another parametrization Fj.

For a fixed regular value s € I, we define P € H(Js) by

59) PUI)() = {OPSU RN rEd
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where P € H(Jy) is given by (5.1). It turns out that the global lifting operators correspond-
ing to P and P coincide.

Lemma 5.2. Let ¥, s € I be two reqular values and let P € H(Jy) be localized on Jy. Then,
the operator P given by (5.9) belongs to H(J,) and P is localized on J,. Moreover, the global
lifting operators TIM and TIM corresponding to P and P are the same.

Proof. The property that P € H(Jy) is localized on ~J5 is an immediate consequence of
Lemma 2.18 and the fact that Fy, = (Fy9)™' : Jy — Jg is a diffeomorphism. By (5.3) the
local lifting operator Il of P satisfies

N _ AN\ L/p s. )\ /P ~
(5.10)  T(R)(tz) = P (h(t, ) (i’g ))) ) (2) (ZZEMD for (t,2) € I x J.,

where h € Co(I x J,). Also recall that II(R)(t,z) = 0 for (t,z) € I x J,\ J.
Our goal is to show that for any f € Cy(M),

(5.11) M f(Fy(t, x)) = TM f(F(t,x))  for (t,x) € I x J,.

Since IIM f(y) = TIM f(y) = 0 for all y € M \ My, (5.11) implies that IT™ and ITM coincide.
By considering h = f o Fy, (5.8) implies that it suffices to show that for any h € Co(I x J;)
we have

(5.12) I(ho F' o Fy)(Fy N (Fu(t,x)) =TI(h)(t,x)  for (t,z) € I x J,.
By the diagram (3.25), (5.1), and (5.2) we have
M(ho F ' o Fy)(Fy ' (Fu(t,z))) = P(h(t, Fy.

A\ /P

el () (52
1/p

P, (h(t,Fﬂ,sc))( ) )(a,ﬂ(x))(

ba(s,
O I'ys e o(s, Fso(x 1/p
et (SERER) ) e (SeEER)

Now applying (3.24), (5.9), and (5.10) yields (5.12). O

The following lemma establishes the main properties of the global lifting operator II,,. Of
particular importance is the commutation of 11, with latitudinal projections Qy, s,

—_
NG
~—
—~
o
<
—~
&
~
~—

Lemma 5.3. Suppose that P € H(Jy) is an H-operator that is localized on open subset
U C Jg. A global lifting operator IIM as in Definition 5.2 satisfies the following properties.
(i) TIM - LP(M,vy) — LP(M,vyy) is a bounded linear operator with the same norm as P
acting as in (5.4),
(i) If P € H(Jy) acting as in (5.4) is a projection (orthogonal if p = 2), then so is 1M,
(iii) TIM commutes with all AWW projections Es as in Lemma 4.4 for any s € I such that
[s —d,s+ 0] C I contains only regular values of m.
(iv) For any two reqular values 91 < ¥y € I such that:
o ¥+ <Vy—0,
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o [V, —06,9;,+6] CI,i=1,2, contains only reqular values of m,
the operator TM commutes with Qy, 9, = FEy, — Ey, € H(M).
(v) Their composition is an H-operator, i.e.,

(5.13) Y 0 Qg, .9, = Qu, .9, o T € H(M),

(vi) The operator TTIM o Qy, 9, is localized on an open set

(5.14) OU) =0, 1) := |  FouU)
s€(¥1—8,92+96)

(vii) Finally, M o Qy, 9, : LP(M) — LP(M) has norm bounded by B,||P||, where B, is the
same as in (4.6) and P acts as in (5.4).

Lemma 5.3 also hold for p = oo with the understanding that TI* : Co(M) — L*>°(M) in
(i) and IT7 o Qy, 4, : Co(M) — Co(M) in (vii).

Proof. Depending whether m has zero or one critical point in I, we apply Theorem 3.2 or
3.3, resp. The pushforward under the diffeomorphism F L. M; — I x Jy of the Riemannian
measure fy; on M; is the weighted product measure 1y(A X vy). The pushforward of the
measures induces an isometric isomorphism

(5.15) T - LP(My, pag) — LP(I x Jg,h9(\ X vyg)), Tf = foFy.

By (5.8) the restriction ITM|»(p,) = T~ o Il o T, where II is the local lifting operator of P.
Thus, ITY acts on on LP(M) as a conjugate of the local lifting operator II, and otherwise it
is a zero operator on LP(M \ M;). Lemma 5.1(ii) and ¢? decomposition

LP(M) = LP(M;) ©p LP(M \ M)

shows that IIM is a bounded linear operator with the same norm as P. In addition, if P is
a projection, then so is II. This shows (i) and (ii).

Assume momentarily that [¢ — §,9 + 0] contains only regular values of m. Under this
assumption, we shall show that ITM commutes with Ey. Observe that LP(I x Jy), which is
identified with a subspace of functions in L?(I x Jy) vanishing outside I x .Jy, is an invariant
subspace for both II and Ey y. Thus, the operators

T 'olloT : LP(M;) — LF(My), Tl oEy9oT: LP(M;) — LP(Mj)

are well-defined and commuting by Lemma 5.1(iii). This shows that 1" and Ey commute
since IMEy = EgIIM = 0 on LP(M \ My).

Let IT and IIM be local and global lifting operators as in Lemma 5.2. Repeating the above
argument for II and Ey, s shows that M and E; also commute. By Lemma 5.2 we have
1M = 11 which shows (iii). (iv) follows automatically from (iii). Next, we need to show
(v).

By the support condition (4.1), there exists & > 0 such that supp s C [—d + &, 00). Hence,
by Lemma 4.5 the operator Qy, g, is localized on V.= m™ () — 6 +,99 + 6 —¢). Let
n: M — [0,1] be a smooth function such that n(y) = 1 for y € V and suppn C m~'(I).
Define an operator 1 given by IM f = nIIM f for f € Cy(M). By Lemma 5.1 and (5.8),
we can show that [T € H(M) due to the presence of the smooth cut-off function 1. In
addition, the localization of Q)y, y, implies that for all for f € Cy(M),

(516) (ﬁM © Qﬂlﬂ%)f = (HM o Qﬁ1,192)f = (Qﬁ1,192 © HM)f = (Qﬁ1,192 © ﬁM)f
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Since the composition of two H-operators is again an H-operator, we have shown (v).

