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Legendrian curve shortening flow in R3

Gregory Drugan, Weiyong He, and Micah W. Warren

Motivated by Legendrian curve shortening flows in R3, we study
the curve shortening flow of figure-eight curves in the plane. We
show that, under some symmetry and curvature conditions, a figure-
eight curve will shrink to a point at the first singular time. We also
give a proof of short-time existence of Legendrian mean curvature
flow in Sasaki-Einstein manifolds.

1. Introduction

We show the following theorem.

Theorem 1. Suppose that γ : S1 → R2 is a smoothly immersed figure-eight
shape that encloses zero signed area, is symmetric about an interior axis, and
has exactly two inflection points. Then the curve shortening flow collapses
γ to a point at the first singular time.

This gives a partial answer to a conjecture of Grayson [12], which states
that all figure-eight curves with zero signed area should shrink to a point
under curve shortening flow. In particular, our main result provides a class
of curves that do in fact shrink to a point.

These figure-eight shapes arise naturally in the study of Legendrian curve
shortening flow, as defined by Smoczyk [18]. Combining this observation with
our main theorem, we obtain the following result.

Corollary 1. With the standard contact structure η = dz − ydx on R3,
there exists a class of embedded Legendrian curves γ : S1 → R3 such that a
Legendrian curve shortening flow shrinks γ to a point at the first singular
time.

The second author was partially supported by NSF Grants DMS-1005392, DMS-
1611797.

The third author was partially supported by NSF Grant DMS-1438359.

759



i
i

“4-Drugan” — 2018/8/29 — 22:52 — page 760 — #2 i
i

i
i

i
i

760 G. Drugan, W.-Y. He, and M. W. Warren

Because mean curvature flow does not preserve the Legendrian condition,
one has to modify the flow to obtain a flow of Legendrian immersions. A
natural approach is to put a metric on the space of Legendrian immersions
and find the negative gradient flow for the length functional (or the area
funtional, for higher dimensions). Lê [17] has suggested a gradient flow which
produces a fourth order equation. In the curve shortening case, this is the
curve diffusion flow, which has been studied in [9]. In [9], the authors show
that the lemniscate of Bernoulli shrinks to a point in finite time under the
gradient flow defined by Lê. There are two other natural candidates for
metrics. One metric produces a nonlinear system, which to our knowledge
has not been studied. The other is an indefinite metric, which measures the
deformation in the Legendrian normal direction. Curves of maximal slope
with respect to this metric (in the sense of [3]) are precisely the Legendrian
curve shortening flows. These are non-unique, but they do have the property
that they always project to curve shortening flow on the base space.

One of the motivations for this paper is the study of Legendrian mean
curvature flow in Sasaki-Einstein manifolds. Our work on the curve short-
ening flow is aimed at understanding Legendrian mean curvature flow in
Sasaki-Einstein maniflods, and in particular, Legendrian curve shortening
flow in the three sphere. Since the short time existence of Legendrian mean
curvature flow in Sasaki-Einstein manifolds was claimed without proof and
is of independent interest, we present a proof of this result in Section 5.

The proof of our main result, Theorem 1, is described heuristically as
follows. Under the symmetry condition, the curve shortening flow forces the
figure-eight to move towards an axis. Using volume and convexity consider-
ations, one can then carefully place symmetric grim reaper curves around
the figure-eight. Maximum principle arguments show that if the curve is not
collapsing fast enough, the grim reapers must be moving with enough speed
to push the curve to infinity, which is a contradiction. In fact, this argument
gives us a rate of collapse.

The paper is outlined as follows. In Section 2, we introduce Legendrian
curve shortening flow in R3 and establish a correspondence with the curve
shortening flow in R2. A consequence of this correspondence is the property
that a balanced figure-eight remains balanced under the curve shortening
flow. In Section 3, we study curve shortening flow in R2 for figure-eight
curves that enclose zero signed area and satisfy a symmetry condition. Here
we show that curve shortening flow collapses such a figure-eight to a point at
the first singular time, and we give a rate of collapse. The final two sections
of the paper deal with flows of Legendrian submanifolds. In Section 4, we
discuss the gradient flows associated to flows of Legendrian curves, and in
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Legendrian curve shortening flow in R3 761

Section 5 we sketch a new proof of the short time existence for Legendrian
mean curvature flow in Sasaki-Einstein manifolds when the initial Legen-
drian manifold has zero Maslov class.

2. Legendrian curve shortening flow

Consider the contact manifold R3 with coordinates (x, y, z) and contact
form: η = dz − ydx. Let g = dx⊗ dx+ dy ⊗ dy + η ⊗ η be the associated
Riemannian metric, and let ξ = ∂z denote the Reeb vector field.

We define the vector fields X = ∂x + y∂z, Y = ∂y, and Z = ∂z (Reeb
vector field), which form an orthonormal basis for R3 with respect to g. We
have the relations:

[X,Y ] = −Z, [X,Z] = [Y,Z] = 0.

In terms of the Levi-Civita connection ∇, we record the identities:

∇XX = ∇Y Y = ∇ZZ = 0, ∇XY = −∇YX = −Z/2,(1)

∇XZ = ∇ZX = Y/2, ∇Y Z = ∇ZY = −X/2.

