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Abstract. Consider a sample of n points taken i.i.d from a submanifold Σ of
Euclidean space. We show that there is a way to estimate the Ricci curvature of
Σ with respect to the induced metric from the sample. Our method is grounded in
the notions of Carré du Champ for diffusion semi-groups, the theory of empirical
processes and local Principal Component Analysis.
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1. Introduction

In this paper we are concerned with the structure of sets of large data in high
dimensions. Even though we deal with sets of points in RN for N large, a common
assumption when studying large data sets is that the points lie on or in the vicinity of
an embedded low dimensional submanifold Σd of RN . This assumption is oftentimes
called the manifold assumption and the study of geometric and topological proper-
ties of sets satisfying the manifold assumption is what we call nowadays manifold
learning. The interest in the structure of large data sets comes from the need of orga-
nizing information arising from many different sources, for example, images, signals,
genomes and other outcomes. Even though there has been significant progress in the
manifold learning problem in the last decade, a fundamental question remains unan-
swered: construct an algorithm for learning or effectively estimating the curvature
of a manifold that is being approximated by a point cloud. In this paper we lay the
theoretical foundation for estimating the Ricci curvature of an embedded submanifold
of RN if one only knows a point cloud approximating the submanifold. In particular,
combining with the recent work of Singer and Wu [25] and PCA (Principal Compo-
nent Analysis), we offer a construction which takes a point cloud and generates the
geometric information as follows.

• Input: A sequence of points ξ1, ..., ξn ⊂ RN and a bandwidth parameter t.

• Output: For each point ξi, an approximate basis for a tangent space at ξi,
and Ricci curvature matrix approximating the Ricci curvature with respect to
this basis.

If points are sampled randomly from a smooth submanifold, then for n large
and t small, there will be an orthogonal connection matrix Oξi,ξj approximat-
ing the connection between the tangent spaces of nearby points ξi, ξj, (see
[25]).

There is a choice of kernel and and PCA cutoff parameter, which may affect the
output, but will not affect the limit when the points are sampled from a smooth
submanifold as n→∞.

Some advantages of our method are the following:

• It generates a weighted Ricci curvature which takes into account the underly-
ing probability density.
• We do not need to approximate the derivatives of the underlying metric.
• It generates an approximate Ricci curvature even without assuming that the

manifold has a constant dimension
• Our method allows one to study the convergence of the sample version of Ricci

curvature to its actual value based on extrinsic information like the reach of
the submanifold (see Definition 4.10).
• When the connection forms Oξi,ξj are available, it allows one to approximate

the Hodge Laplacian on 1-forms.
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The following is our main result: For a more precise statement, see Theorem B in
section 2.1.1.

Theorem A (Approximation of the Ricci Curvature). Consider the metric measure
space (Σ, ‖ · ‖, dvolΣ) where Σd ⊂ RN is a smooth closed embedded submanifold. Sup-
pose that we have a uniformly distributed i.i.d. sample {ξ1, . . . , ξn} of points from Σ.
For x ∈ Σ, one can define a sequence of d-tuples of orthogonal vectors, and d×d Ricci
matrices R̂i,j representing the Ricci curvature on these vectors, such at if η ∈ TxΣ,
then ∣∣∣R̂i,jη

iηj − Ricx(η, η)
∣∣∣ a.s−→ 0,

where ηi are the components of the vector η projected onto the d-tuple of vectors
approximating the tangent plane.

We will see that the sequence of tangent spaces can be be constructed using a
method known as local Principal Component Analysis (local PCA). Since this con-
struction is a crucial part of the article [25], we will devote Section 5 to a fairly
detailed explanation of the construction of vectors using PCA. Construction of the
Ricci curvature operators is described in section 2.

We will also state, (but not prove) a corresponding theorem that applies when the
sample of points is distributed i.i.d withrespect to a volume form other than the given
Riemannian volume form. See Theorem D.

Our method is based on purely on distance, not on combinatorics. In short, we
iterate an approximate, kernel-generated Laplacian to obtain a Bakry-Emery opera-
tor. To obtain a “coarse Ricci curvature” this is applied to a function which should
be approximately linear at a point. To obtain a Ricci curvature on the PCA basis,
we apply this operator to linear functions with differentials determined by the PCA.

Our notion does not assume or attempt to create a triangulation of the manifold.
There have been a number of works recently that study the Forman-Ricci curvature
[13, 19, 27, 36]. Forman-Ricci curvature [11] (like ours) is based on the Bakry-Emery
approach, but requires a graph structure so is inherently combinatorial. Indeed, our
main results do not contradict results regarding failures of curvature convergence for
triangulated approximations to a manifold [17, pg. vii].

Our interest in the Ricci curvature is not arbitrary, but is motivated by very con-
crete problems in applied mathematics. One example of these problems comes from
topological data analysis : estimating the spectrum of the Hodge Laplacian on 1-
forms with respect to the induced metric of an embedded submanifold Σ of RN . The
spectrum of the Hodge Laplacian is important in the study of topological proper-
ties of Σ. Singer and Wu’s analysis based on Vector Diffusion Maps [25] represents
significant progress in the estimation of the spectrum of the so called connection or
rough Laplacian on 1-forms. Although since the publication of the seminal paper by
Carlsson [7] there has been an explosion of interest in topological data analysis, cf.
[8], there does not yet seem to be an effective way to estimate the Hodge Laplacian of
an embedded manifold. We remark that an effective algorithm for learning the Ricci
curvature of an embedded submanifold could in principle provide us with a method
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for estimating the Hodge Laplacian on 1-forms in view of the Weitzenböck formula.
More precisely, given a metric g on Σ and a 1-form X ∈ Ω1(Σd) we know that

∆gX = −∆HX + Ric(X),

where Ric(X) is the Ricci endomorphism applied to X, i.e., Ric(X) = gjkRicijXk.
In terms of linear algebra, if we have taken n points from a d dimensional manifold,
with n sufficiently large, PCA will give us a basis for the tangent space, in which case
the space of 1-forms can be described as a vector in Rnd - that is, for each point in
Rn we choose a d-vector. The Hodge Laplacian then becomes a map

∆H : Rnd → Rnd

which one can analyze. In the current paper, we do not attempt to prove spec-
tral convergence, as one can see from the [26] that this is expected to be somewhat
involved.

Another motivation for the problem of learning the Ricci curvature of a submanifold
is to measure the robustness of networks, in particular in biology [35, 34, 29, 19]. In
[29], a connection has been established between Ricci curvature of graphs and the
robustness of cancer networks. Moreover, it has been suggested that robustness of
cancer networks is associated to a certain “entropy” and that the Ricci curvature of
a graph is closely related to such entropy. The notion of Ricci curvature used in [29]
is Ollivier’s coarse Ricci curvature. The recent paper [19] compares different notions
of Ricci curvature when applied to biological networks. Again we note that most of
the methods are based on combinatorial approaches.

As we will see, our method is based on the fact that it is possible to estimate the
rough Laplacian of the induced metric of an embedded submanifold of RN . Given an
embedded submanifold Σd of RN , and an embedding F : Σd → RN , the metric induced
by F is given in coordinates by gij = 〈DiF,DjF 〉 where 〈·, ·〉 is the Euclidean inner
product in RN and D means differentiation with respect to coordinates on Σd that
are determine by the way Σd is embedded into RN . By rough Laplacian of g we mean
the operator defined on functions by ∆gf = gij∇i∇jf where ∇ is the Levi-Civita
connection of g and f is a smooth function defined on Σ. Belkin and Niyogi showed
in [4] that given a uniformly distributed point cloud on Σ there is a 1-parameter
family of operators Lt, which converge to the Laplace-Beltrami operator ∆g on the
submanifold. More precisely, the construction of the operators Lt is based on an
approximation of the heat kernel of ∆g, and in particular the bandwidth parameter t
can be interpreted as a choice of scale. In order to learn the rough Laplacian ∆g from
a point cloud it is necessary to write a sample version of the operators Lt. Then,
supposing we have n data points that are independent and identically distributed
(abbreviated by i.i.d.) and whose common distribution is the uniform distribution
on Σd with respect its induced metric, one can choose a bandwidth parameter tn in
such a way that the operators Ltn applied to a smooth function f on Σ converge
almost surely to the rough Laplacian ∆g. This step follows essentially from applying
a quantitative version of the law of large numbers. Thus one can almost surely learn
spectral properties of a manifold. While in [4] it is assumed that the sample is uniform,
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it was proved by Coifman and Lafon in [9] that if one assumes more generally that
the distribution of the data points has a smooth, strictly positive density in Σ, then it
is possible to normalize the operators Lt in [4] to recover the rough Laplacian. More
generally, the results in [9] and [25] show that it is possible to recover a whole family
of operators that include the Fokker-Planck operator and the weighted Laplacian
∆ρf = ∆f−〈∇ρ,∇f〉 associated to the smooth metric measure space (M, g, e−ρdvol),
where ρ is a smooth function. As the Bakry-Emery Ricci tensor can be obtained
by iterating ∆ρ, the Bakry-Emery Ricci tensor can be approximated by iterating
approximations of ∆ρ. Following [4], Singer and Wu have recently developed methods
for learning the rough Laplacian of an embedded submanifold on 1-forms using Vector
Diffusion Maps (VDM) (see for example [25]).

It is the goal of this paper, together with [2] and [1], to demonstrate that the above
discussed approximation of the rough Laplacian can be continued to approximate
Ricci curvature as well. In fact, our approximation method is based on writing sample
counterparts of the Ricci curvature. More generally, we will show that it is possible
to define sample counterparts of more general objects, for example of the notions of
Carré du Champ and iterated Carré du Champ associated to a diffusion semi-group.
Our idea for estimating the Carré du Champ (and ultimately the Ricci curvature)
from a sample is closely related to the results in [2, 1]. For example, in [1] we define a
family of coarse Ricci curvatures which depend on a scale parameter t, and show that
when taken on a smooth embedded submanifold on Euclidean space, these recover the
Ricci curvature as t→ 0+. We will show that as long as we sample points adequately
from the submanifold Σ, it is possible to choose a scale tn depending only on the size
of the data set (equal to n) to obtain almost sure convergence to the actual Ricci
curvature of the submanifold at a given point. We will summarize the results in [2, 1]
relevant to the present article in Section 3 (for example Theorem 3.1 and Proposition
3.2).

Our results show that one can give a definition of a sample version of Ricci curva-
ture at a scale on general metric measure spaces that converges to the actual Ricci
curvature on smooth Riemannian manifolds. Moreover, our definition of empirical
coarse Ricci curvature at a scale can be thought of as an extension of Ricci curvature
to a class of discrete metric spaces, namely those obtained from sampling points from
a smooth closed embedded submanifold of RN . Note however, that in order to ob-
tain convergence of the empirical coarse Ricci curvature at a scale to the actual Ricci
curvature we need to assume that there is a manifold which fits the distribution of
the data. Recently, Fefferman-Mitter-Narayanan in [10] have developed an algorithm
for testing the hypothesis that there exists a manifold which fits the distribution of a
sample, however, a problem that remains open is how to best estimate the dimension
of a submanifold from a sample of points. See section 5.3 for more discussion.

In another vein, there is much current interest in a converse problem: The devel-
opment of algorithms for generating point clouds on manifolds or even on surfaces.
Recently, there has been progress in this direction by Karcher-Palais-Palais in [12],
specifically on methods for generating point clouds on implicit surfaces using Monte
Carlo simulation and the Cauchy-Crofton formula.
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1.1. Computational issues. A naive dense implementation of our algorithm is un-
doubtably slow, and becomes unfeasible for large numbers of points. Indeed, inspect-
ing the formulas in Section 4.1, we see that to compute the value of the coarse Ricci
curvature at a point (x, y) requires on order of n3 computations. This reduces to
O(n2) if we are in the presence of a constant density based on assuming also that one
knows the dimension of the underlying manifold . Note that O(n2) is the order of
naive dense computation of an optimal transport problem via linear programming.
Thus computing the full coarse Ricci object should require O(n5). Of course, even
storing the distance matrix itself can become prohibitive for large enough n. Nonethe-
less, for smaller sets (say of size n < 500) we were able construct a “coarse Ricci flow”
based on our construction that was successful in clustering some simple data sets [28].
On the other hand, it appears that improvements can be made with very little loss in
accuracy, by using only nearest neighbors or truncating the kernel, obtaining a sparse
distance function and sparse coarse Ricci object.

1.2. Organization of the paper. This paper is devoted to proving Theorems B
and C, which are the ingredients for Theorem A. In the section 2 we review the
relevant background. In Section 3 we summarize some of the results in [1]. The
core of the paper will be Section 4 devoted to the prove of Theorem C. In Section 5
we review the construction of local PCA in [25] and show how can we combine this
construction with Theorem C to prove Theorem B. We also include a discussion of
dimension reduction and estimation. For the reader’s convenience we provide a table
of notations at the end of section 2.

1.3. Acknowledgements. The authors would like to thank Amit Singer, Hau-Tieng
Wu and Charles Fefferman for constant encouragement. The first author would like
to express gratitude to Adolfo Quiroz for very useful conversations on the topic of
empirical processes, and to Richard Palais for bringing his work to the attention of
both authors. The second author would like to thank Jan Maas for useful conversa-
tions, and Matthew Kahle for stoking his interest in the topic. We would also like
to thank Bartek Siudeja for some code implementations of the algorithm. Finally,
the authors are grateful to the anonymous referee for providing many comments and
suggestions that helped improving the presentation of the paper.

2. Background and Definitions

In this section we recall (cf. [2]) how Ricci curvature on general metric spaces
can be constructed with an operator, in particular the infinitesimal generator of a
diffusion semi-group. When the space is a metric measure space, we use a family of
operators which are intended to approximate a Laplace operator on the space at scale
t. As this definition holds on metric measure spaces constructed from sampling points
from a manifold, we can define an empirical or sample version of the Ricci curvature,
given a bandwidth parameter t. As mentioned above, this last construction will have
an application to the manifold learning problem, namely it will serve to predict the
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Ricci curvature of an embedded submanifold of RN if one only has a point cloud on
the manifold and the distribution of the sample has a smooth positive density.