By (3.3), Fy is a diffeomorphism and O(U) = Fy((9; — d,92 + &) x U) is open. Since the
local lifting operator II of P is localized on I x U, one can show that the operator ITV is
localized on O(U). Recall that by Lemma 4.5 the latitudinal projection operator Qy, g, is
localized on m~1(; — 6,95 +4). Using (v) and (5.16), Lemma 2.5 shows that the composition
operator (5.13) is localized O(U) C m~ (1 — 0,95 + d). This proves (vi). Finally, (vii) is a
consequence of (i) and (4.25). O

If there are no critical values between v, and 15, then Lemma 5.3 yields the following
result.

Theorem 5.4. Let m be a Morse function as in Theorem 3.1. Let 91 < v and § > 0 be
such that m takes only reqular values in [¥1 — 0,99 +0]. Let 9 € [¥1,05]. Then the following
holds for any 1 < p < oo.
(i) Let U be an open subset of the level submanifold Jy. Let Py € H(Jy) be an H-operator
localized on U such that the induced operator

(517) PU : Lp(Jﬂ, @D(Q?, ')1/19) — Lp(Jﬁ,l/}<19, ')7/19)

is a projection. Let IIM be the corresponding global lifting operator as in Definition 5.2.
Define an operator

(5.18) Pow) = I © Q0. = Quy .0, 0 11}
Then, Powy € H(M) is localized on (5.14). Moreover, Powy : LP(M) — LP(M) is a
projection with the norm bounded by By,||Pyl||, where B, is the same as in (4.6) and
||Py|| is the norm of (5.17).

(i1) Let U be a finite open cover of Jy and {Py}ueu be a smooth decomposition of identity
in LP(Jg, (0, - )vg) subordinate to U. Then, {Pow)}veu is a smooth decomposition
of the latitudinal projection Qg, 9, : LP(M) — LP(M) subordinate to an open cover
{O(U)yveu of m™ (91 — 8,92 + 6). That is, { Pow)veu satisfies properties (i)-(iv) of
Definition 2.4 with (v) and (vi) replaced by

(5.19) Z Powy = Qv 9.
Ueld
and
1 1/p
5200 Gl1Qnnfly < (X 1o flp) < ClQuadll,  forall € P,
Ueld

where C' > 0 is the decomposition constant of {Py}tuey in (2.32). In addition, if
p = 2 and projections { Py }yeu acting on L*(Jy,¥(9,-)vy) are orthogonal, then so are
projections { Poqn }ueu on L*(M).

Proof. Let I = (91 — 6,95 + ). Since m takes no critical values in I, we let Jy = Jy. Then
the conclusion (i) follows by applying Lemma 5.3. This implies that {Pow)}veu satisfies
properties (i)—(iii) of Definition 2.4. To prove that

(521) PO(U) o PO(U’) =0 for U 7A U/
it suffices to show by Lemma 5.3(iii) and (5.18) that for global lifting operators
(5.22) MM ol =0  for U#U"
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The above is a consequence of the same property for local lifting operators Iy oIl = 0 and
Definition 5.2. This, in turn, follows from Py o Py = 0 by Proposition 2.16(iii) and (5.3).
Since
Z Puf=f  for feC(Jy),
Ueu
then Definition 5.1 implies that

Y Hyh=h  for heCo(Ix Jy).
Ueld

Consequently, by (5.8) we have
S mff=f  for feCo(M),

Ueu
which implies (5.19).
Finally, to prove (5.20), observe that Proposition 2.16(iv) and (5.3) implies an analogue
of (2.32) for local lifting operators

1 1/p
5\|h||p < (Z |\HUh\|§> < C|h||, for all h € Co(I x Jy).
ved

Using the isometric isomorphism in (5.15) yields

1/p
Nl < (S Imsg) < cisl,  foran f e Gty

Ueu
By the density argument and (5.18), this proves (5.20). O

We also need a variant of Theorem 5.4 that deals with critical points. In the case the
closed interval I = [a,b] from Definition 5.2 contains one critical value of m, by Theorem
3.3, a function ¢ is defined initially on I x Jy . Since ¢ € I is not a critical value of m, by
Theorem 3.2 we can extend ¢ to (¢ — ¢,9 +¢) x Jy for some € > 0 such that [J —e,9 + €]
contains only regular values of m, see Remark 3.1. Hence, it is meaningful to talk about the
space LP(Jy, (1, )vy) below.

Theorem 5.5. Let m be a Morse function as in Theorem 3.1. Let t, € (0,supm) be a
critical value of m, which corresponds to a single critical point z € M, where supm = 1
or supm = oo if M is compact or non-compact, resp. Let U, be an open neighborhood of
ze€ M. Let 6, >0 and V, C U, be an open neighborhood from Theorem 3.5. In particular,
t, is the only critical value of m in the interval [t, — 6,,t, + 0,]. Let 9,91,05 € (0,supm)
and 6 > 0 be such that:

ot,—0, <V <t,<Uy<t,+9,,

o V€ [V, \ {t.} and § > 0 satisfies

(5.23) d <min(|t, — N, |t, — 5, — |, |t. — Do, |t + 0, — Da]).
Then the following holds for any 1 < p < oco.

(i) Let U be an open subset of Jy. Let Py € H(Jy) be an H-operator localized on U such
that the induced operator (5.17) is a projection. Define an operator Poy by (5.18) and

an open set O(U) by (5.14). Then, Powy € H(M) is localized on (5.14). Moreover,
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Powy : LP(M) — LP(M) is a projection with the norm bounded by B,||Py||, where B,
is the same as in (4.6) and ||Pyl| is the norm of (5.17).