Definition 1. A C1 regular curve γ : S1 → R3 is called Legendrian if

(2) γ∗(η) = 0.

If γ : S1 → R3 is a Legendrian curve with coordinate u:

γ(u) = (x(u), y(u), z(u)) ,

then condition (2) becomes

(3) zu − yxu = 0.

It follows that |γu|g =
√
x2
u + y2

u, and the unit tangent vector T = γu/|γu|g
is given by

T =
xuX + yuY√

x2
u + y2

u

.

Defining a vector field N along γ by

N =
−yuX + xuY√

x2
u + y2

u

,

we have an orthonormal basis {T,N, ξ|γ} for R3 along γ.
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Lemma 1.

∇TT = κN, where κ =
xuyuu − yuxuu
(x2
u + y2

u)3/2
.

Proof.

∇TT =

∂u

(
xu√
x2
u+y2u

)
X + ∂u

(
yu√
x2
u+y2u

)
Y√

x2
u + y2

u

+
xu∇TX + yu∇TY√

x2
u + y2

u

=
xuyuu − yuxuu
(x2
u + y2

u)3/2
N + 0

= κN,

where κ = xuyuu−yuxuu
(x2
u+y2u)3/2 and we have used the identities (1). �

Definition 2. For a Legendrian curve γ(u) : S1 → R3, we say that λ(u) :
S1 → S1 is a Legendrian angle function if

dλ

(
∂u√
x2
u + y2

u

)
= κ(γ(u))∂v,

where u and v are coordinates on S1.

It follows that if a Legendrian curve γ(u) : S1 → R3 satisfies∫
S1

κ
√
x2
u + y2

udu = 0,

then any Legendrian angle λ(u) can be lifted to a single-valued function,
which we use interchangeably with a corresponding real valued function
Im log λ(u).

Definition 3. A family of Legendrian curves γ(t, u) : I × S1 → R3 satis-
fying

∫
γ κ = 0 is a solution to the Legendrian curve shortening flow

if

(4) γt = κN + λξ|γ ,

where λ(t, u) is a family of (real, single-valued) Legendrian angle functions.

Now as we have not specified λ, we note that given an initial datum
γ0 : S1 → R3 there are many possible choices of Legendrian angle function.
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Legendrian curve shortening flow in R3 763

In fact, the family of curves γ(t, u)− (0, 0, f(t)) is a solution to the flow for
any choice of function f(t). If we would like to specify a unique flow, we
can simply insist that, say, z(t, 0) = z(0, 0). With this in mind, we say that
γ(t, u) : I × S1 → R3 is a solution to the normalized Legendrian curve
shortening flow if

γt = κN + λξ|γ ,(5)

z(t, 0) = z(0, 0).(6)

The following result provides a structure for flows of Legendrian curves.

Lemma 2. Suppose that γ0 : S1 → R3 is Legendrian and the family of
curves γ(t, u) : I × S1 → R3 satisfies

γt =
1

|γu|g
fuN + fξ|γ ,

with initial datum γ0. Then γ (t, ·) is Legendrian for all t ∈ I.

Proof. Let γ(t, u) = (x(t, u), y(t, u), z(t, u)) be a family of curves, and sup-
pose that the normal variation satisfies

γt = φN + fξ|γ .

Then

γt = φ

(
−yuX + xuY√

x2
u + y2

u

)
+ f∂z

= −φ yu√
x2
u + y2

u

∂x + φ
xu√
x2
u + y2

u

∂y +

(
f − φy yu√

x2
u + y2

u

)
∂z.

We compute

∂

∂t
γ∗(η) =

∂

∂t
(zu − yxu) =

∂

∂u

∂z

∂t
− ∂y

∂t

∂x

∂u
− y ∂

∂u

∂x

∂t
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=
∂

∂u

(
f − φy yu√

x2
u + y2

u

)
−

(
φ

xu√
x2
u + y2

u

)
∂x

∂u
+ y

∂

∂u

(
φ

yu√
x2
u + y2

u

)

=
∂

∂u
f − φ y2

u√
x2
u + y2

u

− y ∂
∂u

(
φ

yu√
x2
u + y2

u

)

− φ x2
u√

x2
u + y2

u

+ y
∂

∂u

(
φ

yu√
x2
u + y2

u

)
=

∂

∂u
f − φ

√
x2
u + y2

u.

Thus, the Legendrian condition is preserved if and only if

φ =
1

|γu|g
fu.

�

The following result shows how Legendrian curve shortening flow in R3

projects onto curve shortening flow in R2.

Proposition 1. Suppose that γ(t, u) : I × S1 → R3 is a solution to the Leg-
endrian curve shortening flow. Then the projection

γ̄(t, u) := (x(t, u), y(t, u))

is an immersed solution to the curve shortening flow in R2.

Proof. If γ is a solution to (4), then

(7) xt = κ
−yu√
x2
u + y2

u

, yt = κ
xu√
x2
u + y2

u

.

As κ is the expression for curvature in R2, this is precisely curve shortening
flow. �

With this observation, we have the following existence and uniqueness
result for (5)(6).