2.0.1. Carré du champ. We now recall how Bakry and Emery [3] related the notion
of Carré du Champ to Ricci curvature. Let Pt be a 1-parameter family of operators
of the form

Ptf(x) =

∫
M

f(y)pt(x, dy),(2.1)

where f is a bounded measurable function defined onM and pt(x, dy) is a non-negative
kernel. We assume that Pt satisfies the semi-group property, i.e.

Pt+s = Pt ◦ Ps.(2.2)

P0 = Id.(2.3)

In Rn, an example of Pt is the heat semi-group, defined by the density

pt(x, dy) =
1

(2πt)n/2
e−
|x−y|2

2t dy, t ≥ 0.(2.4)

If now Pt is a diffusion semi-group defined on (M, g), we let L be the infinitesimal
generator of Pt, which is densely defined in L2 by

Lf = lim
t→0

t−1(Ptf − f).(2.5)

We consider a bilinear form which has been introduced in potential theory by J.P.
Roth [20] and by Kunita in probability theory [14] and measures the failure of L from
satisfying the Leibnitz rule. This bilinear form is defined as

(2.6) Γ(L, u, v) =
1

2
(L(uv)− L(u)v − uL(v)) .

The expression given by (2.6) is called Carré du Champ. When L is the rough
Laplacian with respect to the metric g, then

Γ(∆g, u, v) = 〈∇u,∇v〉g.

We will also consider the iterated Carré du Champ introduced by Bakry and Emery
denoted by Γ2 and defined by

(2.7) Γ2(L, u, v) =
1

2
(L(Γ(L, u, v))− Γ(L,Lu, v)− Γ(L, u, Lv)) .

Note that if we restrict our attention to the case L = ∆g the Bochner formula
yields

Γ2(∆g, u, v) =
1

2
∆〈∇u,∇v〉g −

1

2
〈∇∆gu,∇v〉g −

1

2
〈∇u,∇∆gv〉g

= Ric(∇u,∇v) + 〈∇2
gu,∇2

gv〉g.(2.8)
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We observe immediately that if ∇u = ei and ∇2
gu = 0 one can recover the Ricci

tensor via

Γ2(∆g, u, u) = Ric(ei, ei).(2.9)

A geometric interpretation for the Carré du Champ in (2.6) and its iterate (2.7)
is given by their role in formulating the so-called CD(K,N) curvature condition due
to Bakry and Emery. The fundamental observation of Bakry and Emery is that the
properties of Ricci curvature lower bounds can be observed and exploited by using
the bilinear form Γ2. With this in mind, they define a curvature-dimension condition
for an operator L on a smooth metric measure space (X, g, dν) as follows. If there
exist measurable functions k : X → R and N : X → [1,∞] such that for every f on
a set of functions dense in L2(X, dν) the inequality

Γ2(L, f, f) ≥ 1

N
(Lf)2 + kΓ(L, f, f)(2.10)

holds, then the space X together with the operator L satisfies the CD(k,N) con-
dition, where k stands for curvature and N for dimension. In [3], it is shown that
when considering a smooth metric measure space (Mn, g, e−ρdvol) one has a natural
diffusion operator given by

∆ρu = ∆u− 〈∇ρ,∇u〉,(2.11)

corresponding to the variation of the Dirichlet energy with respect to the measure
e−ρdvol. By studying the properties of ∆ρ, Bakry and Emery arrive at the following
dimension and weight dependent definition of the Ricci tensor:

RicN =


Ric + Hessρ if N =∞,
Ric + Hessρ − 1

N−n(dρ⊗ dρ) if n < N <∞,
Ric + Hessρ −∞(dρ⊗ dρ) if N = n,
−∞ if N < n,

(2.12)

and moreover, they showed the equivalence between the CD(k,N) condition (2.10)
and the bound RicN ≥ k. The CD(k,N) condition that we stated above is also
related to the displacement convexity condition used by Lott and Villani in [16] to
study the stability of lower bounds on Ricci curvature under limits in the Gromov-
Hausdorff sense. For the problem of estimating Ricci curvature from a point cloud,
the Bochner formula (2.8) and (2.9) give a direct connection between the Carré du
Champ, its iterate and Ricci curvature.

2.0.2. Approximations of the Laplacian, Carré du Champ and its iterate. Following
[4] and [9], we recall how to construct operators which can be thought of as approxi-
mations of the Laplacian on metric measure spaces. Consider a metric measure space
(X, d, µ) with a Borel σ-algebra such that µ(X) <∞. Given t > 0, let θt be given by

(2.13) θt(x) =

∫
X

e−
d2(x,y)

2t dµ(y).
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We define a 1-parameter family of operators Lt as follows: given a function f on X
let

(2.14) Ltf(x) =
2

tθt(x)

∫
X

(f(y)− f(x)) e−
d2(x,y)

2t dµ(y).

With respect to this Lt one can define a Carré du Champ on appropriately integrable
functions f, h by

(2.15) Γ(Lt, f, h) =
1

2
(Lt(fh)− (Ltf)h− f(Lth)) ,

which simplifies to

(2.16) Γ(Lt, f, h)(x) =
1

tθt(x)

∫
X

e−
d2(x,y)

2t (f(y)− f(x))(h(y)− h(x))dµ(y).

In a similar fashion we define the iterated Carré du Champ of Lt to be

(2.17) Γ2(Lt, f, h) =
1

2
(Lt(Γ(Lt, f, h))− Γ(Lt, Ltf, h)− Γ(Lt, f, Lth)) .

Remark 2.1. Note that Belkin and Niyogi [4, pg 1295, eq (6)] normalize by a factor
(4πt)d/2, which requires knowledge of the dimension. Our definition of Lt (2.14)
differs from Belkin-Niyogi operator in that we normalize by θt(x) instead. This has a
cost in that convergence may be slower, but has the advantage of being dimension-
less, allowing our general discussion to fit into the framework of spaces with lower
Ricci curvature bound, for example, the disjoint union of two manifolds of different
dimensions or a sequence of manifolds which may be collapsing.

2.0.3. Empirical Carré du Champ at a given scale. We can also define empirical ver-
sions of Lt,Γ(Lt, ·, ·) and Γ2(Lt, ·, ·). On a space which consists of n points {ξ1, ..., ξn}
sampled from a manifold, it is natural to consider the empirical measure defined by

(2.18) µn =
1

n

n∑
i=1

δξi

where δξi is the atomic point measure at the point ξi (also called δ-mass). For any
function f : X → R we will use the notation

µnf =

∫
X

f(y)dµn(y) =
1

n

n∑
j=1

f(ξj).

Notation 2.2. We will use the “hat” notation (for example L̂t) to distinguish those
operators, measures, or t-densities that have been constructed from a sample of finite
points.

To be more precise, we define the operator L̂t as

(2.19) L̂tf(x) =
2

tθ̂t(x)

∫
X

(f(y)− f(x)) e−
d2(x,y)

2t dµn(y),
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where

θ̂t(x) =

∫
X

e−
d2(x,y)

2t dµn(y) =
1

n

n∑
j=1

e−
d(ξj ,x)

2

2t ,(2.20)

and of course∫
X

(f(y)− f(x)) e−
d2(x,y)

2t dµn(y) =
1

n

n∑
j=1

e−
d(ξj ,x)

2

2t (f(ξj)− f(x)).(2.21)

The sample version of Carré du Champ will be the bilinear form Γ(L̂t, f, h) which
from (2.16) takes the form

(2.22) Γ(L̂t, f, h)(x) =
1

tθ̂t(x)

1

n

n∑
j=1

e−
d2(ξj ,x)

2t (f(ξj)− f(x))(h(ξj)− h(x)).

We denote the iterated Carré du Champ corresponding to L̂t by Γ2(L̂t, f, h), and by
this we mean

(2.23) Γ2(L̂t, f, h) =
1

2

(
L̂t(Γ(L̂tf, h))− Γ(L̂t, L̂tf, h)− Γ(L̂t, f, L̂th)

)
.

2.1. Statement of Results.

2.1.1. Applications to Manifold Learning. We now show how our notion of empirical
Carré du Champ at a given scale has applications to the Manifold Learning Prob-
lem. For the rest of subsection 2.1.1 we will consider a closed, smooth, embedded
submanifold Σ of RN , and the metric measure space will be (Σ, ‖ · ‖, dvol), where

• ‖ · ‖ is the distance function in the ambient space RN ,
• dvolΣ is the volume element corresponding to the metric g induced by the

embedding of Σ into RN .

In addition we will adopt the following conventions

• All operators Lt, Γ(Lt, ·, ·) and Γ2(Lt, ·, ·) will be taken with respect to the
distance ‖ · ‖ and the measure dvolΣ.

• All sample versions L̂t, Γ(L̂t, ·, ·) and Γ2(L̂t, ·, ·) are taken with respect to the
ambient distance ‖ · ‖.

The choice of the above metric measure space is consistent with the setting of
manifold learning in which no assumption on the geometry of the submanifold Σ
is made, in particular, we have no a priori knowledge of the geodesic distance and
therefore we can only hope to use the chordal distance as a reasonable approximation
for the geodesic distance. We will show that while our construction at a scale t involves
only information from the ambient space, the limit as t tends to 0 will recover the
Ricci curvature of the submanifold. As pointed out by Belkin-Niyogi [4, Lemma
4.3], the chordal and intrinsic distance squared functions on a smooth submanifold
disagree first at fourth order near a point , so while much of the analysis is done on
submanifolds, the intrinsic geometry will be recovered in the limit.
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We now address the problem of choosing a bandwidth parameter depending on the
size of the data and the dimension of the submanifold Σ, such that the sequence of
empirical Ricci curvatures corresponding to the size of the data converge almost surely
to the actual Ricci curvature of Σ at a point. In order to simplify the presentation
of our results, we start by stating the simplest possible case, which corresponds to a
uniformly distributed i.i.d.sample {ξ1, . . . , ξn}. The more general case of distributions
with strictly positive density with respect to the Lebesgue measure can be explored
using the same methods presented here, but the proof is quite lengthy.

Theorem B (Approximation of the Ricci Curvature). Consider the metric measure
space (Σ, ‖ · ‖, dvolΣ) where Σd ⊂ RN is a smooth closed embedded submanifold. Sup-
pose that we have a uniformly distributed i.i.d. sample {ξ1, . . . , ξn} of points from Σ.
For σ > 0, let

(2.24) tn = n−
1

3d+3+σ .

For x ∈ Σ there exists a sequence of d-tuples of orthogonal vectors, and d× d Ricci
matrices R̂i,j representing the Ricci curvature on these vectors, such at if η ∈ TxΣ,
then ∣∣∣R̂i,jη

iηj − Ricx(η, η)
∣∣∣ a.s−→ 0,(2.25)

where ηi are the components of the vector η projected onto the d-tuple of vectors
approximating the tangent plane.

See Section 5 for more on the PCA construction. Even though the approximation
method used to obtain Theorem B is inspired by the notion of Coarse Ricci curvature
introduced by the authors in [2, 1], Theorem B relies heavily on a precise estimation of
the tangent space at a point by means of local PCA, as opposed to the approximation
proposed in [2, 1] based on the construction of an “auxiliary tangent space” by taking
segments within the point cloud.

Remark 2.3. The convergence is more certain (but perhaps slower) if tn is chosen
to go to zero slower than in (2.24), i.e., slower than

tn = n−
1

3d+3+σ+τ ,

where τ is any positive number. In particular, if one replaces d with an upper bound
on d, then Theorems B, C, and Corollary A still hold. We also remark that we do
not attempt compute the rate which one minimizes the mean-squared error of the
estimation - that is we do not attempt to compute or justify a version of Silverman’s
rule of thumb (see [23]). It could be that there is bandwidth parameter which gives
a faster but less sure (i.e. with lower probability) convergence rate.

Besides local PCA, the proof of Theorem B relies heavily on the following theorem
for the iterated Carré du Champ: Theorem B in turn follows from an approximation
result for the iterated Carré du Champ:
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Theorem C. Consider the metric measure space (Σ, ‖ · ‖, dvolΣ) where Σd ⊂ RN is
a smooth closed embedded submanifold. For σ > 0, let

(2.26) tn = n−
1

3d+3+σ .

(a) If f ∈ C∞(RN), then

sup
ξ∈Σ

∣∣∣Γ̂2(L̂tn , f, f)(ξ)− Γ2(Ltn , f, f)(ξ)
∣∣∣ a.s.−→ 0.

(b) If LM is the class of linear functions

LM = {fη|Σ : fη(x) = 〈η, x〉, ‖η‖ ≤M,x ∈ RN},

where ‖ · ‖ is the ambient distance in RN and fη|Σ is the restriction of the
linear function fη : RN → R given by fη(x) = 〈η, x〉 to Σ, then

sup
f∈LM

sup
ξ∈Σ

∣∣∣Γ̂2(L̂tn , f, f)(ξ)− Γ2(Ltn , f, f)(ξ)
∣∣∣ a.s.−→ 0.

The proof of Theorem C requires using ideas from the theory of empirical processes
for which we will provide the necessary background in Section 4. As pointed out in the
introduction, since we are interested in recovering an object from its sample version,
we are forced to consider a law of large numbers in order to obtain convergence in
probability or almost surely. The problem is that the sample version of Γ2(Lt, ·, ·)
involves a high correlation between the data points, destroying independence and
any hope of applying large number results directly. The idea then is to reduce the
convergence of the sample version of Γ2(Lt, ·, ·) to the application of a uniform law of
large numbers to certain classes of functions. Theorem C is proved in Section 4. In
section 5 we will prove that Theorem C indeed implies Theorem B. This will require
results from [1].

2.1.2. Smooth Metric Measure Spaces and non-Uniformly Distributed Samples. Con-
sider a smooth metric measure space (M, g, e−ρdvol) and let ∆ρ be the operator

4ρu = 4gu− 〈∇ρ,∇u〉g.
In [9], the authors consider a family of operators Lαt which converge to 42(1−α)ρ. Note
that a standard computation (cf [32, Page 384]) gives

Γ2(42(1−α)ρ, f, f) =
1

2
∆g ‖∇f‖2

g − 〈∇ρ,∇∆gf〉g + 2(1− α)∇2
gρ(∇f,∇f).