(ii) LetU be a finite open cover of Jy such that Uy := JyNV, € U and for allUy # U € U we
have U C Jy. Let {Py}uey be a smooth decomposition of identity in LP(Jg, (0, -)vy)
subordinate to U. Define an operator

(524) PO(UO) - Qﬂ1,192 - Z PO(U)'
Uo#U €U

Then, Pow,) € H(M) is localized on an open set

(5.25) O(Uo) = O(Uo,1,9:) == | Jo\ Fos(Jy\Up) C U..
s€(¥1—9,92490)

The operator
(5.26) Fowyy : LF(M) — LP(M)

is a projection with the norm bounded by B,(C*+ 1), where B, is the same as in (4.6)
and C > 0 is the decomposition constant of { Py}uecu in (2.32).

(iii) Moreover, {Pow)}ueu is a smooth decomposition of the latitudinal projection Qy, g, :
LP(M) — LP(M) subordinate to an open cover {O(U)}yey of m™ (91 —8,92+0). That
is, {Pow)ueu satisfies properties (i)-(iv) of Definition 2.4 with (v) and (vi) replaced
by (5.19) and

1 1/p
520 plQuafly < (SlPoerfly) < BCP +(C+ 1) 1Qu 0l

Ueu
forall f € LP(M), where C > 0 is the decomposition constant of { Py fuey in (2.32). In
addition, if p =2 and projections { Py uey acting on L*(Jy, (¥, )vg) are orthogonal,
then so are projections { Poun }ueu on L*(M).
Proof. We shall proceed as in the proof of Theorem 5.4 albeit for the interval I = (¢, —
d.,t, + d,). Then the conclusion (i) follows by applying Lemma 5.3. This implies that

{Pow)}veunu,) satisfies properties (i)—(iii) of Definition 2.4.
Next we claim that

(528) PO(U) o PO(U’) =0 for U 7é Uel \ {Uo}

Repeating the argument in the proof of Theorem 5.4, the property Py o Py = 0 implies the
same for local lifting operators Il o Iy = 0, and consequently for global lifting operators
I o I1IY¥ = 0. Using (5.28) and the property

Pow)y o Qo,,9, = Qv, 9, © Pow)y = Pow) for U e U\ {Up},
we find that
(Pows))?* = Po);
Pow) o Powy) = Powy) © Pow) =0 for U e U\ {Up}.
This shows that the operator (5.26) is a projection. To estimate its norm, observe that
> vz, Pu is an H-operator localized on Uy, U C Jy. Applying (2.32) for >y Puf,
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where f € LP(Jy, (¥, )vyg), yields

1 1/p
(5.29) c Z Pufll < ( Z ||PUf||£> <C Z Py fll -
U£Uy P U£Uo U£Us P
Thus,
1 1/p
(5.30) o = rot| < (Sieosiz) <l
U#Uo P Ueu

Applying conclusion (i) to the operator 3, P, we deduce that 3, Pow) is a projec-
tion on LP(M) with the norm bounded by

> Pow

U#Uy

(5.31) < B,C”.

Hence, we estimate the operator norm of (5.26) by

> Pow

U+#Uy

(5.32) [ Powo)ll < [[Qay.0.1] + < B,(1+C).

By Theorem 3.3, Fy : I X Jy — M is a diffeomorphism. Hence, the set
W = Fy([V1 — 6,92 + 6] x (Jy \ Uy))
is closed in M. Consequently,
O(Up) =m (9 — 6,02+ 6)) \ W

is open. To complete the proof of conclusion (ii), we need to show that Py, € H(M) is
localized on O(Up). This is a highly non-trivial statement, since Py, is a combination of
several H-operators, which, in general, are not localized on O(Up). Hence, we need to take
an advantage of cancelations occurring in formula (5.24).

To achieve this goal, choose an open set U; C Jy such that

(5.33) I\UycUhclhicly= |J U
Uo#UeU
Take ¢y € C*(Jy) such that

(5.34) supp py C Uy and wg(x) =1 forall x € U,.

Clearly, the corresponding multiplication operator Ty € H(.Jy), which is given by Ty f = ¢y f,
is localized on Us,. So is the operator

(5.35) T:=Ty— Y Py=Py,—-1-Ty)
Up#UecU

Here, I is the identity operator on Cy(Jy). Observe that I — Ty acts as a multiplication
operator by 1 — ¢y and is localized on U,. Indeed,

wo(x) #1 = 2€ Jy\U, C Jy\ U C Up.
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Thus, the operator T defined by (5.35) is localized both on Uy and Uy. By Lemma 2.4, T is
localized on the intersection

(5.36) nl,= |J @nU).
Uo#AUecU

Let Ty be the composition of the global lifting operator of 7" with )y, y,. By Lemma
5.3(vi), Ty is localized on

U  Fnte)=  |J T\ Fold\ (Tnl)

86(791—5,1924-5) 86(791—5,192+5)

c J L\ FasJs\Us) C O(Uy).
86(19175,7924»6)

Let TIM be a global lifting operator of Ty and define
(537) Tl - HM o Qﬁl,ﬂg - Qﬁl,ﬁQ o HM
Now, (5.24) implies that
Powyy = To + Qo 9, — 1.

Hence, the proof will be complete if we show that Qy, s, — 77 is also localized on O(Uy).

Let n € C*(M) be a smooth cut-off function as in the proof of Lemma 5.3(v). Let
T,, € H(M) be the corresponding multiplication operator by n. Let IIM € H(M) be given
by TIM f = nlIM f for f € Co(M). Then, by (5.16) and (5.37) we have

Ty =T 0 Qy,.9, = Qo, .9, 0 TTM.
Combing this with T}, 0 Qy, 9, = Qu,.9, © 1)) = Qy, 9, yields
(538) Qﬂlﬂ% -1 = Qﬁlﬂ% © (Tn - ﬁM) = (TW - ﬂM) © Qﬂhﬂz'

By Definition 5.2, IIM is a multiplication operator by a function

() — {n(y)w(fv) y=Fy(t,x), (tx) €l x Jy,

5.39 -
( ) 0 y € M\ My, where M; = J,¢; J:.