Theorem 2. Given a Legendrian curve γ0 : S1 → R3 such that κ0 is Hölder
continuous and

∫
γ0
κ0 =0, there exists a unique maximal solution γ : [0, tmax)

× S1 → R to the normalized Legendrian curve shortening flow starting at γ0,
which exists as long as a Hölder norm of κ(t) remains bounded. Moreover,
we have the following properties:
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Legendrian curve shortening flow in R3 765

(i.) The lifespan tmax of the solution is finite, and supu∈S1 |κ(γ(u, t))| be-
comes unbounded as t→ tmax.

(ii.) For t ∈ (0, tmax), the curve γ(t) is real analytic.

(iii.) As t→ tmax, the curves γ(t) converge uniformly to a continuous map
γ∗ : S1 → R3, which is a piecewise C1 curve with a finite number of
singular points. Away from these singular points, the limit curve γ∗ is
real analytic.

Proof. The proof of this theorem follows from identifying solutions to the
Legendrian curve shortening flow in R3 with solutions to the curve shorten-
ing flow in R2.

Let γ0 : S1 → R3 be a Legendrian curve with with coordinate u: γ0 =
(x0(u), y0(u), z0(u)) such that κ0 is Hölder continuous and

∫
γ0
κ0 = 0, where

κ0 =
(x0)u(y0)uu − (y0)u(x0)uu

((x0)2
u + (y0)2

u)3/2
.

Consider the projection of γ0 onto its first two coordinates:

γ̄0(u) = (x0(u), y0(u)),

where we use the bar notation to denote projection onto the first two coor-
dinates. The curvature vector of γ̄0(u) in R2 is given by

−→κ0 = κ0n,

where

n =
(−(y0)u, (x0)u)√

(x0)2
u + (y0)2

u

.

Setting γ̄ to be the unique maximal solution to the curve shortening flow
starting at γ̄0, it follows from Angenent [5] [7] that γ̄ has the properties (i.)-
(iii.) stated in the theorem (see Theorem C and pg 201 in [7]). To complete
the proof, we will show how this unique solution to the curve shortening flow
determines a unique solution to the normalized Legendrian curve shortening
flow that satisfies properties (i.)-(iii.).
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Differentiating the integral
∫
γ̄ κ with respect to t, we have

d

dt

∫ 2π

0
κ
√
x2
u + y2

udu

=

∫ 2π

0

[(
κ3 +

∂2κ

∂s2

)√
x2
u + y2

u + κ
(
−κ2

√
x2
u + y2

u

)]
du

=

∫ 2π

0

∂2κ

∂s2

√
x2
u + y2

u du

=

∫ 2π

0

∂

∂u

(
∂κ

∂s

)
du = 0,

where s denotes the arclength parameter. Since, the initial integral
∫
γ̄0
κ0

was assumed to be zero, we see that
∫
γ̄ κ = 0 for all t ≥ 0.

We observe that (7) implies

(yxu)t = (yxt)u + ytxu − yuxt(8)

= (yxt)u + κ
√
x2
u + y2

u.

Differentiating the integral for enclosed signed area A = −
∫ 2π

0 yxudu, we
have

d

dt
A = −

∫ 2π

0
(yxu)t du

= −
∫ 2π

0

(
(yxt)u + κ

√
x2
u + y2

u

)
du

= −yxt
∣∣2π
u=0
−
∫ 2π

0
κ
√
x2
u + y2

u du = 0,

where we used (8) in the second equality. Therefore, the enclosed signed area
A is constant under the flow. Furthermore, since γ0 is Legendrian, we have
y0(x0)u = (z0)u, and it follows that

A = −
∫ 2π

0
y0(x0)udu = −

∫ 2π

0
(z0)udu = 0.

Thus, each curve γ̄(t) encloses zero signed area.
For t ≥ 0, we define a height function h(t, u) by

(9) h(t, u) = z0(0) +

∫ u

0
y(t, w)xw(t, w)dw.
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By the previous paragraph, each curve γ̄ encloses zero signed area, so h(t)
is a 2π-periodic function in the variable u. In addition, since γ̄(t) is real
analytic and converges to a piecewise C1 curve as t→ tmax, we deduce that
h(t) is real analytic and converges to a piecewise C1 function as t→ tmax.
Using (8), we have

(10) ht = y(t, u)xt(t, u)− y(t, 0)xt(t, 0) +

∫ u

0
κ
√
x2
w + y2

wdw.

We also note that

h(0, u) = z0(u),(11)

h(t, 0) = h(0, 0),(12)

hu(t, u) = y(t, u)xu(t, u).(13)

To see the existence part of the theorem, define a family of curves γ :
[0, tmax)× S1 → R3 by

(14) γ(t, u) = (γ̄(t, u), h(t, u)) .

It follows from (11)–(13) that

γ(0, u) = γ0(u),

z(t, 0) = z(0, 0),

zu(t, u) = y(t, u)xu(t, u).

Hence γ(t, u) is a family of Legendrian curves with initial datum γ0 and
normalization z(t, 0) = z(0, 0).