We adapt [9] to our setting: Recall that

θt(x) =

∫
X

e−
d2(x,y)

2t dµ(y),

and define, for α ∈ [0, 1]

(2.27) θt,α(x) =

∫
X

e−
d2(x,y)

2t
1

[θt(y)]α
dµ(y).
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We can define the operator

(2.28) Lαt f(x) =
2

t

1

θt,α(x)

∫
X

e−
d2(x,y)

2t
1

[θt(y)]α
(f(y)− f(x)) dµ(y),

and again obtain bilinear forms Γ(Lαt , f, f) and Γ2(Ltα, f, f). For the rest of the
section we will consider the metric measure space (Σ, ‖ · ‖, e−ρdvolΣ) where Σd ⊂
RN is an embedded submanifold, ‖ · ‖ is the ambient distance and ρ is a smooth
function in Σ. We again take all the operators Lαt ,Γt(L

α
t , ·, ·) and Γ2(Lαt , ·, ·) and

their sample counterparts L̂αt ,Γt(L̂
α
t , ·, ·) and Γ2(L̂αt , ·, ·) with respect to the data of

(Σ, ‖ · ‖, e−ρdvolΣ).
Based on estimates in [2] and calculations similar to the proof of Theorem C, we

can prove

Theorem D (Non-uniform case). Consider the metric space (Σ, ‖·‖) where Σd ⊂ RN

is a smooth closed embedded submanifold. Suppose that we have an i.i.d. sample
{ξ1, . . . , ξn} of points from Σ whose common distribution has density e−ρ. For σ > 0,
let

tn = n−
1

4d+4+σ .

Then, for any x ∈ Σ and any η ∈ TxΣ there exists a sequence of functions fn con-
structed from the data such that∣∣∣Γ̂α2 (L̂αtn , fn, fn)(ξ)− Ricx,α(η, η)

∣∣∣ a.s.−→ 0,

and where

(2.29) Ricα = Ric + 2(1− α)∇2
gρ.

We omit the proof of Theorem D. Heuristically, the order of decay of tn is not
hard to determine, but the proof is exceeding long and tedious.

2.2. Notation and table of definitions. Below we give a table of object that
frequently appear.
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Table 1. Summary of Notations used in the paper

Notation Description Where Found

Σd Embedded submanifold of RN

N, d Dimensions of ambient space and submani-
fold

n Number of sample points
t Bandwidth parameter
ξi point sampled from Σd

Γ(L, u, v) First Carré du champ (2.6)
Γ2(L, u, v) Iterated Carré du champ (2.7)
Lt Finite scaled approximate Laplacian (2.14)
∆g Laplace-Beltrami operator on a manifold
θt(x) Scale-t density at x (2.13)
µn measure determined by sampling n-points (2.18)

L̂t Empirical Laplace at scale t (2.19)

Γ(L̂t, f, h) Sampled Carré du Champ (2.22)

Γ2(L̂t, f, h) Sampled iterated Carré du Champ (2.23)
‖ · ‖ distance function on RN

tn Scale parametric chosen based on n (4.101)
Fx,y(z) Approximate signed distance function from

x to y
(3.6)

fx,y(z) Scaled approximate signed distance function (3.7)
µ Probability distribution on Σd

N (F , δ) Covering number of a set of functions, for
radius δ

(4.13)

‖f‖A-t-Lip Almost t Lipschitz norm (4.20)
F tf,h,Gt,Ht

h Classes of functions (4.21)(4.22),
Lemma 4.15

τ The reach of Σ Definition 4.10
A(X, δ) Ambient covering number of a set X ⊂ RN (4.26)
UV,τ (r) Covering bound function Theorem 4.11
Qt(F , ε, C, n) (4.91)
Q(t, ε, n) (4.103)
OBC(β) (4.104)
C∗(Σ), C∗1(Σ) Constants depending on Σ Convention 4.14
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We also give a table for the different Ricci curvature operators

Table 2. Notation used for different Ricci Curvature operators

Notation Extended Description Where Found

RicL(x, y) Coarse Ricci operator determined by oper-
ator L and evaluated at x and y. This is
roughly quadratic in d(x, y).

Definition 3.3

RICL(x, y) Life-sized Ricci operator determined by op-
erator L and evaluated at x and y. This need
not vanish as x→ y.

Definition 3.4

Ric∆g(x, y) Coarse Ricci operator determined by Laplace
operator ∆g and evaluated at x and y. This
is computable when ∆g is available.

Definition 3.3,
applied to ∆g

R̂i,j Ricci matrices defined w.r.t PCA basis for
TxΣ

d
(5.2)

Ricx(·, ·) Classical Ricci 2-form on TxΣ
d

Ricα Weighted Ricci curvature with parameter α
and density e−ρ

(2.29)

3. Summary of previous results. Proof of Theorem B

We now recall the following result proved in [1]:

Theorem 3.1 (See [1]). Let Σd ⊂ RN be a closed embedded submanifold, let g be the
Riemannian metric induced by the embedding, and let (Σ, ‖ · ‖, dvolΣ) be the metric
measure space defined with respect to the ambient distance. Given any f ∈ CM ⊂
C5(Σ) where CM is the class of functions

CM =
{
f : ‖f‖C5(Σ) ≤M

}
,

there exists a constant C1 depending on the geometry of Σ and the function f such
that

sup
x∈Σ
|Γ2(∆g, f, f)(x)− Γ2(Lt, f, f)(x)| < C1(Σ,M)t1/2.

A fundamental step for proving Theorem 3.1 is the following proposition shown in [1]:
For simplicity we will assume that (Σ, dvolΣ) has unit volume. Recall the definitions
(2.13), (2.14), (2.15), (2.16) and (2.17).

Proposition 3.2 (See [1]). Suppose that Σd is a closed, embedded, unit volume sub-
manifold of RN . Let also g be the metric induced by the embedding of Σd into RN .
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For any x in Σ and for any functions f, h in C5(Σ) we have

(2πt)d/2

θt(x)
= 1 + tG1(x) + t3/2R1(x),

(3.1)

Γ(Lt, f, h)(x) = 〈∇Σf(x),∇Σh(x)〉g + t1/2G2(x, J2(f)(x), J2(h)(x))

(3.2)

+ tG3(x, J3(f)(x), J3(h)(x)) + t3/2R2(x, J4(f)(x), J4(h)(x)),(3.3)

Ltf(x) = ∆gf(x) + t1/2G4(x, J3(f)(x)) + tG5(x, J4f(x)) + t3/2R3(x, J5f(x)),(3.4)

and

(3.5) Γ2(Lt, f, f)(x) = Γ2(∆g, f, f)(x) + t1/2R5(x, J5f(x))

where each Gi is a locally defined function, which is smooth in its arguments, and
Jk(u) is a locally defined k-jet of the function u. Also, each Ri is a locally defined
function of x which is uniformly bounded in terms of its arguments.

We will show in Section 5 that Propositions 3.1 and 3.2 are needed to prove Theorem
B.

3.1. Life-Sized Coarse Ricci Curvature. As mentioned above, in [2, 1], the au-
thors have formulated a notion of Coarse Ricci Curvature alternative to Ollivier’s
Coarse Ricci curvature. The purpose of this section is to formulate the results of this
paper in terms of the notions developed in [2, 1]. In particular, we show how Ricci
curvature can be approximated using test functions different to the linear functions
in Theorem B.
Heuristically, the Bochner formula (2.8) defines the Ricci curvature on the gradient of
a function ∇u, up to an error term determined by the Hessian of u. In other words,
if u is a function with small Hessian at a point, then the Bochner formula provides
a good approximation for the Ricci curvature in the direction ∇u. For this reason,
given a pair of points x and y, we attempt to construct a “linear” function that has
gradient “pointing” from x to y. For any x, y, x 6= y ∈ X, we define

(3.6) Fx,y(z) =
1

d(x, y)

1

2

(
d2(x, y)− d2(y, z) + d2(z, x)

)
.

Notice that in Euclidean space, this simplifies to

Fx,y(z) =
1

‖y − x‖
(
x2 + 〈z, y − x〉

)
=

1

‖y − x‖
(
x2 + z · (y − x)

)
,

which has gradient a constant unit vector

∇Fx,y =
(y − x)

‖y − x‖
.

We also define for x, y ∈ X, the following function

(3.7) fx,y(z) =
1

2

(
d2(x, y)− d2(y, z) + d2(z, x)

)
.
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In Euclidean space, this has gradient

∇fx,y = (y − x).

The function F is chosen so that the gradient will not vanish as the points x, y
approach each other, whereas the function f is chosen so that a quadratic form on
the gradient ∇fx,y will be the same order as the distance-squared function d2(x, y) as
x, y approach each other. Both have natural interpretations, as we will see below.
Note that our definitions (3.7, 3.6) are designed as an approximation on general metric
spaces, when computing coarse Ricci curvature. When computing Ricci curvature on
a known tangent vector in Euclidean space, such a function is unneccessary. In the
combinatorial setting, one can make a special choice which minimizes the contribution
of the Hessian in the Bochner formula, see [13, pg. 659].

Definition 3.3. Given an operator L we define the coarse Ricci curvature for L as

RicL(x, y) = Γ2(L, fx,y, fx,y).

In principle, the functions in (3.6) and (3.7) serve as a substitute of the linear functions
in Theorem B (see also Section 5). Notice that the quantity in (3.3) is the same order
as distance squared. To obtain a quantity that does not vanish near the diagonal, we
use (3.6):

Definition 3.4. Given an operator L we define the life-sized coarse Ricci curvature
for L as

RICL(x, y) = Γ2(L, Fx,y, Fx,y).

From this, one can define notions of empirical coarse Ricci curvature, by taking the
sample versions of (3.3) and (3.4)
Inspired by Theorems B and C, the results at the end of Section 4 will lead easily to
the following.

Corollary A. Let Σd ⊂ RN be an embedded submanifold and consider the metric
measure space (Σ, ‖ · ‖, dvolΣ). Suppose that we have an i.i.d. uniformly distributed
sample ξ1, . . . , ξn drawn from Σ. Let

(3.8) tn = n−
1

3d+3+σ ,

for any σ > 0. Then

sup
x∈Σ

∣∣∣Γ̂2(Ltn , Fx,y, Fx,y)(x)− RIC∆g(x, y)
∣∣∣ a.s.−→ 0.

In other words, there is a choice of scale depending on the size of the data and the
dimension of the submanifold for which the corresponding empirical life-sized coarse
Ricci curvatures converge almost surely to the life-sized coarse Ricci curvature.

The proof is given at the end of Section 4. Another result proved in [1] is

Corollary 3.5. With the hypotheses of Theorem 3.1 we have

Ric∆g(x, y) = lim
t→0

Γ2(Lt, fx,y, fx,y)(x).



18 ANTONIO G. ACHE AND MICAH W. WARREN

We note that the relation between the coarse Ricci curvature and the Ricci curvature
is as follows.

Proposition 3.6 (See [1]). Suppose that M is a smooth Riemannian manifold. Let
V ∈ TxM with g(V, V ) = 1. Then

Ric(V, V ) = lim
λ→0

RIC4g(x, expx (λV )).

4. Empirical Processes and Convergence. Proof of Theorem C

The goal of this section is to prove Theorem C. This will be done using tools from
the theory of empirical processes in order to establish uniform laws of large numbers
in a sense that we will explain in Sections 4.2 through 4.6. For a standard reference
in the theory of empirical processes, see [30]. See also [26] for further applications of
the theory of empirical processes to the recovery of diffusion operators from a sample.

4.1. Estimators of the Carré Du Champ and the Iterated Carré Du Champ
in the uniform case. Let us assume that the measure µ is the volume measure
dvolΣ. Recall that our formal definition of the Carré du Champ of Lt with respect to
the uniform distribution is given by

Γ(Lt, f, h) =
1

t

1

θt(x)

(∫
Σ

e−
‖x−y‖2

2t (f(y)− f(x)) (h(y)− h(x)) dµ(y)

)
.(4.1)

It is clear from (4.1) that a sample estimator of the Carré Du Champ at a point x is
given by

(4.2) Γ̂(Lt, f, f)(x) =
1

t

1

θ̂t(x)

(
1

n

∑
j=1

e−
‖x−ξj‖

2

2t (f(ξj)− f(x)) (h(ξj)− h(x))

)
,

and recall that we defined the t-Laplace operator by

Ltf(x) =
2

t

1

θt(x)

∫
Σ

e−
‖x−y‖2

2t (f(y)− f(x)) dµ(y),(4.3)

and its sample version is

(4.4) L̂tf(x) =
2

t

1

θ̂t(x)

1

n

n∑
j=1

e−
‖x−ξj‖

2

2t (f(ξj)− f(x)) .

Recall that the iterated Carré du Champ is

Γ2(Lt, f, h) =
1

2
(LtΓ(Lt, f, h)− Γ(Lt, Ltf, f)− Γ(Lt, f, Lth)) .(4.5)

For simplicity, we will evaluate Γ2(Lt, ·, ·) at a pair (f, f) instead of (f, h) and by
symmetry it is clear that we obtain

Γ2(Lt, f, f) =
1

2
(Lt(Γt(f, f))− 2Γt(Ltf, f)) .(4.6)

Combining the sample versions of Γt and Lt we obtain a sample version for Γ2(Lt, f, f)
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Γ̂2(Lt, f, f)(x) =
1

t2
1

n2

∑
j=1

n∑
k=1

1

θ̂t(ξk)θ̂t(x)
e−
‖x−ξj‖

2

2t
−
‖ξj−ξk‖

2

2t (f(ξj)− f(ξk))
2(4.7)

− 1

t2n2

n∑
j=1

n∑
k=1

1

θ̂2
t (x)

e−
‖x−ξj‖

2

2t
− ‖x−ξk‖

2

2t (f(ξk)− f(x))2(4.8)

− 2

t2n2

n∑
j=1

n∑
k=1

1

θ̂t(x)θ̂t(ξj)
e−
‖x−ξj‖

2

2t
−
‖ξj−ξk‖

2

2t (f(ξk)− f(ξj))(f(ξj)− f(x))(4.9)

+
2

t2n2

n∑
j=1

n∑
k=1

1

θ̂2
t (x)

e−
‖x−ξj‖

2

2t
−
‖ξj−ξk‖

2

2t (f(ξk)− f(x))(f(ξj)− f(x)).(4.10)

In principle, the convergence analysis for (4.7)-(4.10) can be done using the following
standard result in large deviation theory.