Thus, T;, — 1M € H(M) is a multiplication operator by a function n — ¢, which satisfies

(5.40) n(y) — @™ (y) = nW)(1 —@o(x))  fory= Fy(t,x), (t,z) € (1 — 5,02 + ) x Jy.

Recall also that Qy, s, is localized on V.= m () — 0 + &,92 + § — ), where ¢ > 0 is
sufficiently small.
Choose 0 < €’ < € and define a closed set

(5.41) suppn CW =m ¥, — 0 + &', 95 +6 — €]
By (5.34) and (5.40),

{yeW:o"(y) =n(y)} > U Fy (7).

SE[W1—6+¢' Wa+5—¢']
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Hence, by (5.33)

{y eW: @M(y> 7é U(y)} C U Js \ F1975(U1>
(542) s€[91 —b+e! Pa+6—¢']
< U Js \ Fys(Js \ Up) C O(Up).

s€[1—0+e’ I2+0—e’]

Since Usepp, —sergpro-c Js \ Fo,s(Un) is closed, (5.40), (5.41), and (5.42) yield

(5.43) supp(n — ") € O(Up).

Using (5.38), Lemma 2.5 implies that the operator Qy, 9, — 71 is localized on the intersec-
tion of V with an open neighborhood of supp(n — ¢™). Hence, (5.43) yields the required
localization of Po(y,) on O(Up). Finally, the inclusion O(Uy) C U, is a consequence of (3.12).

It remains to prove the conclusion (iii). We have already shown that {Po)}ueu satisfies
properties (i)—(iv) of Definition 2.4. The property (5.19) is immediate from the definition
(5.24). In order to show (5.27), note that Proposition 2.16(iv) and (5.3) implies an analogue
of (5.29) for local lifting operators

Z I;h g ( > HHUhH§>1 cll > HUh

for all h € Co(I x Jy).

U+£Uo U+£Up U+Uo
Using isometric isomorphism in (5.15) yields
1/p
( > HH?ffHZ) for all f € Co(M;).
U+£Uo U+£Uo U+Up

By the density argument and (5.18) we have

(5.44)
S PowJ (ZHPO f||p)

U#Uo U#Uo

for all f € LP(M).

o| % Pouns

U#Uy

Hence,

1/p
1Qovs Flly < 1 Pogwn flly + < ||Pows pr+C( S 11Pow) f\lp)

U£Up

1/p
< 20(2 ||PO<U>f||§) .

veu
Applying first (5.44) and then (5.31), (5.32), and Pow) = Pow)®@v, 9, yields

p
Z Poan f

< (Bp)P((1+ C?)P + C)||Qu, o0 2.
U+#Uy

2 Powf

U+£Uy

Z [Poan f1; < [|Powe) fIl; + C”

veu

p

Combining the last two estimates yields (5.27).

Finally, consider the case when p = 2 and { Py }yey is a smooth orthogonal decomposition
of identity in L*(Jy, ¥ (¥, )vg). By part (i), projections Poqy @ L*(M) — L*(M), U # U,
have norm 1, so they are orthogonal. Hence, by (5.24) the projection Powy,) : L*(M) —
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L*(M) is orthogonal as well. Therefore, { Pow)}veu is a smooth orthogonal decomposition
of the latitudinal projection Qy, v, : L*(M) — L*(M). O

Remark 5.2. Theorems 5.4 and 5.5 also hold for p = oo when LP(Jy) is replaced by C(Jy)
and LP(M) is replaced by Cy(M). We leave the details to the reader.

6. SMOOTH DECOMPOSITION OF IDENTITY IN LP(M)

The goal of this section is to prove Theorem 1.1. This is a consequence of the following two
more general theorems about existence of smooth decompositions of identity in LP(M) spaces
for 1 < p < oo or Cy(M) in the case p = co. Theorem 6.1 shows the existence of smooth
decompositions for some particular open and precompact cover of M. Then, Theorem 6.2
generalizes this result to arbitrary open and precompact covers of M.

Theorem 6.1. Let M be a smooth connected Riemannian manifold (without boundary) of

dimension d and suppose 1 < p < oco. Let {K;}°, be a nested sequence of compact subsets
of M such that

(6.1) K, =0, K; Cint(K;11) forall €N, and M = U K;.
i=1

Then, for any sequence {&;}2, of positive real numbers, there is at most countable, open
and precompact cover U of M such that:

(i) for allU € U such that U N K; = (), we have diam(U) < g,
(i1) the cover U is locally uniformly finite, i.e., there exists a constant N = N(d) depending
only on dimension d such that

(6.2) Vee M JopenVoz  #H{UelU:UNV #0} <N,

Moreover, for any 1 < p < oo, there exists {Py}ucu a smooth decomposition of identity in

LP(M) if p < 00, or Co(M) if p = oo, which is subordinate to U. That is,

(11i) each Py € H(M) is localized on an open set U € U,

(iv) each Py : LP(M) — LP(M) if 1 < p < o0 or Py : Co(M) — Co(M) if p = o0, is a
projection

(v) the projections { Py }ueu satisfy

(63) PUOPU/IO, U?éUIEZ/{,

(vi) in the case p < oo, there exists a constant C = C(d) depending only on dimension d
such that

1/p
(6.4 = (SUrefly) < clsl,  forai € )

veu
in the case p = oo we have for all f € Co(M),

1
(1Pvfllec)veu € coltd) —and  Zllflloc < sup [Py flloc < Cllflo,
Ueu
(vii) the projections { Py uey satisfy
(6.5) Y Py=1,

vel
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where the convergence in (6.5) is unconditional in strong operator topology on LP(M)
if 1 <p<oo, or on Co(M) if p= 0.

In the case p = 2, the decomposition constant in (6.4) equals 1. Hence, each Py : L*(M) —
L*(M) is an orthogonal projection and {Py}yey is a smooth orthogonal decomposition
in L?(M). As a corollary of Theorem 6.1 we deduce a more general result for arbitrary
precompact covers of M.