Using (10) and the assumption that γ̄ is a solution to the curve short-
ening flow, we have

γt =

(
κ

−yu√
x2
w + y2

w

, κ
xu√

x2
w + y2

w

, y(t, u)xt(t, u)

)
(15)

+

(
0, 0, −y(t, 0)xt(t, 0) +

∫ u

0
κ
√
x2
w + y2

wdw

)
.

Introducing a family of Legendrian angle functions

(16) λ(t, u) = −y(t, 0)xt(t, 0) +

∫ u

0
κ
√
x2
w + y2

wdw
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and using (15) and (7), we compute

γt = κN + λξ|γ .

Thus, the family of curves γ(t, u) defined in (14) is a solution to the nor-
malized Legendrian curve shortening flow starting at γ0 with the properties
stated in the theorem.

To see that the solution is unique, notice that x(t, u) and y(t, u) are
unique since the projection γ̄(t, u) is a solution to the curve shortening
flow. The uniqueness of z(t, u) follows from the equation zu = yxu and the
normalization z(t, 0) = z(0, 0). �

The proof of this theorem shows there is a correspondence between so-
lutions to the Legendrian curve shortening flow in R3 with

∫
γ κ = 0 and

solutions to the curve shortening flow in R2 with zero winding number that
enclose zero signed area.

3. Curve shortening flow in R2 for balanced figure-eights

Let γ : [0, tmax)× S1 → R2 be a solution to the curve shortening flow:

γt = −→κ .

We assume that the initial curve γ0(u) = γ(0, u) has the following properties:

(I.) The curve γ0 has winding number zero:
∫
γ0
κ0 = 0.

(II.) The curve γ0 encloses zero signed area: −
∫ 2π

0 yxudu = 0.

(III.) The curve γ0 has exactly one self-intersection.

Definition 4. A closed, plane curve is called a balanced figure-eight if
it satisfies properties (I.)-(III.) above.

The proof of Theorem 2 shows that the first two of these properties
are preserved together under the curve shortening flow. Angenent [6] [4]
showed that the number of self-intersections is non-increasing under the
curve shortening flow. For a closed plane curve to satisfy the first property,
it must have at least one self-intersection. Thus, all three properties are
preserved together under the curve shortening flow, and a balanced figure-
eight remains a balanced figure-eight until its curvature becomes unbounded
at time t = tmax.

Let |A| denote the total area enclosed by the curve.
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Lemma 3. [12, Lemma 2] For a balanced figure-eight under the curve short-
ening flow,

−4π ≤ d|A|
dt
≤ −2π.

Proof. The lemma follows from the equation

d

dt
|A| = −2π − twice the interior angle at the point of self-intersection.

�

Lemma 4. For a balanced figure-eight under the curve shortening flow,

lim
t→tmax

|A| = 0.

Proof. This statement has been observed in [13, Lemma 3] and [7, pg 205].
We give a quick heuristic. Since |A| is decreasing and the total signed area is
zero, we know that either both loops collapse to zero area at tmax, or there
they both have a positive lower bound on area as the curve becomes singular.
By Theorem 2 the limiting curve consists of crossing points, analytic non-
crossing points, and singular points. If the area is not collapsing, there will
be plenty of analytic non-crossing points in the limit. It follows that for a
small time before the singular time, one can run curve shortening flow on an
embedded arc ending at two smooth non-crossing points that develops an
interior singularity. Blowing up at the singularity, we cannot obtain a self-
shrinker, but instead obtain a grim reaper in the limit, following the work of
Abresch-Langer [1] and Altschuler [2]. On the reaper, the ratio between the
extrinsic and intrinsic distances becomes arbitrary small. Since the curve
is smooth at its boundary, this contradicts the maximum principle for the
distance ratio on arcs given by Huisken [16, Theorem 2.1]. �

It is unknown if the curve shortening flow shrinks a balanced figure-eight
to a point. Grayson [12] conjectured that all should.

3.1. Figure-eights with two symmetries

We first observe that a figure-eight shape that has symmetries about both an
interior and exterior axis at a crossing point must collapse to a point. This
is a consequence of the following observations of Grayson [11, Lemma 5.2]
and Angenent [7, remark on pg 200].
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Lemma 5. The limit of a figure-eight curve at singular time is contained
in the closure of the set of (presingular time) crossing points.

Proof. Suppose to the contrary that there is some smooth piece of curve
with positive length that is not in the limit of the crossing points. Since
this must be the limit of two smooth curves, we can write both curves as
a graph over a tangent plane at the smooth piece, for time very near the
singular times. Both pieces converge smoothly and meet at this point, but
this violates the strong maximum principle. �

The next corollary is immediate.

Corollary 2. Any balanced figure-eight whose crossing point remains fixed
under the curve shortening flow must shrink to a point.

In particular, if a figure-eight is symmetric with respect to reflections
about the x-axis and the y-axis, then it shrinks to a point under the curve
shortening flow.

3.2. Figure-eights with one symmetry

We impose two conditions on balanced figure-eights:

(1.) The curve has two inflection points. That is, the curvature vanishes
only twice.

(2.) The curve is symmetric across an interior axis. That is, the line that
bisects the intersection on the inside of the curve is an axis of symme-
try.