Lemma 4.1 (Hoeffding’s Lemma). Let ξ1, . . . , ξn be i.i.d. random variables on the
probability space (Σ,B, µ) where B is the Borel σ-algebra of Σ, and let f : Σ →
[−K,K] be a Borel measurable function with K > 0. Then for the corresponding
empirical measure µn and any ε > 0 we have

Pr {|µnf − µf | ≥ ε} ≤ 2e−
ε2n
2K2 .

Observe, however, that (4.7)-(4.10) is a non-linear expression which will involve non-
trivial interactions between the data points ξ1, . . . , ξn. This non-trivial interaction
between the points ξ1, . . . , ξn will produce a loss of independence and we will not be
able to apply Hoeffding’s Lemma directly to (4.7)-(4.10). In order to address this
difficulty we will establish several uniform laws of large numbers which will provide
us with a large deviation estimate for (4.7)-(4.10).

Remark 4.2. We will not use directly the expression (4.7)-(4.10), instead we will
write (4.7)-(4.10) schematically in the form

Γ̂2(Lt(f, f)(x) =
1

2

(
L̂t

(
Γ̂(f, f)

)
(x)− 2Γ̂t(L̂tf, f)(x)

)
,(4.11)

which is clearly equivalent to (4.7)-(4.10).

4.2. Glivenko-Cantelli Classes. A Glivenko-Cantelli class of functions is essen-
tially a class of functions for which a uniform law of large numbers is satisfied.

Definition 4.3. Let µ be a fixed probability distribution defined on Σ. A class F of
functions of the form f : Σ→ R is Glivenko-Cantelli if

(a) f ∈ L1(dµ) for any f ∈ F ,
(b) For any i.i.d. sample ξ1, . . . , ξn drawn from Σ whose distribution is µ we have

uniform convergence in probability in the sense that for any ε > 0

lim
n→∞

Pr∗
{

sup
f∈F
|µnf − µf | > ε

}
= 0.(4.12)
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Remark 4.4. Note that in general we have to consider outer probabilities Pr∗ instead
of Pr because the class F may not be countable and the supremum supf∈F |µnf−µf |
may not be measurable. On the other hand, if the class F is separable in L∞(Σ),
then we can replace Pr∗ by Pr. While all of the classes that we will encounter in this
paper will be separable in L∞(Σ), we use Pr∗ when we deal with a general class.

Let F be a class of functions defined on Σ and totally bounded in L∞(Σ). Given
δ > 0 we let N (F , δ) be the L∞ δ-covering number of F , i.e.,

(4.13) N (F , δ) = inf{m : F is covered by m balls of radius δ in the L∞ norm}.

Lemma 4.5. Let F be an equicontinuous class of functions in L∞(Σ) that satisfies
sup
f∈F
{‖f‖L∞(Σ)} ≤ M < ∞ for some M > 0. Then for any distribution µ which

is absolutely continuous with respect to dvolΣ, the class F is µ-Glivenko-Cantelli.
Moreover, if ξ1, . . . , ξn is an i.i.d. sample drawn from Σ with distribution µ we have

Pr∗
{

sup
f∈F
|µnf − µf | ≥ ε

}
≤ 2N

(
F , ε

4

)
e−

ε2n
8M2 .

Proof. By equicontinuity of F , it follows from the Arzelà-Ascoli theorem that F is
precompact in the L∞(Σ) norm and hence totally bounded in L∞(Σ). In particular
for every δ > 0, the number N (F , δ) is finite. Let G be a finite class such that the
union of all balls with center in G and radius δ covers F and |G| = N (F , δ). For any
f ∈ F there exists φ ∈ G such that ‖f − φ‖L∞(Σ) < δ and we obtain

|µnf − µf | ≤ 2δ + |µnφ− µφ|,(4.14)

and clearly

sup
f∈F
|µnf − µf | ≤ 2δ + max

φ∈G
|µnφ− µφ|.(4.15)

Fixing ε > 0 and choosing δ = ε/4 we observe that

Pr∗
{

sup
f∈F
|µnf − µf | ≥ ε

}
≤ Pr

{
max
φ∈G
|µnφ− µφ| ≥

ε

2

}
,(4.16)

and by Hoeffding’s inequality we have

Pr

{
max
φ∈G
|µnφ− µφ| ≥

ε

2

}
≤ 2N

(
F , ε

4

)
e−

ε2n
8M2 ,(4.17)

which implies the lemma. �

We now define the space Lip(RN) of functions with bounded Lipschitz semi-norm in
RN . To be clear, we will be using the following norms and semi-norms:

(4.18) ‖f‖Lip = sup
x,y∈RN ,x 6=y

{
|f(x)− f(y)|
‖x− y‖

}
,
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where f is a Lipschitz function defined on all of RN .

(4.19) ‖f‖Ck(Σ) = ‖f‖L∞(Σ) +
k∑
j=1

‖Djf‖L∞(Σ).

where
‖Djf‖L∞(Σ) = sup

x∈Σ
‖Djf(x)‖,

i.e., the norm ‖Djf(x)‖ is the norm in the ambient space RN , and

(4.20)
‖f‖A-t-Lip = inf

{
A+B : |f(x)− f(y)| ≤ A‖x− y‖+Bt1/2 for all x, y ∈ RN

}
this t-almost Lipschitz norm being weaker than the Lipschitz norm. We will fre-
quently use the following classes of functions

F tf,h =

{
φt(ξ, ζ) = t−1/2e−

‖ξ−ζ‖2
2t (f(ξ)− f(ζ))(h(ξ)− h(ζ)) : ξ ∈ Σ

}
,(4.21)

Gt =

{
ψt(ξ, ζ) = t1/2e−

‖ξ−ζ‖2
2t : ξ ∈ Σ

}
,(4.22)

where f, h in (4.21) are fixed functions defined on all of RN . Given a class of functions
S we use MS to denote

MS = sup
f∈S
{‖f‖L∞(Σ)}.

With this notation we easily find that

MFtf,h = sup
φ∈Ft
{‖φ‖L∞(Σ)} ≤

(
2

e

)
t1/2‖f‖Lip‖h‖Lip,(4.23)

MFtf,h ≤ t1/2‖f‖A-t-Lip‖h‖Lip,(4.24)

MGt = sup
ψ∈Gt
{‖ψ‖L∞(Σ)} = t1/2.(4.25)

4.3. Ambient Covering Numbers. In this subsection we show that the computa-
tion of covering numbers of the classes of functions F tf,h and Gt introduced in (4.21),

(4.22) reduces to the computation of covering numbers of submanifolds of RN . For
this purpose we will need the notion of ambient covering number of a totally bounded
set X of RN defined by

(4.26) A(X, δ) = inf{m : ∃A with |A| = m and X ⊂
⋃
a∈A

BRN ,δ(a)}.

where the ball BRN ,δ(a) is taken with respect to the ambient distance ‖ · ‖.

Lemma 4.6. For any ξ, ξ̃, ζ ∈ RN we have∣∣∣∣t1/2e− ‖ζ−ξ‖22t − t1/2e−
‖ζ−ξ̃‖2

2t

∣∣∣∣ ≤ e−1/2‖ξ − ξ̃‖.(4.27)
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In particular

N (Gt, ε) ≤ A(Σ, e1/2ε).(4.28)

Proof. Observe that the function ψt(ξ, ζ) = t1/2e−
‖ζ−ξ‖2

2t satisfies

Dξψt(ξ, ζ) = t1/2
(ζ − ξ)

t
e−
‖ξ−ζ‖2

2t ,(4.29)

and therefore

sup
ξ,ζ∈RN

‖Dξψt(ξ, ζ)‖ ≤
√

2 sup
ρ>0

{
ρe−ρ

2
}

= e−
1
2 ,(4.30)

and therefore we have the Lipschitz estimate

|ψt(ξ, ζ)− ψt(ξ̃, ζ)| ≤ e−1/2‖ξ − ξ̃‖.(4.31)

�

Corollary 4.7. Fix a function h ∈ L∞(Σ) with h 6≡ 0 and such that ‖h‖L∞(Σ) ≤ C.
Consider the class of functions

Ht
h = {ψt(ζ, ·)h(·) : ζ ∈ Σ} .(4.32)

Then for every ε > 0 we have

N (Ht
h, ε) ≤ A

(
Σ,
e1/2

C
ε

)
.(4.33)

Proof. We use Lemma 4.6 to obtain the estimate∥∥∥ψt(ζ, ·)h(·)− ψt(ζ
′
, ·)h(·)

∥∥∥
L∞(Σ)

≤ C‖ψt(ζ, ·)− ψt(ζ ′, ·)‖L∞(Σ)(4.34)

≤ Ce−1/2‖ζ − ζ ′‖,(4.35)

from which the corollary follows. �

Lemma 4.8. For any φt(ξ, ·), φt(ξ
′
, ·) ∈ F tf,h we have

sup
ζ∈Rd
|φt(ξ, ζ)− φt(ξ

′
, ζ)| ≤ C(f, h)‖ξ − ξ′‖,

where

C(f, h) = C0‖f‖Lip‖h‖Lip,(4.36)

and C0 is a universal constant. Thus

N (F tf,h, δ) ≤ A
(

Σ,
δ

C(f, h)

)
.(4.37)



RICCI CURVATURE AND THE MANIFOLD LEARNING PROBLEM 23

Proof. Let φt(ξ, ·) ∈ F tf,h. Fixing ζ and differentiating in ξ we have

Dξφt(ξ, ζ) =t−1/2 (ζ − ξ)
2t

e−
‖ξ−ζ‖2

2t (f(ξ)− f(ζ))(h(ξ)− h(ζ))(4.38)

+ t−1/2e−
‖ξ−ζ‖2

2t Dξf(ξ)(h(ξ)− f(ζ))(4.39)

+ t−1/2e−
‖ξ−ζ‖2

2t Dξh(ξ)(f(ξ)− f(ζ)),(4.40)

and then

‖Dξφt(ξ, ζ)‖ ≤ ‖f‖Lip‖h‖Lip
‖ξ − ζ‖3

t3/2
e−
‖ξ−ζ‖2

2t(4.41)

+
‖ξ − ζ‖
t1/2

e−
‖ξ−ζ‖2

2t ‖f‖Lip‖h‖Lip(4.42)

+
‖ξ − ζ‖
t1/2

e−
‖ξ−ζ‖2

2t ‖h‖Lip‖f‖Lip(4.43)

≤ C0‖f‖Lip‖h‖Lip,(4.44)

where

C0 = 3 max

(
sup
ρ>0
{ρ3e−ρ

2/2}, sup
ρ>0
{ρe−ρ/2}

)
.

Note that all of the above estimates hold if we differentiate with respect to points in
RN as opposed to points restricted to Σ (this is because we are differentiating with
respect to coordinates in the ambient space). It follows that for any ζ ∈ Σ and any
ξ, ξ

′ ∈ Σ we have the Lipschitz estimate

|φt(ξ, ζ)− φt(ξ′, ζ)| ≤ C(f, h)‖ξ − ξ′‖.
�

The following can be obtained in a similar fashion.

Lemma 4.9. Let f ∈ C1(RN) and let υt be given by

υt(ξ, ζ) = e−
‖ξ−ζ‖2

2t (f(ξ)− f(ζ)).

We then have the following estimate∣∣∣υt(ξ, ζ)− υt(ξ
′
, ζ)
∣∣∣ ≤ (2t

e
+ 1

)
‖f‖Lip‖ξ − ξ

′‖.(4.45)

Proof. As before,

|Dξυt(ξ, ζ)| ≤ ‖ξ − ζ‖
t

e−
‖ξ−ζ‖2

2t |f(ξ)− f(ζ)|+ e−
‖ξ−ζ‖2

2t ‖Dξf(ξ)‖(4.46)

≤ ‖ξ − ζ‖
2

t
e−
‖ξ−ζ‖2

2t ‖f‖Lip + sup
ξ∈Σ
‖Dξf(ξ)‖,(4.47)

and

sup
ρ>0

ρ2e−ρ
2/2 =

2

e
.(4.48)
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�

Lemmas 4.6 and 4.8 say that we can relate covering numbers of the classes F tf,h,Gt
to ambient covering numbers of the submanifold Σ. In order to estimate A(Σ, δ) we
need to introduce the notion of reach of an embedded submanifold of RN . Recall that
for every ε > 0 we can consider the ε neighborhood of Σ

Σε = {x ∈ RN : d(x,Σ) < ε},(4.49)

where d(·,Σ) measures the distance from points in RN to Σ with respect to the
ambient norm ‖ · ‖. If Σ is a smooth, embedded submanifold of RN , for ε > 0
sufficiently small we can define a smooth map ϕ : Σε → Σ such that

(1) ϕ is smooth,
(2) ϕ(x) is the unique point in Σ such that ‖ϕ(x)− x‖ = d(x,Σ) for all x ∈ Σε.
(3) x− ϕ(x) ∈ T⊥ϕ(x)Σ,

(4) ϕ(y + z) ≡ ϕ(y) for all y ∈ Σ and z ∈ (TyΣ)⊥ with ‖z‖ < ε,
(5) For any vector V ∈ RN , DV ϕ(x) = pϕ(x)(V ), where pϕ(x)(V ) is the orthogonal

projection of V onto Tϕ(x)Σ.

See for example [24, Theorem 1]. The map ϕ is called nearest point projection onto
Σ.

Definition 4.10. Let Σ be an embedded submanifold of RN . The reach of Σ is the
number

τ = sup{ε > 0 : There exists a nearest point projection in Σε}.(4.50)

We quote the following result

Theorem 4.11 ([10] Corollary 6). Suppose that Σ is a d-dimensional embedded sub-
manifold of RN with volume V and reach τ > 0 and let U : R+ → R+ be the function

UV,τ (r) =

(
1

τ d
+ rd

)
V,(4.51)

then for any ε > 0 there is an ε-net of Σ with respect to the ambient distance ‖ · ‖ of
no more than CdU(ε−1) points where Cd is a dimensional constant. In particular,

A(Σ, ε) ≤ CdU(ε−1).