Theorem 6.2. Let M be a smooth connected Riemannian manifold (without boundary) and
let 1 < p < oo. Suppose W is an open and precompact cover of M. Then, there exists
{Qw }wew a smooth decomposition of identity in LP(M) if p < oo, or Co(M) if p = oo,
which is subordinate to W. In particular, if p < oo we have

1/p
66 glilh= (X lQwslp)  <cAsl,  gor i€ ),

Wew
where C' is the the constant in (6.4). In case p = oo we have for all f € Cy(M),

1
(IQw fllsc)wew € ce(W)  and  —||fllse < sup [|Qw flloo < C?[|f]]oo-
C Wew

Moreover, the localizing sets K(Qw) of operators Qw satisfy
(6.7) Vee M Jopen Vox  #{WeW:KQw)NV £0} <N,

where N is the same as in (6.2). In the case p = 2, the decomposition constant C' =1 and
{Qw }wew is a smooth orthogonal decomposition in L*(M).

The scheme of the proofs of Theorems 6.1 and 6.2 is as follows. First, we show that if
Theorem 6.1 holds in some dimension d, then Theorem 6.2 also holds in the same dimension.
Next, we prove Theorem 6.1 by induction with respect to d. We start with the base case
d = 1. The inductive argument uses Theorem 6.2 in dimension d — 1, which is a consequence
of the inductive hypothesis that Theorem 6.1 holds in dimension d — 1.

Proof of Theorem 6.2. In the proof we shall employ Lebesgue’s number lemma. For an open
cover of a compact metric space (X, d), there exists a number n > 0 such that every subset
of X with diameter less than 7 is contained in some member of that cover. In our case, X
is a compact subset of M and d is a geodesic distance on M.

Suppose W is an open and precompact cover of M. Let {K;}$°, be a sequence of compact
sets as in (6.1). For any ¢ > 1, we find a sufficiently small §; > 0 such that the following set
is compact

KZ’Jrl = {x e M: d($, Ki+1> S 51}
Let 0 < g; < min(d;,n;), where n; is Lebesgue’s number for the cover W of fQH. Then, any
subset U C M with diameter < ¢; and intersecting K;,; is contained in K;,;. By Lebesgue’s
number lemma we have U C W for some open set W € W.

Now let U be an open cover and let {Py}yey be a smooth decomposition of identity as in
the conclusions of Theorem 6.1. In particular, if U N K; = ), then diam(U) < &;. We claim
that for any U € U, there exists W € W such that U C W. Indeed, take any U € U and
find minimal ¢ > 1 such that U N K;y; # (). Since U N K; = (), by Theorem 6.1(i) we deduce

that diam(U) < ¢;, and hence there exists W € W such that U C W. For any U € U choose
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W =W(U) € W such that U C W. Since U is a locally finite cover, only finitely many sets
U € U can be assigned to the same (open and precompact) subset W € W.
For any W € W, define

(6.8) Qw = Z Py.

Uel: W(U)=W

Since cover U is locally uniformly finite and

K@Qw)c |J K@),

Ueu: W(U)=w

hence (6.7) holds for the same value N as (6.2). Thus, a sum in (6.8) has only finitely many
terms and each Qu € H(M) is localized on W. Observe that

Py it W=W(U),

PUOQWZQWOPU:{O it W £ W(U).

Hence applying (6.4) twice we have for all f € LP(M),
1/ 1/p

(ZIIwaIIZ)l/pSC(Z > liresl) pzc(ZnPUfng) < cifll,

Wew Wew Ueu Ueld
W(U)=W

The converse inequality is shown the same way. A routine verification shows the remaining
properties showing that {Qw }wew is a smooth decomposition of identity in LP(M). The
case p = oo is an easy modification of the above argument. This completes the proof of
Theorem 6.2. O

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Suppose that m is a Morse function on M as in Theorem 3.1. We
claim that it suffices to show Theorem 6.1 for a specific sequence of compact sets {K;}°,
satisfying (6.1). Indeed, suppose {K;}°, is another sequence of compact sets of M as in
(6.1). Let {&;}5°, be any sequence of positive real numbers. Without loss of generality we can
assume that {£;}3°, is nonincreasing. By compactness argument for any i € N, there exists
j = j(i) € N such that K; C K;. Then, choose j(i) such that j(1) = 1 and j(i) < j(i + 1)
for all ¢ > 1. Define a sequence {&;}32, by €; = &j;1+1). Assuming that the conclusions of
Theorem 6.1 hold for {K;}2, and {e;}5°,, one can show that the same holds for {f(j};’il
and {&;}22,. The only non-trivial is property (i), which follows from the fact that (i) holds
for { K 1321 and {€;(41)}7%

We prove Theorem 6.1 by induction on the dimension d of a manifold M. Note that a
connected Riemannian manifold M of dimension d = 1 is a diffeomorphic to a circle if M is
compact or a line R if M is not compact. If M is a circle, the result follows from Lemma 4.3
and Lemmas 2.17 and 2.18, which enable us to change weights and Riemannian structure.
If M is a real line, then we use Lemma 4.2 instead.

Now assume that M is non-compact connected Riemannian manifold with dimension
d > 2. The case of compact M is an easy modification of more complicated non-compact
case and is left to the reader. Let m : M — [0,00) be a Morse function as in Theorem 3.1.

In the sequel we shall assume that m has infinitely many critical points; the finite case is
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again an easy modification. Let {z;}5°; be the sequence of critical points arranged so that
the sequence of critical values {t,, = m(z;)}32, is increasing. The smallest critical value is
t., = 0. Define a sequence of compact sets K; = m™1([0,¢,, — 2018]), ¢ > 1. Let {&;}32, be a
decreasing sequence of positive real numbers.