We observe that both of these conditions are preserved: That the first condi-
tion is preserved is found in [4]. The second condition is preserved by symme-
try along with the observation that curve shortening flow in R2 is unaffected
by reflections and translations. In fact, this interior axis of symmetry is fixed
under the flow, and this forces the crossing point of the figure-eight to be
located along this fixed line.

Before proving the main result, we give a proposition.

Proposition 2. Suppose a closed curve evolves by curve shortening flow
on the time interval [−τ0/2, 0] and at time −τ0/2 the curve is contained in
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the rectangle

R = (−∞, 0]× [−C0τ0, C0τ0].

Then the curve shortening flow moves the curve to the left a distance of

1

4C0
+ 2C0τ0 log cos

(
1

2

)
.

Proof. Suppose at some fixed time −τ0/2 the curve is contained in the
rectangle

R = (−∞, 0]× [−C0τ0, C0τ0],

where C0 > 0 is a fixed positive constant. Without loss of generality, we
may assume the rightmost points on the curve have x-coordinate equal to
0. Consider the grim reaper G defined by

G(t, y) = −2C0τ0 log cos

(
1

2

)
+ 2C0τ0 log cos

(
y

2C0τ0

)
− 1

2C0τ0
(t+ τ0/2).

Then, the rectangle R is contained inside the region bounded by the graph
of G(−τ0/2, ·). Applying the maximum principle to the grim reaper and the
figure-eight, we conclude that the figure-eight must still be inside the grim
reaper at time t = 0 (recall the flow is defined for −τ/2 ≤ t ≤ 0). At t = 0,
we have

G(0, y) ≤ G(0, 0) = G(−τ/2, 0)− 1

4C0
,

so that the grim reaper pushes in (to the left) by 1/(4C0). If τ0 can be chosen
small relative to C0 and 1/C0, then the grim reaper will push past 0 by the
amount

G(0, y) ≤ −2C0τ0 log cos

(
1

2

)
− 1

4C0
.

�

Next, we deal with an intermediate case.

Proposition 3. Let θ be the angle that the tangent to the curve makes
with the x-axis. Suppose that, in addition to (1.) and (2.) above, a balanced
figure-eight satisfies

(17) osc θ ≤ 2π − ε,

for some ε > 0. Then the curve shrinks to a point under curve shortening
flow.
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Proof. First, we observe that osc θ is strictly decreasing under the flow. This
follows from arguments in [12, Lemma 5], applied at both the maximum and
minimum of θ. Thus, (17) implies that the change in θ at the crossing point
is bounded above by 2π − ε. In fact, (17) implies that the curve is contained
in conical regions on either side of the crossing point.

We assume here and in the sequel that the x-axis is the interior axis
across which the curve is symmetric. Then the observations in the previous
paragraph show that the y-oscillation maxu,v |y(t, u)− y(t, v)| must decay
with the x-oscillation maxu,v |x(t, u)− x(t, v)|.

Now consider the curve shortening flow of a balanced figure-eight, satis-
fying conditions (1.) and (2.) above, that is area collapsing at t = tmax. Let
τ = tmax − t. Then

(18) πτ ≤ Ai(t) ≤ 2πτ, i = 1, 2,

where A1(t) and A2(t) are the areas of the two loops of the figure-eight at
time t.

At a given time, position the curve so that the crossing is at the origin,
the axis of symmetry is the x-axis, and the loop with the largest projection
onto the x-axis opens to the right. Our first goal is to show that one loop
contains a large convex piece. Let ` denote the length of the projection onto
the x-axis. Note that by the angle condition, the region enlosed by the loop
opening to the right must be completely contained in the right-hand plane.
We deal with three cases:

(a.) Both inflection points lie at or to the left of the origin: In this case, the
region to the right of the origin is convex. This region has projection
onto the x-axis of length at least `/2.

(b.) Both inflection points lie to the right of the origin, but with x-coor-
dinate less than `/4: In this case, we still have a large portion of the
right region that is convex. In fact, the projection of this convex region
onto the x-axis has length at least `/4.

(c.) Both inflection points lie to the right of the origin, but with x-coor-
dinate at least `/4: For this case, the left region is convex. We claim
it must also have projection onto the x-axis of length at least `/4. If
not, then we will be able to reflect it across the y-axis and it will lie
strictly inside of the right region. This violates the second balancing
condition (II.).
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Notice that by the symmetry assumptions on the figure-eight, the two in-
flection points have the same x-coordinate, so these cases are the only possi-
bilites. Furthermore, in each of the above cases, we have a convex subregion
that projects onto the x-axis with length at least `/4.

Next, translate and reflect if necessary, so that the tip of the loop in
question is at the origin. We claim that the loop in question is contained
inside the rectangle

R = (−∞, 0]×
[
−8πτ

`
,
8πτ

`

]
.

To see this, suppose the maximum y-coordinate of the loop in question is
h. Then, the area inside of this loop must be at least h`/4. But the area is
bounded above by 2πτ , so we have

h ≤ 8πτ

`
.