Corollary 4.12. We have the following bounds

(a)

N (F tf,h, ε) ≤ CdV

(
1

τ d
+

(
C(f, h)

ε

)d)
,(4.52)

(b)

N (Gt, ε) ≤ CdV

(
1

τ d
+

(
1

e1/2ε

)d)
,(4.53)
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(c)

N (Ht
h, ε) ≤ CdV

(
1

τ d
+

(
C

e1/2ε

)d)
,(4.54)

where C(f, h) in (4.52) is given by (4.36) and C in (4.54) is an upper bound
for ‖h‖L∞(Σ).

Remark 4.13. From (4.52) we can obtain effective bounds for N (F tf,h, ε) in the
sense that these bounds depend only on bounds for ‖f‖Lip, ‖h‖Lip.

We will adopt the following convention

Convention 4.14. From now on, we will use the following convention

• We will use C∗(Σ) to denote the number

C∗(Σ) = sup
ξ∈Σ
{‖ξ‖}.

• We will use C∗1(Σ) to denote a constant that depends on the embedding
coordinates of Σ and on L∞(Σ) bounds on IIΣ (second fundamental form of
Σ) and its derivatives. This constant may vary from line to line.

• From now on, we will use Cd, αd and βd to denote dimensional constants that
may change from line to line.

We now derive covering bounds with respect to the ambient distance for the class

LM = {fη|Σ : fη(x) = 〈η, x〉, ‖η‖ ≤M,x ∈ RN},

where ‖ · ‖ is the ambient distance in RN and fη|Σ is the restriction of the linear
function fη : RN → R given by fη(x) = 〈η, x〉 to Σ, which was also introduced
in the statement of Theorem C. Note that for functions u, u

′
in LM we can write

u(ξ) = 〈η, ξ〉 and u
′
(ξ) = 〈η′ , ξ〉 where ‖η‖, ‖η′‖ ≤M and therefore

|u(ξ)− u′(ξ)| ≤ C∗(Σ)‖η − η′‖.
We conclude that

N (LM , δ) ≤ A
(
BM(0),

δ

C∗(Σ)

)
.

On the other hand, it is well known that for any ε > 0

A (BM(0), ε) ≤
(

2M + ε

ε

)N
,

see for example [18, Chapter 4]. It follows that we have bounds on covering numbers
of the form

N (LM , δ) ≤
(

2MC∗(Σ) + δ

δ

)N
.(4.55)
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We now prove uniform estimates on the covering number for the collection of classes
F tf,h and Ht

h for f, h in the class LM defined in the statement of Theorem C.

Lemma 4.15. Consider the classes of functions

F t =

{
φt(f, h, ξ)(ζ) = t−1/2e−

‖ξ−ζ‖2
2t (f(ξ)− f(ζ))(h(ξ)− h(ζ)) : ξ ∈ Σ, f, h ∈ LM

}
,

(4.56)

Ht =

{
ωt(h, ξ)(ζ) = t1/2e−

‖ξ−ζ‖2
2t h(ζ) : ξ ∈ Σ, h ∈ LM

}
,

(4.57)

F t∗ =

{
φ∗t (f, h, ξ)(ζ) = t−1/2e−

‖ξ−ζ‖2
2t (Ltf(ξ)− Ltf(ζ))(h(ξ)− h(ζ)) : ξ ∈ Σ, f, h ∈ LM

}
,

(4.58)

Ht
∗ =

{
ω∗t (f, h, ξ)(ζ) = t1/2e−

‖ξ−ζ‖2
2t Γt(f, h)(ζ) : f, h ∈ LM , ξ ∈ Σ

}
.

(4.59)

Then

N
(
F t, ε

)
≤ CdV

(
1

τ d
+

(
3C0M

2

ε

)d)(
12M2e−1/2C∗(Σ) + ε

ε

)2N

,(4.60)

N (Ht, ε) ≤ CdV

(
1

τ d
+

(
2C∗(Σ)e−1/2M

ε

)d)(
4Mt1/2C∗(Σ) + ε

ε

)N
,(4.61)

where V is the volume of Σ, C0 is the constant in Lemma 4.8 and C∗(Σ) is as in
Convention 4.14. In addition, assuming that t > 0 is sufficiently small, we have
bounds of the form

N (Ht
∗, ε) ≤ CdU

(
ε

3M2βd

)(
12αdC

∗(Σ)M + ε

ε

)2N

,(4.62)

and

N (F t∗, ε) ≤

(4.63)

≤ Cd

(
12M2e−1/2C∗(Σ)

tε
+ 1

)N (
12M2e−1/2C∗1(Σ)C∗(Σ)

ε
+ 1

)N
U

(
ε

3M2C0C∗1(Σ)

)
.

where C∗1(Σ) is as in convention 4.14. In all of the above inequalities, U(r) is as in
(4.51).

Proof. Without loss of generality let us assume that Σ has unit volume with respect
to the induced metric. In order to prove (4.60), we estimate the difference∣∣∣φt(f, h, ξ)(ζ)− φt(f̃ , h̃, ξ

′
)(ζ)

∣∣∣ ,
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for arbitrary f, h, f̃ , h̃ ∈ LM and ξ, ξ
′ ∈ Σ. Note that∣∣∣φt(f, h, ξ)(ζ)− φt(f̃ , h̃, ξ

′
)(ζ)

∣∣∣ ≤ ∣∣∣φt(f, h, ξ)(ζ)− φt(f̃ , h, ξ)(ζ)
∣∣∣

+
∣∣∣φt(f̃ , h, ξ)(ζ)− φt(f̃ , h̃, ξ)(ζ)

∣∣∣
+
∣∣∣φt(f̃ , h̃, ξ)(ζ)− φt(f̃ , h̃, ξ

′
)(ζ)

∣∣∣ .
Note that∣∣∣φt(f, h, ξ)(ζ)− φt(f̃ , h, ξ)(ζ)

∣∣∣ = t−1/2e−
‖ξ−ζ‖2

2t |h(ξ)− h(ζ)| ·
∣∣∣f(ξ)− f̃(ξ)

∣∣∣
+ t−1/2e−

‖ξ−ζ‖2
2t |h(ξ)− h(ζ)| · |f(ζ)− f̃(ζ)|

≤ 2e−1/2M‖f − f̃‖L∞(Σ).

Similarly, ∣∣∣φt(f̃ , h, ξ)(ζ)− φt(f̃ , h̃, ξ)(ζ)
∣∣∣ ≤ 2e−1/2M‖h− h̃‖L∞(Σ).

Finally, from Lemma 4.8 we obtain∣∣∣φt(f̃ , h̃, ξ)(ζ)− φt(f̃ , h̃, ξ
′
)(ζ)

∣∣∣ ≤ C(f̃ , h̃)‖ξ − ξ′‖ ≤ C0M
2‖ξ − ξ′‖.

If we now turn to the computation of L∞(Σ) covering numbers, we obtain the bound

N (F t, ε) ≤ N
(
LM ,

ε

6Me−1/2

)2

· sup
f,h∈LM

N
(
F tf,h,

ε

3

)
,(4.64)

and observe from (4.37),(4.52) and (4.55) that for any δ > 0 we have the bounds

N (LM , δ) ≤
(

2MC∗(Σ) + δ

δ

)N
,(4.65)

sup
f,h∈LM

N
(
F tf,h, δ

)
≤ A

(
Σ,

δ

C0M2

)
.(4.66)

In view of Theorem 4.11 and (4.64)

N
(
F t, ε

)
≤
(

12M2e−1/2C∗(Σ) + ε

ε

)2N

· Cd

(
1

τ d
+

(
3C0M

2

ε

)d)
,

where Cd is a dimensional constant and τ is the reach of Σ. In order to prove (4.61),
we use the estimate∣∣∣ωt(ζ, x)h(x)− ωt(ζ

′
, x)h̃(x)

∣∣∣ ≤ ∣∣∣(ωt(ζ, x)− ωt(ζ
′
, x)
)
h(x)

∣∣∣+ ωt(ζ
′
, x)
∣∣∣h(x)− h̃(x)

∣∣∣
≤ C∗(Σ)Me−1/2‖ζ − ζ ′‖+ t1/2‖h− h̃‖L∞(Σ).(4.67)



28 ANTONIO G. ACHE AND MICAH W. WARREN

In order to obtain (4.67) we have used inequality (4.31), ‖ψt‖L∞(Σ×Σ) = t1/2 and
sup
h∈LM

‖h‖L∞(Σ) ≤MC∗(Σ). It follows that

N
(
Ht, ε

)
≤ A

(
Σ,

ε

2C∗(Σ)e−1/2M

)
· N

(
LM ,

ε

2t1/2

)
≤ A

(
Σ,

ε

2C∗(Σ)e−1/2M

)
· A
(
BM(0),

ε

2t1/2C∗(Σ)

)
≤ Cd

(
1

τ d
+

(
2C∗(Σ)e−1/2M

ε

)d)(
4Mt1/2C∗(Σ) + ε

ε

)N
,

as claimed. For the proof of (4.62) we observe that∣∣∣ω∗t (f, h, ξ)(ζ)− ω∗t (f̃ , h̃, ξ
′
)(ζ)

∣∣∣ ≤ ∣∣∣ω∗t (f, h, ξ)(ζ)− ω∗t (f̃ , h, ξ)(ζ)
∣∣∣

+
∣∣∣ω∗t (f̃ , h, ξ, ζ)− ω∗t (f̃ , h̃, ξ, ζ)

∣∣∣
+
∣∣∣ω∗t (f̃ , h̃, ξ)(ζ)− ω∗t (f̃ , h̃, ξ

′
)(ζ)

∣∣∣ .
Observe that

∣∣∣ω∗t (f, h, ξ)(ζ)− ω∗t (f̃ , h, ξ)(ζ)
∣∣∣ ≤ 2‖f − f̃‖L∞(Σ)e

− ‖ξ−ζ‖
2

2t

t1/2θt(ζ)

∫
Σ

e−
‖η−ζ‖2

2t |h(η)− h(ζ)| dµ(η).

(4.68)

Note also that since t−d/2θt(x) converges uniformly to (2π)d/2 on Σ as t→ 0+, there
exists a number t0 > 0 depending only on the embedding coordinates of Σ such that
for 0 < t < t0 one has the estimate∫

Σ

e−
‖η−ζ‖2

2t |h(η)− h(ζ)| dµ(η) =

∫
Σ

e−
‖η−ζ‖2

4t e−
‖η−ζ‖2

4t |h(η)− h(ζ)| dµ(η)

≤ ‖h‖Lip

∫
Σ

e−
‖η−ζ‖2

4t e−
‖η−ζ‖2

4t ‖η − ζ‖ dµ(η)

≤
√

2te−1/2‖h‖Lip

∫
Σ

e−
‖η−ζ‖2

4t dµ(η)

≤M
√

2t2
d+2
2 (2π)d/2td/2.

For the above inequality we have used that

lim
t→0+

t−d/2
∫

Σ

e−
‖η−x‖2

4t dµ(η) = 2d/2(2π)d/2

uniformly on Σ. It follows that∣∣∣ω∗t (f, h, ξ)(ζ)− ω∗t (f̃ , h, ξ)(ζ)
∣∣∣ ≤ αd‖f − f̃‖L∞(Σ)M

= αdM‖f − f̃‖L∞(Σ),(4.69)
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for some dimensional constant αd. Analogously, for 0 < t < t0 we have∣∣∣ω∗t (f̃ , h, ξ, ζ)− ω∗t (f̃ , h̃, ξ, ζ)
∣∣∣ ≤ αdM‖h− h̃‖L∞(Σ).(4.70)

We also have∣∣∣ω∗t (f̃ , h̃, ξ)(ζ)− ω∗t (f̃ , h̃, ξ
′
)(ζ)

∣∣∣(4.71)

≤ e−1/2‖ξ − ξ′‖
tθt(ξ)

∫
Σ

e−
‖ζ−η‖2

2t

∣∣∣f̃(η)− f̃(ζ)
∣∣∣ ∣∣∣h̃(η)− h̃(ζ)

∣∣∣ dµ(η)(4.72)

≤ βde
−1/2M2‖ξ − ξ′‖.(4.73)

Combining (4.69), (4.70) and (4.73) with an argument similar to the one used to
prove (4.60) we can easily prove (4.62). For the proof of (4.63), we start with the
inequality∣∣∣φ∗t (f, h, ξ)(ζ)− φ∗t (f̃ , h̃, ξ

′
)(ζ)

∣∣∣ ≤ ∣∣∣φ∗t (f, h, ξ)(ζ)− φ∗t (f̃ , h, ξ)(ζ)
∣∣∣

+
∣∣∣φ∗t (f̃ , h, ξ, ζ)− φ∗t (f̃ , h̃, ξ, ζ)

∣∣∣
+
∣∣∣φ∗t (f̃ , h̃, ξ)(ζ)− φ∗t (f̃ , h̃, ξ

′
)(ζ)

∣∣∣ ,
where f, h, f̃ , h̃ are in LM and ξ, ξ

′
are in Σ. A simple estimate shows that∣∣∣φ∗t (f, h, ξ)(ζ)− φ∗t (f̃ , h, ξ)(ζ)

∣∣∣ ≤ 2Me−1/2‖f − f̃‖L∞(Σ)

t
.(4.74)

Similarly ∣∣∣φ∗t (f̃ , h, ξ)(ζ)− φ∗t (f̃ , h̃, ξ)(ζ)
∣∣∣ ≤ 2e−1/2‖h− h̃‖L∞(Σ)Λ(Ltf̃),(4.75)

where1

Λ(Ltf̃) = sup
x,x′∈Σ


∣∣∣Ltf̃(x)− Ltf̃(x

′
)
∣∣∣

‖x− x′‖

 .

From Proposition 3.2 if follows that there exists T0 > 0 depending only on the em-
bedding coordinates of Σ such that for 0 < t < T0 we have the expansion

Ltf̃(x) = ∆Σf̃(x) + t1/2R(x),

where ∆Σf̃ is the Laplacian of f̃ with respect to the induced metric and where R(x)

is computed in terms of local integrals of the 3-jet of f̃(x) as pointed out in (3.4).