For any k > 2, consider an open neighborhood U,, = B(z,ex). Let 6,, > 0 be the
value and V., be the open neighborhood corresponding to U, from Theorem 3.3. Choose
an increasing sequence of {0;}°, and a sequence of positive numbers {J;}°, such that:

e ¥y =0 and lim;_,. ¥; = occ.

e For any i > 1, intervals [9; — §;,9; + ;] are disjoint and contain only regular values
of m.

e Interval [0,9; + d;] contains only one critical value ¥y = 0 and m~'([0,9; + &;]) has
diameter less than ;.

e For any i > 1, each interval [¢; — ;,¥;41 + J;41] contains at most one critical value
of m. If t,, is such critical value, then we have

tzk — 6Zk < 19z — 51 < 19z —+ (Sl < tzk < 19i+1 — 5i+1 < 79i+1 + 6i+1 < tZk + 5Zk'
and
(69) d(fL’, Fﬁi,t(l’)) < &g for all x € Jﬁi \ ‘/Zk,t S [191 - 5i7 191‘_;,_1 + 5i+1]'

o If [¥; — 0;,¥ir1 + di41], @ > 1, contains no critical values and ¢, is the largest critical
value less than 4;, then

(610) d(d?, F§i7t(x)) < €k, for all x € Jﬁi,t c [191 — 51', 191'4_1 + 61’—1—1]‘

Such choice of {9;}52, and {§;}$2, is always possible since the level submanifolds Jy, are
compact. In particular, in the presence of a critical point z, the set Jy, \ V., is also compact.
Hence, (6.9) and (6.10) follow by uniform continuity of diffeomorphisms Fy, ;.

In light of Theorem 3.6 we can assume that ¢ := inf;>; d; > 0. Indeed, if inf;>; §; = 0,
then we can construct a rapidly increasing ¢ such that a stretched Morse function m =
gom : M — [0,00) fulfills the above properties when all §;’s are replaced by a single
0 > 0. This is a consequence of Theorem 3.6 which guarantees that level submanifolds
Jy and diffeomorphisms Fy,; corresponding to m and m are the same after the change of
parameter given by q.

Consequently, we can apply Corollary 4.6 which yields a smooth decomposition of the
identity by latitudinal projections {Quy, ., }52o. Now it suffices to decompose each projection
Q9,,9:1,, © > 1, as a finite sum of projections localized on open sets with small diameters as
follows. The first latitudinal projection Qy, s, is already localized on set W, := m™([0,9; +
9)) with diameter < e1, and there is no need for further subdivision. Let Py, = Qy,s,

First, assume that interval [¢; — 0,491 + 6], ¢ > 1, contains no critical values. Let k € N
be such that t,, is the largest critical value less than ¥ = ¥;. Observe that Jy is a union
of finite number of smooth connected and compact submanifolds of M without boundary
and of dimension d — 1. Using the induction hypothesis in the form of Theorem 6.1 for
each connected component of Jy separately, we conclude that there is a finite open cover
U(Jy) of Jy consisting of sets with diameters < €, and { Py }yey(s,) a smooth decomposition
of identity in LP(Jy, ¥ (¥, )vy) subordinate to U(Jy). Then by Theorem 5.4(ii) we obtain

{Pow)}veu(s, a smooth decomposition of the latitudinal projection Qy,y,,, on LP(M). In
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particular, we have

(611) Z PO(U) = Qﬂi70i+l7
and

1 1/p
©12) ZliQuaatlh<( X WPowll) < ClQuoly  foral f € 22

Uel(Jy)

where C' = C(d — 1) is the constant in (6.4) for dimension d — 1. Note that by (5.14) and
(6.10) for each U € U(Jy) we have diam O(U) < 3e,. Moreover, by (5.14) and inductive
hypothesis (6.2) we have
(6.13)

Ve em 0 — 6,0y + 6] Jopen V oz #{U eU(Jy): OU)NV # 0} < N(d—1),

Next, assume that interval [¢; — §,9,41 + 0], ¢ > 1, contains exactly one critical value
t... Let Uy = Jy NV, where ¥ = 0,. Observe that diam(U;) < ;. By (3.11) we can
choose a finite open cover U(Jy) of Jy consisting of sets with diameters < g such that
Uy € U(Jg) and U C Jy for any Uy # U € U(Jy). By the induction hypothesis, now in
the form of Theorem 6.2 in dimension d — 1, there is a smooth decomposition of identity
in LP(Jy, (¥, -)vy) subordinate to U(Jy). Then, by Theorem 5.5 we obtain {FPow)}ueu(.,)
a smooth decomposition of the latitudinal projection @)y, s,,, subordinate to an open cover
{O0(U)}Yveu(s,y)- That is, (6.11) and (6.12) hold with the constant

(6.14) C" = max(2C?, B,(C® + (C* + 1)»)V/#),  where C = C(d — 1).

For each Uy # U € U(Jy) we have U C Jy \ V., and hence by (5.14) and (6.9) we have
diam O(U) < 3e. On the other hand, by (5.25) we have diam O(Uj) < €. Moreover, the
inductive hypothesis (6.7)

(6.15) Ve e JyJopen Voo  #{Uel(Jy): K(Py)NV #0} < N(d—1).

Replacing the sets U € U(Jy) \ {Up} by sufficiently small neighborhoods of K(Py) we can
guarantee that

(6.16) Vo e JyJopen Voa  #H{U cUJ)\{Us}:UNV #D} < N(d—1).

Hence, by (5.14) and (6.16) we have
(6.17)
Vo €m0 — 0,0, + 0] Jopen Voo #{U €UJy) : OU)NV #BY < N(d—1) +1.

The above procedure defines an open cover U of M by
U:={W,u{oU): U eU(Jy,), i € N}.

Then, U is a locally uniformly finite cover and (i) holds with ¢; replaced by 3e;. Indeed,
using (6.13), (6.17), and the fact that each point x € M belongs to at most two sets
m~9; — 8,911 + 6], ¢ € N, implies that (6.2) holds with N(d) = 2(N(d — 1) + 1).