Now, run curve shortening flow forward in time τ/2, comparing to the
grim reaper in the previous proposition. Observe that the maximum princi-
ple prohibits the reaper from making an interior touching on the right side of
the figure-eight. The reaper will not touch the crossing point on the x-axis,
so we need not fret if the left portion of the curve is not contained in the
rectangle. The argument above tells us the curve must translate to the left
by

(19)
`

32π
+

16π

`
τ log cos

(
1

2

)
.

It follows that the length of the projection of the curve has decreased by (19)
in half of the time to extinction.

Now, repeat this argument, proceeding half of the time to extinction. If
` ≥ δ, for some fixed δ > 0, then for small values of τ the quantity (19) will be
bounded below by a fixed positive value, say `/(64π). Repeated applications
of the argument as τ → 0 leads to an arbitrarily large number of length
reductions of size at least `/(64π), which is a contradiction. Thus, `→ 0.

Finally, since the y-oscillation decays with the x-oscillation, we conclude
that the curve shrinks to a point. �

Corollary 3. Suppose at any point in time, a balanced figure-eight curve
satisfying (1.) and (2.) has a double inflection point. Then the curve must
shrink to a point.
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Proof. Because there are no other inflection points, it follows that both
sides are convex. Now, the crossing angle can be no more than 2π, so by
[12, Lemma 5], the oscillation will be strictly less than 2π after a short time.
Convergence follows from the previous proposition. �

Now, we are ready to prove the main theorem.

Proof of Theorem 1. If there is a double inflection point, we are done. So,
we assume that the curvature at the crossing point has a sign. It follows
that one region, (without loss of generality, the left one) must be convex.
Now, let the curve shortening flow run without repositioning the crossing
point. As long as the curvature remains nonzero at the crossing point, the
crossing point will move to the left. Since the crossing points are moving
monotonically to the left inside a bounded region, they converge to a unique
limit point, and it follows from Lemma 5 that the entire curve shrinks to a
point. �

We can refine the reaper argument slightly to get a rate of convergence.

Theorem 3. Suppose that, in addition to (1.) and (2.) above, a balanced
figure-eight satisfies the oscillation bound (17). Then there is an α0 > 0 such
that

(20) lim sup
τ→0

`(τ)

τα
≤ 1,

for all α < α0.

Proof. Recall that ` is the length of the the projection on the x-axis and τ
is the time remaining until the area collapses. It follows from the maximum
principle that `(τ) is monotone. We assume that the flow is defined on [T0, 0],
for some negative number T0.

Step 1. Oscillation decay based on the grim reaper argument. At any
τ we may run the flow for time τ/2 and the length will have decreased by
`

32π + 16π
` τ log cos(1

2). We write

`

32π
+

16π

`
τ log cos

(
1

2

)
= `

(
1

32π
+ 16π log cos

(
1

2

)
τ

`2

)
= `

(
c1 − c2

τ

`2

)
,
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so that

(21) `(τ/2) ≤
[
1− c1 + c2

τ

`(τ)2

]
`(τ),

where c1 = 1
32π and c2 = 16π log cos(1

2).

Step 2. For small ε > 0, there exists τ0 > 0 such that `(τ0) ≤ 1. With-
out loss of generality, we may assume that `(T0) > 1. We also assume ε ∈
(0,−T0) is chosen small enough that

η := 1− c1 + c2ε < 1.

Then, we let

τ0 =
ε

2k0

k0 =

⌈
− log `(T0)

log η

⌉
.

We can check that

`(τ0) ≤ 1.

Assume not, then `(τ) ≥ 1 for all τ ∈ [τ0, ε] and

ε ≥ ε

`2(τ)
≥ τ

`2(τ)
.

So, we may repeatedly apply the decay estimate from Step 1 to conclude
that

`
( ε

2k0

)
≤ ηk0`(ε),

Thus,

`(τ0) ≤ ηd
− log `(T0)

log η
e`(ε) ≤ `(ε)

`(T0)
≤ 1,

which contradicts our assumption that this estimate failed.
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Step 3. Next we use induction to prove

`
( τ0

2k

)
≤ ηk.

The first step, k = 0 is Step 2. Now suppose that this fails for the first time
at k, that is

`
( τ0

2k−1

)
≤ ηk−1

while

(22) `
( τ0

2k

)
> ηk.

Necessarily,

`
( τ0

2k

)
> η`

( τ0

2k−1

)
,

which, using (21), implies that

τ0/2
k−1

`2( τ0
2k−1 )

> ε.

Then

`
( τ0

2k−1

)
<

√
τ0

ε2k−1
=

(
1√
2

)k0+k−1

≤
(

1√
2

)k
,

where we used τ0 = ε/2k0 and k0 ≥ 1. However,

`
( τ0

2k

)
≤ `

( τ0

2k−1

)
<

(
1√
2

)k
,

which contradicts (22) since η = 1− c1 + εc2 > 1− 1
32π > 1/

√
2.

Step 4. If

α < α0 =
− log(1− c1)

log 2
,

then

lim sup
τ→0

`(τ)

τα
≤ 1.

To see this, first choose δ > 0 so that α+ δ < α0. Then, choose ε > 0
small enough that

α+ δ <
− log η

log 2
.
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Now, for small τ > 0, choose k such that

τ ∈
(

1

2k+1
τ0,

1

2k
τ0

]
.