Observe now that for f̃ in LM we can write f̃(x) = 〈η, x〉 for some η with ‖η‖ ≤M ,
and therefore

∇2
Σf̃(x) = −η⊥IIΣ(x),

1Note that the quotient Λ(Ltf̃) is not exactly the Lipschitz semi-norm that we defined in (4.18)

because the supremum used in the definition of Λ(Ltf̃) is taken over points in Σ as opposed to (4.18)
which involves points in all of RN .
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where η⊥ is the normal component of η with respect to TxΣ and IIΣ(x) is the second
fundamental form of Σ at x. In particular, (3.4) shows that

Ltf̃(x) = −η⊥HΣ(x) + t1/2R(x),

where HΣ(x) is the mean curvature of Σ at x and R(x) is computed in terms of IIΣ

and its derivatives. We conclude that we have a bound of the form∣∣∣Λ(Ltf̃)
∣∣∣ ≤M · C∗1(Σ),(4.76)

and inserting (4.76) into (4.75) we obtain∣∣∣φ∗t (f̃ , h, ξ)(ζ)− φ∗t (f̃ , h̃, ξ)(ζ)
∣∣∣ ≤ 2e−1/2MC∗1(Σ)‖h− h̃‖L∞(Σ).(4.77)

In a similar fashion, for 0 < t < T0 we also have∣∣∣φ∗t (f̃ , h̃, ξ)(ζ)− φ∗t (f̃ , h̃, ξ
′
)(ζ)

∣∣∣ ≤ C0M
2C∗1(Σ)‖ξ − ξ′‖.(4.78)

Combining (4.74),(4.77) and (4.78) we conclude that for t with 0 < t < T0 we have
the bound ∣∣∣φ∗t (f, h, ξ)(ζ)− φ∗t (f̃ , h̃, ξ

′
)(ζ)

∣∣∣ ≤ 2Me−1/2

t
‖f − f̃‖L∞(Σ)

+ 2Me−1/2C∗1(Σ)‖h− h̃‖L∞(Σ)

+M2C0C
∗
1(Σ)‖ξ − ξ′‖,

for arbitrary f, h, f̃ , h̃ in LM and ξ, ξ
′

in Σ. We obtain in turn that for some dimen-
sional constant Cd and for t > 0 sufficiently small we have the inequality

N (F t∗, ε) ≤ N
(

LM ,
tε

6Me−1/2

)
· N

(
LM ,

ε

6Me−1/2C∗1(Σ)

)
· A
(

Σ,
ε

3M2C0C∗1(Σ)

)
≤ Cd

(
12M2e−1/2C∗(Σ)

tε
+ 1

)N (
12M2e−1/2C∗1(Σ)C∗(Σ)

ε
+ 1

)N
U

(
ε

3M2C0C∗1(Σ)

)
.

This proves inequality (4.63). �

The following lemma is easily proved using the tools developed in Lemma 4.15.

Lemma 4.16. The classes (4.56),(4.57),(4.58) and (4.59) satisfy the following bounds

MFt = sup
u∈Ft
‖u‖L∞(Σ) ≤ 2t1/2e−1M2,(4.79)

MHt = sup
v∈Ht
‖v‖L∞(Σ) ≤ t1/2MC∗(Σ),(4.80)

In addition, for t > 0 sufficiently small we also have

MHt∗ = sup
v∈Ht∗
‖v‖L∞(Σ) ≤ βdM

2t1/2,(4.81)

and

MFt∗ = sup
v∈Ft∗
‖v‖L∞(Σ) ≤ C∗1(Σ)M2t1/2.(4.82)
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For the above inequalities, C∗(Σ), C∗1(Σ) are as in Convention 4.14 and βd is a di-
mensional constant as in Lemma 4.15.

4.4. Sample Version of the Carré du Champ. In this section we are still assum-
ing that the distribution of the sample ξ1, . . . , ξn in Σ is uniform, i.e., dµ = dvolΣ
and Σ has unit volume with respect to the induced metric. In this case we know that
lim
t→0+

t−d/2θt = (2π)d/2 uniformly in L∞(Σ) and moreover there exists t0 > 0 depending

only on the embedding coordinates of Σ such that for 0 < t < t0 we have

2(2π)d/2 ≥ t−d/2θt ≥
1

2
(2π)d/2.

If we let

λ0 =
(2π)d/2

4
,(4.83)

we have for 0 < t < t0 the inequality

θt(x) ≥ 2td/2λ0,(4.84)

which will be a convenient normalization for us in the sequel. The main lemma in
this section is the following.

Lemma 4.17. Let J be given by a class of functions of the form

ϕ(f, x)(·) = f(x, ·)

for x ∈ Σ and f ∈ F where F is a totally bounded class of functions in L∞(Σ× Σ).
Let

C = sup
f∈F
‖f‖L∞(Σ×Σ).

Suppose also 0 < t < t0 and ε is small enough so that

(4.85) εtd+1/2λ0 < C.

Then J is totally bounded in L∞(Σ) and

Pr∗

{
sup
f∈F

sup
x∈Σ

∣∣∣∣∣t−1/2µnf(x, ·)
θ̂t(x)

− t−1/2µf(x, ·)
θt(x)

∣∣∣∣∣ ≥ ε

}
(4.86)

≤ 2N
(
Gt, εt

d+1λ2
0

4C

)
exp

(
−ε

2t2d+1λ4
0

8C2
n

)
(4.87)

2N
(
F , ελ0t

(d+1)/2

4

)
exp

(
−ε

2λ2
0t
d+1n

8C2

)
.(4.88)

Before proving Lemma 4.17 we will prove the following elementary lemma.

Lemma 4.18. Let ξ, ζ be positive random variables. For any ε > 0 we have

Pr

{∣∣∣∣1ξ − 1

ζ

∣∣∣∣ ≥ ε

}
≤ Pr

{
|ζ − ξ| ≥ εξ2

1 + εξ

}
.
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Proof. Assume 0 < ζ < ξ

1

ζ
− 1

ξ
=
ξ − ζ
ξζ

=
ξ − ζ

ξζ − ξ2 + ξ2

=
ζ − ξ

ξ (ζ − ξ) + ξ2

=
|ζ − ξ|

−ξ|ζ − ξ|+ ξ2
,

and from

|ζ − ξ|
−ξ |ζ − ξ|+ ξ2

≤ ε

we have

|ζ − ξ| ≤ εξ2

1 + εξ
.

For the case 0 < ξ < ζ we have

1

ξ
− 1

ζ
=

ζ − ξ
ξ(ζ − ξ) + ξ2

=
|ξ − ζ|

ξ|ξ − ζ|+ ξ2
.

and |ξ−ζ|
ξ|ξ−ζ|+ξ2 ≥ ε implies

(1 + εξ)|ξ − ζ| ≥ (1− εξ)|ξ − ζ| ≥ εξ2.

�

Proof of Lemma 4.17. It is easy to prove from Lemma 4.18 and (4.84) that for any
δ > 0 we have

Pr

{
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣ ≥ δ

}
(4.89)

≤ Pr

{
sup
x∈Σ

∣∣∣θt(x)− θ̂t(x)
∣∣∣ ≥ 4δtdλ2

0

1 + 2δtd/2λ0

}
.(4.90)

Let us write

t−1/2

(
µnf(x, ·)
θ̂t(x)

− µf(x, ·)
θt(x)

)
= t−1/2µnf(x, ·)

(
1

θ̂t(x)
− 1

θt(x)

)
+ t−1/2 1

θt(x)
[µnf(x, ·)− µf(x, ·)] .



RICCI CURVATURE AND THE MANIFOLD LEARNING PROBLEM 33

Thus

Pr

{
t−1/2 sup

f∈F
sup
x∈Σ

∣∣∣∣∣µnf(x, ·)
θ̂t(x)

− µf(x, ·)
θt(x)

∣∣∣∣∣ ≥ ε

}

≤ Pr

{
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣ ≥ ε

2

t1/2

C

}

+ Pr

{
sup
f∈F

sup
x∈Σ
|µnf(x, ·)− µf(x, ·)| ≥ ελ0t

(d+1)/2

}
.

Analyzing the first term using (4.85) and (4.89)-(4.90) leads us to the inequality

Pr

{
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣ ≥ ε

2

t1/2

C

}

≤ Pr

{
sup
x∈Σ

∣∣∣θt(x)− θ̂t(x)
∣∣∣ ≥ 2εtd+1/2λ2

0

C + εtd+1/2λ0

}
≤ Pr

{
sup
x∈Σ

∣∣∣θt(x)− θ̂t(x)
∣∣∣ ≥ εtd+1/2λ2

0

C

}
≤2N

(
Gt, εt

d+1λ2
0

4C

)
exp

(
−ε

2t2d+1λ4
0

8C2
n

)
,

where we have applied Lemma 4.5 to the class Gt (in particular we have used (4.25)).
Finally,

Pr

{
sup
f∈F

sup
x∈Σ
|µnf(x, ·)− µf(x, ·)| ≥ ελ0t

(d+1)/2

}
≤ 2N

(
F , ελ0t

(d+1)/2

4

)
exp

(
−ε

2λ2
0t

(d+1)n

8C2

)
.

�

In view of Lemma 4.17, we introduce the following notation

Definition 4.19. Given a class of functions F as in the statement of Lemma 4.17 and
positive numbers t, ε,M we define for compactness of notation the following function

Qt(F , ε, C, n) = 2N
(
Gt, εt

d+1λ2
0

4t1/2C

)
exp

(
− ε

2t2d+1λ4
0

8 (t1/2C)
2n

)
(4.91)

+ 2N
(
F , ελ0t

(d+1)/2

4

)
exp

(
−ε

2λ2
0t
d+1n

8 (t1/2C)
2

)
.(4.92)

Remark 4.20. Because most of the function classes that we will encounter in our
analysis satisfy bounds of the form (4.23), we include the t1/2 factor in the expression
for C.



34 ANTONIO G. ACHE AND MICAH W. WARREN

Corollary 4.21. If F is any of the classes of functions defined by (4.21), (4.22),
(4.32), (4.56),(4.57), (4.58), (4.58) we have

(4.93) Pr∗

{
sup
x∈Σ

∣∣∣∣∣t−1/2µnf(x, ·)
θ̂t(x)

− t−1/2µf(x, ·)
θt(x)

∣∣∣∣∣ ≥ ε

}
≤ Qt(F , ε, C, n).

For (4.21), the constant C depends on Σ, ‖f‖Lip and ‖h‖Lip. For (4.22), C depends

on Σ. For (4.32), C depends on ‖h‖∞ and Σ. For (4.56), (4.57), (4.58) and (4.59),
C depends on Σ, M and dimensional constants.

As a corollary we obtain the rate of convergence in probability of the sample Carré
du Champ to its expected value.

Corollary 4.22. We have the following bounds
(a) Fixing f and h and letting

K = K (f, h) = min

{(
2

e

)
‖f‖Lip‖h‖Lip, ‖f‖A-t-Lip‖h‖Lip

}
,

we have

Pr

{
sup
x∈Σ

∣∣∣Γ̂t(f, h)(x)− Γt(f, h)(x)
∣∣∣ ≥ ε

}
≤ Qt(F tf,h, ε,K, n).

(b) For the class LM we have

Pr

{
sup

f,h∈LM

sup
x∈Σ

∣∣∣Γ̂t(f, h)(x)− Γt(f, h)(x)
∣∣∣ ≥ ε

}
≤ Qt(F t, ε,K, n),

where K = 2M2

e
.

(c) In addition, for t > 0 sufficiently small we have

Pr

{
sup

f,h∈LM

sup
x∈Σ

∣∣∣Γ̂t(Ltf, h)(x)− Γt(Ltf, h)(x)
∣∣∣ ≥ ε

}
≤ Qt(F t∗, ε,K, n),

where K = C∗1(Σ)M2, and C∗1(Σ) is as in Convention 4.14.

Proof. Let us only prove (a) since the proofs of (b) and (c) are very similar. Recall
that

Γ̂t(Lt, f, h)(x) =
1

t

1

θ̂t

n∑
j=1

e−
‖x−ξj‖

2

2t (f(ξj)− f(x))(h(ξj)− h(x))(4.94)

=
t−1/2

θ̂t(x)

n∑
j=1

φt(x, ξj) = t−1/2µn(φt(x, ·))
θ̂t(x)

,(4.95)

where φt is given by the definition of the class F tf,h in (4.21) and therefore we can
apply Lemma 4.17 to the class F tf,h and use the bound

sup
φ∈Ftf,h

‖φ‖L∞(Σ) ≤ t1/2K.

which follows from (4.23). �
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If we now consider the t-Laplacian Lt and its sample version L̂t, we see that the
deviation of L̂t from Lt on a function h ∈ L∞(Σ) with ‖h‖L∞(Σ) ≤M simplifies to

L̂th(x)− Lth(x) =
2

tθ̂t(x)n

n∑
j=1

e−
‖ξj−x‖

2

2t (h(ξj)− h(x))(4.96)

− 2

tθt(x)

∫
Σ

e−
‖ξ−x‖2

2t (h(ξ)− h(x))dµ(ξ)(4.97)

=
2

θ̂t(x)tn

n∑
j=1

e−
‖ξj−x‖

2

2t h(ξj)−
2

tθt(x)

∫
Σ

e−
‖ξ−x‖2

2t h(ξ)dµ(ξ)(4.98)

=
2µnψt(x, ·)h(·)

t3/2θ̂t(x)
− 2µψt(x, ·)h(·)

t3/2θt(x)
.(4.99)

Observe that

(4.100) Pr

{
sup
x∈Σ

∣∣∣L̂th(x)− Lth(x)
∣∣∣ ≥ ε

}
≤ Pr

{
t−1/2 sup

η∈Hth

∣∣∣∣µnηθ̂t − µη

θt

∣∣∣∣ ≥ tε

}
.

We have obtained

Corollary 4.23. We have the following bounds

(a) Fix a function h ∈ L∞(Σ). If we set C = ‖h‖L∞ we have

Pr

{
sup
x∈Σ

∣∣∣L̂th(x)− Lth(x)
∣∣∣ ≥ ε

}
≤ Qt(Ht

h, εt, C, n).

(b) For the class LM we have the estimate

Pr

{
sup
h∈LM

sup
x∈Σ

∣∣∣L̂th(x)− Lth(x)
∣∣∣ ≥ ε

}
≤ Qt(Ht, εt, C, n),

where C = MC∗(Σ).
(c) In addition, we have for every t > 0 the estimate

Pr

{
sup

f,h∈LM

sup
x∈Σ

∣∣∣L̂t (Γt(f, h)) (x)− Lt (Γt(f, h)) (x)
∣∣∣ ≥ ε

}
≤ Qt(Ht

∗, εt, C, n),

where C = βdM
2, where βd > 0 is a dimensional constant.