The above construction produces a family {Py }wey forming a smooth decomposition
of identity in LP(M) subordinate to the cover U. Using Corollary 4.6, Theorem 5.4, and

Theorem 5.5, we can verify properties (iii)-(vii) in Theorem 6.1. In particular, by (4.28),
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(6.12), and an analogue of (6.12) with constant C” for intervals containing critical values, we
can show that (6.4) holds with the constant

C(d) == max(2'~1? 2V B\,

where C" is given by (6.14). In the case p = 2, the projections Pow), U € U(Jy) are
orthogonal by Theorems 5.4 and 5.5. Hence, so are projections Py, W € U, and the
decomposition constant C'(d) = 1 in all dimensions. Finally, (vii) is a consequence of (4.28)
and (6.11). This proves Theorem 6.1. O

7. SMOOTH DECOMPOSITION OF IDENTITY IN SOBOLEV SPACES

In this section we give applications of the main theorem to function spaces on manifolds.
We show a decomposition of Sobolev spaces on manifolds extending results of Ciesielski and
Figiel [6, 7, 8] for compact manifolds and the first two authors [4] for the sphere. In addition,
Triebel [21, 22] has extended the theory of Triebel-Lizorkin and Besov spaces on complete
Riemannian manifolds with bounded geometry, see also [20] and [23, Ch. 7]. More recently,
Besov spaces on compact manifolds were studied by Geller and Mayeli [12]. A survey on a
recent progress space-frequency analysis on compact Riemannian manifolds and Riemannian
manifolds with bounded geometry can be found in [10]. In contrast to these developments,
our results we do not require the assumption of bounded geometry.

7.1. Compact manifolds. The following result is an extension of a result on the sphere [4,
Theorem 6.1] to general compact manifolds in the spirit of results of Ciesielski and Figiel, see
[11, §5]. Note that their decomposition depends on the choice of the smoothness parameter
r. In contrast our decomposition using smooth orthogonal projections works for all values
of r € N.

Theorem 7.1. Let M be a smooth compact Riemannian manifold (without boundary). Let
U be a finite open cover of M. Let {Py}uecu be a smooth decomposition of identity in LI(M)
if 1 < q < oo oronC(M)ifq= oo, which is subordinate to U. Let F(M) be either C"(M)

or W;(M), 1<p<oo,r=0,1,.... Then, we have a direct sum decomposition
F(M) = €D Pu(F(M)),
veu

with equivalence of norms

1fll7an = Y _Pofllran  for all f € F(M).

veu

The proof of Theorem 7.1 employs Theorem 2.6 and is shown the same way as in [4].
This is possible due to the fact that the number of projections Py, U € U is finite and
hence they are uniformly bounded on F(M). For non-compact manifolds M, Theorem 6.2
yields the same result for LP(M) spaces. However, there is no guarantee that projections
Py are uniformly bounded on Sobolev spaces W (M) if M is non-compact. To deal with

non-compact manifolds M we switch to the setting of local Sobolev spaces.
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7.2. Non-compact manifolds. We will need the following decomposition lemma on L}, (M),
which is made possible thanks to Lemma 2.10.

Lemma 7.2. Let {Py}yey be a smooth decomposition of identity in LI(M), 1 < q < oo,
subordinate to an open and precompact cover U of M. If f € L}, .(M), then

(7.1) f= Z Py(f) a.e. on M
Ueu

and

(7.2 Py o Py(f) = {(z)w P

Proof. Take any compact set K C M. Define
UK)={UelU:UNK # 0 and Py # 0}.
By Definition 2.4(i) U(K) is finite. Hence
W= U U
UeU(K
is open and precompact. By properties (i) and (v) in Definition 2.4 and by (2.28), we have
(7.3) flw= Y Py(flw) forall f e L (M).
UeU(W)

Since each Py is bounded on L'(M), a density argument shows that the same holds for

f € Lloc(M)
Now take any f € L}, (M). Define g = fly € L'(M). By (2.27)
(7.4) Py(g) = Py(f) for all U € U(K).

Hence, by (2.28), (7.3), and (7.4) for a.e. x € K we have

fle)=g(x)= > Puglz)= > Puglx)= > Puf(x)=>_ Puf(x)

UeU(W) UeU(K) Uel(K) Ueu

Since K was arbitrary, (7.1) is shown. Finally, (7.2) for f € L] (M) is a consequence of
property (iv) in Definition 2.4 and (2.27). The general case follows by a density argument. [

Local Sobolev spaces on open subsets of R? were systematically studied by Antoni¢ and
Burazin [1]. We shall adopt the following definition of local Sobolev spaces on a Riemannian
manifold M.

Definition 7.1. For » > 1 and 1 < p < 0o, we define a local Sobolev space
pioc(M) = {f € Liye(M) : ¥y € CZ (M) nf € Wy (M)}.
This space W”

o, e M) is a locally convex space with the topology given by a family of semi-
norms {p, : 1 € C>}, where
o (f) = lInfllw;an
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Clearly if M is compact then W, (M) = W; (M), r > 1T and 1 < p < co. We will assume
in this subsection that M is non-compact. In the sequel we will need an equivalent definition
of W7,..(M) using a specific family of seminorms indexed by N. For this let (£2;),en be a

p,loc
locally finite cover of M. Recall that a family (a;);en Is a partition of unity subordinate to

(92;) en if for all j € N, a; : M — [0, 1] is smooth, supp a; C §2;, and
Zozj(x)zl for all x € M.
jEN

Proposition 7.3. Let (€2;),en be a locally finite cover of M such that all sets ) are pre-
compact. Let (aj)jen be a partition of unity subordinate to (€2;);en. Let f € Lloc(M)‘ Then
f €W} (M) if and only if for all j € N, a;f € W (M). Moreover, for every n € C°(M),
there exist a constant C(n) > 0 and a finite set N(n) C N such that

Infllwran < Cm) > ey fllwan-
JEN(n)

Consequently, two families of seminorms {0, : n € C(M)} and {04, : j € N} define the
same topology on W, (M).