Then

`(τ) ≤ ηk <
(

1

2k

)α+δ

≤
(

2τ

τ0

)α+δ

=

(
2α+δ

τα+δ
0

τ δ

)
τα.

In particular, when τ is sufficiently small, we have

2α+δ

τα+δ
0

τ δ ≤ 1,

and it follows that

`(τ) ≤ τα.
Therefore,

lim sup
τ→0

`(τ)

τα
≤ 1.

Finally, we note that

α0 =
− log(1− c1)

log 2
=
− log(1− 1

32π )

log 2
≈ 0.01442 3.

�

4. Gradient flows associated with flows of Legendrian curves

In this section, we discuss three different gradient flows associated with
flows of Legendrian curves. Given a Legendrian immersion γ as above, we
can consider a normal variation of Legendrian immersions

Γ(u, t) : S1 × (−ε, ε)→ R3,

Γ(u, 0) = γ(u).

The normal variation field can be written as

dΓ

dt
(u, 0) = φ(u)N(u) + f(u)ξ(u),

and the calculation in Lemma 2 shows that this is a variarion of Legendrian
immersions if and only if

φ =
1

|γu|g
fu.
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If we consider the manifold of C1 Legendrian immersions near a given
γ, it follows that the tangent space can be parameterized by the set of C1

functions f to which we associate the normal variation fields

V =
1

|γu|g
fu(u)N(u) + f(u)ξ(u).

Note that the length functional

L =

∫ √
x2
u + y2

udu

has differential

dL(f) = −
∫
κfudu = −

∫
S1

κfs,

where s is the arclength parameter. Now, there are three distinct ways to put
a metric on this space and produce a gradient flow. One possibility, which

is explored in [17], is to use the
(
L2,
√
x2
u + y2

udu
)

metric on the functions

f , i.e.

〈f, h〉 =

∫
f(u)h(u)

√
x2
u + y2

udu.

The negative gradient flow of the length functional with respect to this
metric, leads to a fourth order equation as follows, see [17]. The gradient of
L is a function ζ ∈ L2 such that

〈ζ, f〉 = dL(f).

That is, ∫
S1

ζf = −
∫
S1

κfs.

Integrating by parts, we see that∫
S1

ζf =

∫
S1

κsf

or

ζ = κs.

Now, in the Legendrian normal direction, the curve is evolving with speed

−ζs = −κss,
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so the evolution equation for κ can be computed using the standard formula
in [15, Cor 3.5] [14]

d

dt
κ = ∆g(−ζs) + κ2(−ζs)

= −∆2
gκ− κ2∆gκ.

A second possibility is to consider the full L2 metric measuring the
deformation, i.e

〈f, h〉 =

∫
S1

(fh+ fshs) .

This defines a different sort of gradient flow equation. We require that∫
S1

fζ + fsζs = −
∫
S1

κfs,

which leads to the system

ζ − ζss = κs,

d

dt
κ = −∆gζs − κ2ζs.

Finally, if one considers the L2 metric, which only measures the defor-
mation in the Legendrian normal direction, then

〈f, h〉 =

∫
S1

fshs.

Notice that this metric is indefinite in the sense that the constant func-
tions are null vectors. Computing the negative gradient flow for the length
functional with respect to this metric, we arrive at the relation

ζs = −κ

and the evolution equation for curve shortening flow

d

dt
κ = ∆gκ+ κ3.

We remark that while the metric may seem contrived to produce mean
curvature flow on the base space, this metric is often studied and is very
natural in the setting of Sasaki manifolds.
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5. Legendrian mean curvature flow

In this section we outline a proof of the short time existence for Legendrian
mean curvature flow in Sasaki-Einstein manifolds in the case where the
initial Legendrian manifold has zero Maslov class. Quoting standard PDE
theory, Smoczyk has claimed a proof of the short time existence for the flow
in Sasaki pseudo-Einstein manifolds, see [18, Remark 3.6]. Here we present
a different proof by reducing the flow to a second order scalar problem and
applying results of Behrndt [8, Sections 5.3–5.4].

Let (S, g) be a Sasaki manifold of dimension (2n+ 1). By definition, its
metric cone (X0

∼= R+ × S, dr2 + r2g) is a Kähler manifold with a compati-
ble complex structure J . We use the notation X = X0 ∪ {r = 0} to denote
the cone with the vertex, and we let gX = dr2 + r2g denote the cone metric
and ωX the Kähler form. We also identify S with the hypersurface {r = 1}
in X0.

In terms of the homothetic vector field r∂r, the Reeb vector field ξ is
defined to be

ξ = J (r∂r) .

Note that r∂r and ξ are both real holomorphic, and ξ is Killing. The dual
1-form of ξ is denoted by η, so that

η = r−2gX(ξ, ·) = J

(
dr

r

)
.

When restricted to S, the 1-form η defines a contact structure. When the
Sasaki structure (S, g) is restricted to the contact subbundle Ker(η), it in-
herits a transverse Kähler structure via

g = gT + η ⊗ η.

The transverse Kähler form is given by

ωT =
1

2
dη.