Proof. The proof of (a) follows from combining Lemma 4.17 with (4.100) and the fact
that

sup
η∈Hth

‖η‖L∞(Σ) ≤ t1/2‖h‖L∞(Σ) = t1/2C.

The proofs of (b) and (c) are similar to the proof of (a) but make use of Lemmas
(4.15) and (4.16).

�
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4.5. Subexponential Decay and Almost Sure Convergence. The goal of this
subsection is to demonstrate that the decay rate for the quantities Qt(F , ε,M, n)
implies the almost sure convergence. We illustrate the Borel-Cantelli type proof in
this section for the purpose of introducing some notation. This notation will be used
in later sections.

Theorem 4.24. Consider the metric measure space (Σ, ‖·‖, dvolΣ) where Σd ⊂ RN is
a smooth closed embedded submanifold. Suppose that we have a uniformly distributed
i.i.d. sample {ξ1, . . . , ξn} of points from Σ. For σ > 0, let

(4.101) tn = n−
1

2d+σ .

Then

(a) For fixed f, h ∈ Lip(Σ) we have

sup
ξ∈Σ

∣∣∣Γ̂(Ltn , f, h)(ξ)− Γ(Ltn , f, h)(ξ)
∣∣∣ a.s.−→ 0

as n→∞.
(b) For the class LM we have

sup
f,h∈LM

sup
ξ∈Σ

∣∣∣Γ̂(Ltn , f, h)(ξ)− Γ(Ltn , f, h)(ξ)
∣∣∣ a.s.−→ 0

as n→∞.
(c) In addition we have

sup
f,h∈LM

sup
ξ∈Σ

∣∣∣Γ̂(Ltn , Ltnf, h)(ξ)− Γ(Ltn , Ltnf, h)(ξ)
∣∣∣ a.s.−→ 0

as n→∞.

Proof. For part (a), if we fix n and ε, we have

Pr

{
sup
x∈Σ

∣∣∣Γ̂(Ltn , f, h)(x)− Γ(Ltn , f, h)(x)
∣∣∣ ≥ ε

}
≤ Qtn(F tnf,h, ε,K, n)

where K = K(f, h) as in Corollary 4.22. Now plugging in the expression for tn we
observe a bound of the form

(4.102) Qtn(F tnf,h, ε,K) ≤ p

(
n

1
2(2d+σ) ,

1

ε

)
exp

(
−c1ε

2nσ/(2d+σ)
)

where p is a fixed polynomial bound and c1 > 0 is a constant. Thus with ε fixed, we
have

∞∑
n=1

Qtn(F tnf,h, ε,K, n) <∞.

Applying the Borel-Cantelli Lemma gives the almost sure convergence. The proof of
part (b) is analogous, since we have the estimate

Pr

{
sup

f,h∈LM

sup
x∈Σ

∣∣∣Γ̂(Ltn , f, h)(x)− Γ(Ltn , f, h)(x)
∣∣∣ ≥ ε

}
≤ Qtn(F tn , ε,K, n),
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with K = 2
e
M2. Observe that Qtn(F tn , ε,K, n) satisfies a bound of the form (4.102),

but this time the coefficients of the polynomial p depend on Σ, M and N as seen in
Lemma 4.15. Part (c) follows from the estimate

Pr

{
sup

f,h∈LM

sup
x∈Σ

∣∣∣Γ̂(Lt, Ltf, h)(x)− Γ(Lt, Ltf, h)(x)
∣∣∣ ≥ ε

}
≤ Qt(F t∗, ε,K, n),

where K = M2C∗1(Σ). �

Now we see that for almost sure convergence, one requires a bound of the form (4.102).
For this reason, we introduce notation for use in the sequel: consider a function

(4.103) Q : R+ × R+ × N→ R+.

We say that Q(t, ε, n) ∈ OBC(β) if

(4.104)
∞∑
n=1

Q(n−
1

β+σ , ε, n) <∞

for all σ, ε > 0. Clearly the definition gives

OBC(β) ⊂ OBC(β′)

for β′ > β. We also observe that

OBC(β) +OBC(β′) ∈ OBC (max {β, β′}) .

Lemma 4.25. For the classes of functions defined by (4.21), (4.22), (4.32), (4.56),
(4.57), (4.58), (4.59), for fixed ε,M > 0 and for t > 0 small depending on the
embedding coordinates of Σ we have

Qt(F , ε,M, n) ∈ OBC(2d).

Proof. Plugging in

t = n−
1

β+σ

the dominant exponential factor in (4.91) becomes

exp

(
−ε

2λ4
0

8C
n
β+σ−2d
β+σ

)
.

Clearly, for

β + σ − 2d > 0

we have
∞∑
n=1

Q(n−
1

β+σ , ε, n) <∞.

�

We record the following, which is clear from the definitions and Corollary 4.12.
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Corollary 4.26. Given any of the classes above, let

Q(t, ε, n) = Qt(F , εtα, Ktδ, n).

where δ is a real number. Then

Q(t, ε, n) ∈ OBC(2d+ 2α− 2δ).

4.6. Proof of Theorem C. We will only carry out the proof of part (b). The proof
of part (a) is analogous. Recall that

Γ2(Lt, f, f) =
1

2
(Lt (Γt(f, f))− 2Γt(Ltf, f)) ,

and that from Remark 4.2

Γ̂2(Lt, f, f) =
1

2

(
L̂t

(
Γ̂t(f, f)

)
− 2Γ̂t(L̂tf, f)

)
,

so we will start by estimating the difference L̂t

(
Γ̂t(f, f)

)
− Lt (Γt(f, f)) which we

write as [
L̂t(Γ̂t(f, f))− L(Γt(f, f))

]
(x) =L̂t

(
Γ̂t(f, f)− Γt(f, f)

)
(x)(4.105)

+
(
L̂t − Lt

)
Γt(f, f)(x)(4.106)

= A1(x) + A2(x),(4.107)

and observe that
(4.108)

‖A1‖L∞(Σ) = sup
x∈Σ

∣∣∣L̂t (Γ̂t(f, f)(x)− Γt(f, f)(x)
)∣∣∣ ≤ 4

t
sup
f∈LM

sup
ξ∈Σ

∣∣∣Γ̂t(f, f)(ξ)− Γt(f, f)(ξ)
∣∣∣ .

In order to estimate A2 =
(
L̂t − Lt

)
(Γt(f, f)) we make use of Corollary 4.23. We

now estimate the difference

Γ̂t(L̂tf, f)(x)− Γt(Ltf, f)(x) = Γ̂t(L̂tf − Ltf, f)(x) +
(

Γ̂t − Γt

)
(Ltf, f)(x)(4.109)

= A3(x) + A4(x),(4.110)

and we note

‖A3‖L∞(Σ) = sup
x∈Σ

∣∣∣Γ̂t(L̂tf − Ltf, f)(x)
∣∣∣

(4.111)

≤ sup
x∈Σ

2

t

(
sup
ξ∈Σ

∣∣∣L̂t(f)(ξ)− Lt(f)(ξ)
∣∣∣) 1

nθ̂t(x)

n∑
j=1

e−
‖ξj−x‖

2

2t |f(ξj)− f(x)|(4.112)

≤ 2
e−1/2‖f‖Lip

t1/2
sup
x∈Σ

1

θ̂t(x)

(
sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)

≤ 2
e−1/2M

t1/2
sup
x∈Σ

1

θ̂t(x)

(
sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)(4.113)
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where we have used the fact that for functions u, v∣∣∣Γ̂t(u, v)(x)
∣∣∣ ≤ 2

t
sup
ξ∈Σ
|u(ξ)|

(
1

nθ̂t(x)

n∑
j=1

e−
‖x−ξj‖

2

2t |v(x)− v(ξj)|

)
(4.114)

≤ 2

t
sup
ξ∈Σ
|u(ξ)|

(
‖v‖Lip

nθ̂t(x)
sup
ρ>0

ρe−
ρ2

2t

)
,(4.115)

and

sup
ρ>0

ρe−
ρ2

2t = t1/2e−1/2 ≤ t1/2.

In view of Lemma (4.17), we will write the bound (4.113) on ‖A3‖L∞(Σ) as

‖A3‖L∞(Σ) ≤ 2
e−1/2M

t1/2θt
sup
x∈Σ

1

θt(x)

(
sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)

(4.116)

+
2e−1/2M

t1/2
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣
(

sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣) .(4.117)

In order to estimate ‖A4‖L∞(Σ), i.e.

‖A4‖L∞(Σ) = sup
x∈Σ

∣∣∣(Γ̂t − Γt

)
(Lt(f, f))(x)

∣∣∣ ,
we will make use of Corollary 4.22.

Observe now that the terms A1, A2, A3, A4 above are random variables with expres-
sions of the form Ai = Ai(f, x), let A∗i = supf∈LM

supx∈Σ |Ai(f, x)| for i = 1, 2, 3, 4.
We now have from (4.105) and (4.109)

Pr

{
sup
f∈LM

sup
x∈Σ

∣∣∣Γ̂2(Lt, f, f)− Γ2(Lt, f, f)
∣∣∣ (x) ≥ ε

}
(4.118)

≤ Pr
{
A∗1 ≥

ε

4

}
+ Pr

{
A∗2 ≥

ε

4

}
+ Pr

{
A∗3 ≥

ε

4

}
+ Pr

{
A∗4 ≥

ε

4

}
(4.119)

= P1 + P2 + P3 + P4.(4.120)

From (4.108) and Corollary 4.22 we have

P1 ≤ Pr

{
sup
f∈LM

sup
ξ∈Σ

∣∣∣Γ̂t(f, f)(ξ)− Γt(f, f)(ξ)
∣∣∣ ≥ tε

16

}
≤ Qt

(
F tf ,

tε

16
, 2e−1M2, n

)
,

(4.121)

∈ OBC (2d+ 2) .
(4.122)

The statement about the convergence order follows from Corollary 4.26.
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For A2 =
(
L̂t − Lt

)
(Γt(f, f)) we apply part (c) of Corollary 4.23 together with (4.81)

and obtain

(4.123) P2 ≤ Qt

(
Ht
∗, εt, βdM

2, n
)
∈ OBC (2d+ 2) .

Using (4.117) we have

P3 ≤ Pr

{
ε

8
≤ 2

e−1/2M

t1/2θt
sup
x∈Σ

1

θt(x)

(
sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)}

(4.124)

+ Pr

{
ε

8
≤ 2e−1/2M

t1/2
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣
(

sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)}

(4.125)

and choosing t > 0 small enough we obtain from (4.84) and Corollary 4.23 the estimate

Pr

{
ε

8
≤ 2

e−1/2M

t1/2θt

(
sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)}(4.126)

≤ Pr

{
ε

8

λ0t
d+2
2 e1/2

M
≤ sup

f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣}(4.127)

≤ Qt

(
Ht,

ε

8

λ0t
d+1
2 e1/2

M
t,C, n

)
∈ OBC(3d+ 3),(4.128)

where C = C∗(Σ)M ≥ supf∈LM
‖f‖L∞(Σ). Here the increased order is t

d+1
2 and t

which is 2d+ d+ 1 + 2. On the other hand, we will make use of the estimate

sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣ ≤ 4

t
sup
f∈LM

‖f‖L∞ ≤
4C∗(Σ)M

t
=

4C

t
,

for any t > 0, to obtain

Pr

{
ε

8
≤ 2e−1/2M

t1/2
sup
x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣
(

sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)}

(4.129)

≤ Pr

{
εt3/2e1/2

64M
≤ sup

x∈Σ

∣∣∣∣∣ 1

θ̂t(x)
− 1

θt(x)

∣∣∣∣∣
}(4.130)

and from (4.89)-(4.90) and Lemma 4.1 we observe that

Pr

{
ε

8
≤ 2e−1/2M

t1/2
sup
x∈Σ

∣∣∣∣ 1

θ̂t
− 1

θt

∣∣∣∣ ( sup
f∈LM

sup
ξ∈Σ

∣∣∣(L̂t(f)(ξ)− Lt(f)(ξ))
∣∣∣)} ∈ OBC(d+ 3).

We then conclude that

(4.131) P3 ∈ OBC(3d+ 3).
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Finally, in order to estimate P4, we use part (c) of Lemma 4.22, namely

Pr

{
sup
f∈LM

sup
x∈Σ

∣∣∣Γ̂t(Ltf, f)(x)− Γt(Ltf, f)(x)
∣∣∣ ≥ ε

}
≤ Qt(F t∗, ε,K, n),

where K = C∗1(Σ)M2 (from (4.82)) and therefore

(4.132) P4 = Pr
{
A∗4 ≥

ε

4

}
≤ Qt(F t∗,

ε

4
, K, n) ∈ OBC(2d).

Using again

Pr
{∣∣∣Γ̂2(Lt, f, f)− Γ2(Lt, f, f)

∣∣∣ ≥ ε
}
≤ P1 + P2 + P3 + P4,

and from (4.122), (4.123), (4.131) and (4.132) we have

(4.133) Pr
{∣∣∣Γ̂2(Lt, f, f)− Γ2(Lt, f, f)

∣∣∣ ≥ ε
}
∈ OBC(3d+ 3),

and it follows from the Borel-Cantelli argument given in Section 4.5 that for any
sequence of the form tn = n−γ where γ = 1

3d+3+σ
and σ is any positive number we

have

sup
ξ∈Σ

∣∣∣Γ̂2(Ltn , f, f)− Γ2(Ltn , f, f)
∣∣∣ a.s.−→ 0.

This proves Theorem B.

Now with the convergence for each fixed function f we can prove Corollary A (see
section 3).

Proof of Corollary A. We work on a compact smooth submanifold of Euclidean space.
With the ambient distance function, there is no cut locus, and the set of functions
given by (recall (3.6))

R = {Fx,y : (x, y) ∈ Σ× Σ} ,
is uniformly bounded in C5. The map

Σ× Σ→ C5(Σ)

(x, y)→ Fx,y

is a Lipschitz map. It follows that we can take a finite δ-net G with respect to the
L∞ topology, and the net size will grow at worst polynomially. That is for a given

f ∈ R
there exists

f ∗ ∈ G
such that

‖f − f ∗‖L∞ < δ.