p,loc

Proof. Let n € C(M). Then,
n= Z Qg = Z a;,
JjEN JEN(n)

where N(n) = {j € N : suppn Nsuppa; # 0}. Since (2;);en is a locally finite cover of M,
the set N(n) is finite. For any f € Lj, (M), we have

nf= > nlaf).
JEN(n)

Hence, if a; f € W (M), then by Theorem 2.6, na; f € W) (M). Consequently, nf € Wy (M)
as well. Moreover,

Inflwyon = {[n Y asf <C)| > af n D> Nl fllwgon
JEN(n) Wy (M) JEN(n) Wy (M ) JGN(TI
This completes the proof of Proposition 7.3. 0

Theorem 7.4. Let (§2;),en be a locally finite cover of M such that all sets Q; are precom-
pact. Let (a;)jen be a partition of unity subordinate to (2;)jen. Let {Py}tueu be a smooth
decomposition of identity in LY(M), 1 < q < oo, subordinate to an open and precompact
cover U of M. Let f € Ly, (M), 1 <p < oo, andr € N. Then, f € W}, .(M) if and only if
Pyf e W) (M) for all U € U. Moreover a family of seminorms

ku(f) = 1Pofllwg o, Uel,
defines the same topology on W ,,.(M) as in Definition 7.1.

Proof. Let () en be a partition of unity subordinate to (€2;),en. To prove the theorem we

need two sets of inequalities. First, for all U € U there exists a finite family N(U) C N and
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a constant C'(U) > 0 such that for all f € Ly, (M), if o f € W) (M) for all j € N(U), then
Pyf € Wj(M) and

(7.5) ku(f) <CWU) Y oi(f),  where g; = ga,.
JEN(U)

Second, for all j € N there are a finite family ¢ (j) C U and a constant C'(j) > 0 such that
for all f € Lj, (M), if Pyf € Wi (M) for all U € U(j), then oy f € W) (M) and

(7.6) 0i(/) <CG) Y wulf).
Ueu(y)

Let U € U. Fix V C M an open and precompact set such that U C V. Since V is
precompact then for B
N(V)={jeN:suppa; NV # 0},

we have
Z a; =1 onV.

JEN(V)
If fe L} (M), then

f=> fo onV

JEN(V)
Define
Z fa
JEN(V

then f = ¢ on some neighborhood of U C V. Smce the operator Py is localized on U, by
Lemma 2.10 we have

Pu(f) = Pu(g)-
Hence, by Theorem 2.6 there exists a constant C'(U) > 0 such that

1 Po (D)l any = 1Po(9)llwyany < CO)||gllwyan < CU) Z e fllwy -
JEN(U)

This proves the first inequality (7.5).
To show the second inequality, take j € N. Define

U(j) ={U eU : UnNsuppa; # 0}.

The set U(j) is finite since U is a locally finite cover of M. If f € L] (M) then from Lemma
7.2 and the definition of U(j)

ozjf:ajZPU(f):aj Z Py(f) a.e. on M.
veu Ueu(j)

The multiplication operator by «; is a simple H-operator. Hence, by Theorem 2.6 there
exists a constant C'(j) > 0 such that

s lwsn =l 3 rut)| )3 NP lwgan,
Ueu(y) WE(M) UeuU(y)
This proves (7.6) and completes the proof of Theorem 7.4. |
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The locally convex space W', (M) is metrizable. By Theorem 7.4 the following metrics

p,loc
induce the same topology:

1 9lf—9 _
d1(f79)—§§m where 0; = 0q,,

or arranging U into a sequence (Uy)gen and putting

1 _w(f—9)
d = — = h = Ky,
2(f,9) ZQJl—i—lij(f—g) where K, = Ky,
JEN
Theorem 7.5. Let 1 < p < oo andr > 1. Then, Wy,
C>®(M) is dense in W', (M).

p,loc
Proof. Note that W}, .(M) is a locally convex metrizable space. To show that W}, .(M) is
Fréchet space it remaining to prove that (W),,.(M),d;) is complete. Let (f,,) be a Cauchy
sequence in W, (M). Since a; has compact support for all j € N, there is g; € W, (M)
such that o f, — g; in W) (M) as n — oo. Passing to a subsequence by a diagonal argument

we can assume that for all j € N

(M) is a Fréchet space. Moreover,

a;fn —g; ae on M asn— oo.

We claim that there is a function G € L}, (M) such that g; = «;G for all j € N. Indeed,
define for all j € N

gi(x) .
G(z) = if «a;(x) #0.
( a;(z) !
The function G is well defined since for all 7, j € N and almost all z € M such that a;(z) # 0
and a;(x) # 0, we have

9;(@)
folz) = as n — 00,
a;(z)
and simultaneously
folz) = ZZ,((?) as n — oo.

Note that G € W] ,,.(M) and for all j € N

0i(fn—G) = ”ajfn_ngWE(M) — 0 as n — 00.

This implies that f, — G in W, .(M).
Next, we show that C°(M) is dense in W),,.(M), i.e., for any f € W, (M) and ¢ > 0
there is a function G € C°(M) such that all 1 < j < N := —log, e

0i(f = G) = lla;(f = G)llwyny < &
Take f € W) ,,.(M) and a function n € Cg°(M) such that n(z) =1 for all z € U;V:1 Supp ;.
Hence,
(7.7) noj=ca;  forall<j<N.
By Proposition 7.3, nf € W] (M). Since H;(f) = a;f is a simple H-operator, it is bounded
on W; (M) by Theorem 2.6. Let

(78) C= max{||Hj||W£(M)HW;(M) 01 S j S N}
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From the definition of Sobolev space W (M) we can find a function g € C*° such that

(7.9) Inf = gllwzan <e/C.
Define the function G :=ng. Now for 1 < j < N, by (7.7), (7.8), and (7.9) we have

oi(f = @) = lly(f = nglllwgan = lle;(nf = Dllwyan < Clinf = gllwpan < e

This finishes the proof of Theorem 7.5. 0
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