The constant δ will be chosen below. We want to estimate the probability

P = Pr

{
sup
f∈R

sup
ξ∈Σ

∣∣∣Γ̂2(Lt, f, f) (ξ)− Γ2(∆g, f, f) (ξ)
∣∣∣ ≥ ε

}
.
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We have

Γ̂2(Lt, f, f) (ξ)− Γ2(∆g, f, f) (ξ) = Γ̂2(Lt, f, f) (ξ)− Γ̂2(Lt, f
∗, f ∗) (ξ)

+ Γ̂2(Lt, f
∗, f ∗) (ξ)− Γ2(Lt, f

∗, f ∗) (ξ)

+ Γ2(Lt, f
∗, f ∗) (ξ)− Γ2(Lt, f, f) (ξ)

+ Γ2(Lt, f, f) (ξ)− Γ2(∆g, f, f) (ξ) .

Thus,

P ≤ Pr

{
sup
f∈R

sup
ξ∈Σ

∣∣∣Γ̂2(Lt, f, f) (ξ)− Γ̂2(Lt, f
∗, f ∗)

∣∣∣ ≥ ε

4

}
+ Pr

{
sup
f∈R

sup
ξ∈Σ

∣∣∣Γ̂2(Lt, f
∗, f ∗) (ξ)− Γ2(Lt, f

∗, f ∗) (ξ)
∣∣∣ ≥ ε

4

}
+ Pr

{
sup
f∈R

sup
ξ∈Σ
|Γ2(Lt, f

∗, f ∗) (ξ)− Γ2(Lt, f, f) (ξ)| ≥ ε

4

}
+ Pr

{
sup
f∈R

sup
ξ∈Σ
|Γ2(Lt, f, f) (ξ)− Γ2(∆g, f, f)| ≥ ε

4

}
≤ P1 + P2 + P3 + P4.

First, note that for the bilinear form Γ̂2 we have

Γ̂2(Lt, f, f) (ξ)− Γ̂2(Lt, f
∗, f ∗) = Γ̂2(Lt, f − f ∗, f) (ξ)− Γ̂2(Lt, f

∗ − f, f ∗)

thus ∣∣∣Γ̂2(Lt, f, f) (ξ)− Γ̂2(Lt, f
∗, f ∗)

∣∣∣ ≤ 4

t2
‖f − f ∗‖L∞ sup

f∈R
‖f‖L∞ .

So we may choose

δ =
ε

16C0

t2+σ

where

C0 = sup
Fx,y∈R

‖Fx,y‖∞ .

With this choice P1 = 0. By the same reasoning, also P3 = 0.

Next, we have by Theorem 3.1∣∣∣∣sup
ξ∈Σ

Γ2(Lt, f, f) (ξ)− Γ2(∆g, f, f) (ξ)

∣∣∣∣ ≤ C5t
1/2

where

C5 = sup
Fx,y∈R

‖Fx,y‖C5(Σ) .

We conclude that as long as

t1/2 <
ε

4C5



RICCI CURVATURE AND THE MANIFOLD LEARNING PROBLEM 43

we have P4 = 0. We are left to show

P2 = Pr

{
sup
f∈R

sup
ξ∈Σ

∣∣∣Γ̂2(Lt, f
∗, f ∗) (ξ)− Γ2(Lt, f

∗, f ∗) (ξ)
∣∣∣ ≥ ε

4

}
→ 0.

But by (4.133) we have, for each individual f ∗ ∈ G

Pr

{
sup
ξ∈Σ

∣∣∣Γ̂2(Lt, f
∗, f ∗) (ξ)− Γ2(Lt, f

∗, f ∗) (ξ)
∣∣∣ ≥ ε

4

}
∈ O(3d+ 3),

and the size of the set satisfies

|G| ≤ N
(
R, ε

16C0

t2+σ

)
.

This in turn is bounded by a polynomial in 1
t
, so we can apply the Borel Cantelli

argument and obtain the result. �

5. Local PCA and proof of Theorem B

The goal of this section is to construct a class of test functions that can be inserted in
our construction for Γ̂2(Ltn , ·, ·) to recover the Ricci curvature as stated in Theorem
B (in other words, we will explain how to obtain the functions fn in Theorem B).
The key for the construction of these test functions is a method for estimating a basis
of the tangent space to Σd at a given point x ∈ Σ known as local PCA where PCA
stands for “Principal Component Analysis”. The construction that we are about to
describe was developed in [25] Section 2.1 and Appendix B, however, for the reader’s
convenience we will review the construction without proving any of the theorems
shown in [25]. After reviewing the local PCA construction in [25] we will explain how
these ideas can be combined with Theorem C to prove Theorem B.

5.1. Estimating an orthonormal basis of the tangent space to a submanifold
at a point. Let x ∈ Σd where Σd is again a smooth d-dimensional submanifold of
RN and let ξ1, ξ2 . . . , ξn be data points on Σd. As pointed out in the introduction,
suppose that we fix an embedding F : Σd → RN so that we obtain a metric g in Σ
induced by F given in local coordinates by

gij = 〈DiF,DjF 〉,

where of course 〈·, ·〉 is the inner product of RN . We assume that the data points
{ξj}dj=1 are uniformly distributed and assuming that we have sufficiently many data
points we expect that many of the points {ξj} will concentrate near x. More precisely,
let us fix a positive number ε > 0 and letBε(x) be the geodesic ball of radius ε centered
at x with respect to g and let {η1, . . . , ηNε} be the intersection of Bε(x) with the set
{ξ1, . . . , ξn}. For large n, and an analysis similar to the one presented in the previous
section, it is clear that for large n, we can choose ε such that Nε >> d but Nε << n.
We now choose a function Φ satisfying

• Φ is supported in [0, 1],
• Φ is non increasing in [0, 1],
• Φ is C2 on [0, 1].
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One common choice for Φ is Φ(s) = (1 − s2)χ[0,1](s). After choosing Φ, we consider
a Nε ×Nε diagonal matrix Dε with diagonal entries

(Dε)jj =

√
Φ

(
‖x− ηj‖

ε

)
,

for j = 1, . . . , Nε. At the same time, consider now the N ×Nε matrix Xε whose rows
are given by

Xε = [η1 − x, . . . , ηNε − x] ,

and the N ×Nε matrix

Wε = XεDε.

The idea of constructing the matrix Wε above is to weight the data points so that
those points that are closer to x are given preference. Next, the matrix Wε admits a
singular value decomposition of the form

Wε = UεΛεV
T
ε ,

where Uε is a N ×Nε matrix whose columns are orthonormal in the Hilbert-Schmidt
norm and known as the left singular vectors of Wε, and Λε is a diagonal matrix with
non increasing diagonal elements that describe the relative importance of the vectors.
Recall that the Hilbert-Schmidt norm is defined for N × d matrices by

‖A‖HS =
√

tr(ATA).

We now consider a N × d matrix Uε with orthonormal columns given by taking the
first d orthonormal singular vectors of Uε (each column of Uε is a singular vector for
Wε). Alternatively, or if d is unknown, we can choose the vectors whose weights in Λε

are bigger than a chosen cutoff value, for example 1/2. On a smooth manifold these
will agree for large numbers of points. We will write Uε as

Uε = [ζ1,ε(x), . . . , ζd,ε(x)] .(5.1)

The vectors ζj,ε(x) for j = 1, . . . , d form an orthonormal basis for a d-dimensional
subspace of RN , in fact, this basis will serve as an approximation for a basis to the
tangent space TxΣ. Strictly speaking, the vectors ζj,ε depend on the point x, and
the data points ξ1, . . . , ξn, but for now we will omit that dependence. It is important
to keep in mind though that the dependence of ζj,ε on these parameters is highly
non-linear and in principle it should create a problem of correlation, however, the
empirical theoretic methods that we have discussed above will allow us to deal with
this high correlation
Another important part of the construction is the choice of ε, in fact, as the number
of data points tends to infinity, ε will tend to zero at a definite rate, more precisely,
we will choose ε to be essentially a negative power of n (the number of data points).
With these observations in mind, we can state the main theorem that asserts that
the columns of the matrix Uε defined above converge to a basis of the tangent space
TxΣ

d.
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Theorem 5.1 (See Theorem B.1 in [25]). Let {ξj}nj=1 be a uniformly distributed

sample of data points on the embedded submanifold Σd ⊂ RN and let us choose ε by

ε = εn = O(n−
6
d+2 ). There exists a N × d matrix Θ∞(x) whose columns are a basis

of F∗
(
TxΣ

d
)

and such that with high probability (w.h.p.)

min
U∈O(d)

‖UTUεn −Θ∞(x)‖HS = O(n−
3
d+2 ).

Remark 5.2. The estimate with high probability of Θ∞(x) by Uεn implies that Uεn
converges to Θ∞(x) almost surely.

In the next section we show how to use Theorem 5.1 to prove Theorem B.

5.2. Proof Of Theorem B. We start by observing that if one knows a tangent
vector η to Σ to a point x, then one can construct a test function such that the
iterated Carré du Champ applied to that function is precisely Ricx(η, η).

Proposition 5.3. Let F : Σd → RN be an embedding of Σ in RN and let f : RN → R
be given by f(z) = 〈z, η〉 where η ∈ RN is fixed. If g is the metric induced by the
embedding F : Σ→ RN and if we fix a point x ∈ Σ we obtain

Γ2(∆g, f, f)(x) = Ricx(η
T , ηT ) +

(
(η)⊥

)2 ‖IIΣ‖2
Σ,x,

where ηT and η⊥ are the orthogonal projections of η onto F∗ (TxΣ) and (F∗ (TxΣ))⊥ re-
spectively and IIΣ is the second fundamental form of Σ. In particular, if η ∈ F∗ (TxΣ)
we have

Γ2(∆g, f, f)(x) = Ricx(η, η).

Proof. For simplicity let us only prove the codimension 1 case. By (2.8) we have

Γ2(∆g, f, f)(x) = Ricx(∇Σf,∇Σf) +
∥∥∇2

Σf
∥∥2

Σ,x
.

Observe that (∇Σf)x is obtained by taking the projection of Df (ambient derivative)
onto F∗ (TxΣ) and therefore (∇Σf)x = ηT . Observe now that we have

∇2
Σf = D2f − (Df)⊥IIΣ = −(Df)⊥IIΣ.

The proposition follows. �

Next, we show how the approximate Ricci is constructed from the basis. For each of
the vectors ζj(x) determined by the PCA, consider the linear function

fn,j(z) = 〈z, ζj〉
and then define

(5.2) R̂i,j = Γ̂2(Ltn , fn,i, fn,j).

For any vector (in the tangent space, approximate tangent space, or neither) we can
define the approximate Ricci curvature of η by projecting η onto the vectors ζj and
summing the linear combination as follows. Projecting onto the approximate basis
and splitting the vector, let

η = ηA + η⊥ = ηjζj + η⊥
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and define

R̂ic(η, η) = R̂i,jη
iηj.

Proof of Theorem B. For a given vector η ∈ TxM define the function f(z) = 〈z, η〉 as
above. Let

η = ηA + η⊥

and define fA(z) = 〈z, ηA〉 and f⊥(z) = 〈z, η⊥〉 so that

(5.3) R̂icx(η, η) = Γ̂2(Ltn , f
A, fA).

Now we compute the difference of the actual Ricci and the approximate Ricci, using
Proposition 5.3, and (5.3)

Ricx(η, η)− R̂icx(η, η) = Γ2(∆g, f, f)− Γ̂2(Ltn , f
A, fA))(5.4)

= Γ2(∆g, f, f)− Γ2(∆g, f
A, fA)(5.5)

+ Γ2(∆g, f
A, fA)− Γ2(Ltn , f

A, fA)(5.6)

+ Γ2(Ltn , f
A, fA)− Γ̂2(Ltn , f

A, fA)(5.7)

Observe that clearly, all functions fA are in the class LM for some fixed M > 0 and
therefore∣∣∣(Γ̂2(Ltn , f

A, fA)− Γ2(Ltn , f
A, fA)

)∣∣∣ ≤ sup
f∈LM

sup
ξ∈Σ

∣∣∣Γ̂2(Ltn , f, f)(ξ)− Γ2(Ltn , f, f)(ξ)
∣∣∣ ,

and from Theorem C, with the given choice of scale tn, we have that∣∣∣Γ2(Ltn , f
A, fA)− Γ̂2(Ltn , f

A, fA)
∣∣∣ a.s.−→ 0.

Similarly, it follows from Theorem 3.2 that∣∣Γ2(∆g, f
A, fA)− Γ2(Ltn , f

A, fA)
∣∣ −→ 0.

Now certainly, as the PCA is choosing linear functions that recover the tangent space
with high probability in the limit, the linear functions fA converge with high proba-
bility uniformly in all orders to the function f on the manifold. It follows that the
term ∣∣Γ2(∆g, f, f)− Γ2(∆g, f

A, fA)
∣∣ a.s−→ 0.

Combining the above three limits we have∣∣∣Ricx(η, η)− R̂icx(η, η)
∣∣∣ a.s−→ 0.

�
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5.3. Dimension estimation. The problem of estimating the dimension of the un-
derlying submanifold assuming the manifold hypothesis is a fascinating subject in
itself and there is a large number of estimators for the intrinsic dimension in the
manifold learning problem that have been proposed in the literature. Some of the
early approaches for dimension estimation were based on PCA or also the applica-
tion of the Vapnik-Chervonenkis classes of sets of separating hyperplanes [31]. These
methods lose effectiveness when applied to relatively highly nonlinear problems or in
the presence of noise. There is a wide variety of methods that have been proposed in
order to overcome these difficulties, and many of them use of techniques in machine
learning that are nowadays well known, for example methods based on suitable max-
imum likelihood estimators applied to distances to the k Nearest Neighbors (kNN).
See for example [22, 21] where many of these ideas are discussed in detail. There are
also fractal-based methods, and methods based on the concept of ISOMAP, which
consists in estimating the distance of points nearby by the geodesic distance whenever
possible and, and estimating the distance between points that are far apart by means
of the shortest path in the graph that is used to approximate the submanifold. See
for example [5], [6] and [33] and the references therein. See also the discussion in [25,
page 1073], the references therein and [15].
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