The metric cone (X, gX , J) is called a Calabi-Yau cone if there exists a
holomorphic (n+1,0)-form Ω on X0 such that

(23)
ωn+1
X

(n+ 1)!
= (i/2)n+1(−1)n(n+1)/2Ω ∧ Ω̄.
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Note that this condition implies that gX has zero Ricci curvature and (S, g)
is a Sasaki-Einstein manifold with Ric = 2ng. Also, since ωX is homogeneous
degree 2 under the vector field r∂r, the holomorphic form Ω is homogeneous
degree (n+ 1).

From now on, we fix a Calabi-Yau cone (X, gX , J) and the corresponding
Sasaki-Einstein manifold (S, ξ, η, g). We also fix a holomorphic (n+ 1, 0)-
form Ω satisfying (23). Given a submanifold L of S, we consider the subcone
Y of X with Y0

∼= R+ × L. By definition L is a Legendrian submanifold of
S if η = 0 on L. We have the following correspondence between Legendrian
submanifolds in S and Lagrangian subcones in X:

L ⊂ S is Legendrian if and only if Y0 ⊂ X0 is Lagrangian.

Now, suppose Y is a Lagrangian subcone of X and L is the corresponding
Legendrian submanifold of S. The Calabi-Yau condition (23) implies that

(24) Ω|Y0
= eiλdvol,

where λ : Y0 → S1 ∼= R/Z is an S1 valued function, called the Lagrangian
angle. Since Ω|Y0

and dvol are both homogeneous degree (n+ 1), the La-
grangian angle λ is independent of r, and we can then view it as an S1 valued
function on L, which we call the Legendrian angle λ : L→ S1. In particular,
[dλ] defines a cohomology class in H1(Y0,R) ∼= H1(L,R) called the Maslov
class. We note that the Legendrian angle depends on the choice of Ω.

For a Lagrangian subcone, the relation between the mean curvature
vector of Y0 and the Lagrangian angle λ is given by HY0

= J∇λ. In the
Calabi-Yau cone X0, the mean curvature vector HY0

of the Lagrangian sub-
manifold Y0 when r = 1 is the same as the mean curvature vector HL of the
Legendrian submanifold L in S. In particular, HY0

is perpendicular to r∂r.
It follows from the identity HY0

= J∇λ that dλ(ξ) = 0.
When the Maslov class [dλ] is zero, the Legendrian angle λ lifts to a

well-defined R-valued function, which we also denote by λ. In this case, we
can define the following flow of Legendrian submanifolds.

Definition 5. Let Ft : L→ S be a family of Legendrian submanifolds, and
suppose that the Maslov classes [dλt] are zero. We say that Ft : L→ S is a
solution to Legendrian mean curvature flow if

(25)

(
∂Ft
∂t

)⊥
= Ht + 2λtξ.
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To reduce the short time existence of this flow to a second order scalar
equation, we first need a Legendrian neighborhood theorem, see [10, Sec-
tion 2.5].

Theorem 4. Let (M,η) be a (2n+ 1) dimensional contact manifold, and
let L be a Legendrian submanifold, i.e. dim L = n and η|TL ≡ 0. Then there
is a neighborhood U of L in M and a diffeomorphism

Ψ : R× T ∗L→ U

so that Ψ∗η = η0 := ds+ β0, where s is the coordinate in R and β0 is the
canonical 1-form on T ∗L.

This theorem is stated for an embedded Legendrian submanifold, but
there is also a version for immersions (the only difference is that we only
require Ψ to be an immersion instead of a diffeomorphism). Given the
Legendrian neighborhood theorem, we define a map I : L→ R× T ∗L by
I(x) = (f(x), x, β(x)).

Proposition 4. (Ψ ◦ I)(L) is Legendrian if and only if df + β = 0.

Proof. Using the Legendrian neighborhood in Theorem 4, the restriction of
η to T (Ψ ◦ I)(L) is given by

η|T (Ψ◦I)(L) = df + β.

�

Given a family of functions ft : L→ R, if we define the embeddings
Ift : L→ R× T ∗L by Ift(x) = (ft(x), x,−dft(x)), then it follows from the
previous proposition that Ft = Ψ ◦ Ift is a family of Legendrian submanifolds
of S. Conversely, if Ft is a family of Legendrian submanifolds, then modulo
diffeomorphisms of L, for a short time, the family Ft is induced by a family
of functions ft via the embeddings Ift : L→ R× T ∗L.

Now, given a smooth family of functions ft : L→ R, we can use the
Legendrian Neighborhood Theorem, equation (24), and the fact that the
Lagrangian angle is independent of r, to choose a smooth family of S1-
valued Legendrian angles λt for the Legendrian submanifolds Ft = Ψ ◦ Ift .
The well-posedness of (25) is due to the following fact as in [18, Lemma 3.2
and Corollary 3.3].

Proposition 5 (Smoczyk [18] ). Suppose Ft : L→ S is a family of Leg-
endrian submanifolds induced by a family of functions ft. If the Maslov class
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of [dλt] is zero at t = 0, then Ft has zero Maslov class, for any t > 0, and
the Legendrian angles λt are well-defined R-valued functions.

With this preparation, we can define a curvature flow induced by the
functions ft, which is equivalent to (25).

Proposition 6. Suppose ft is a family of functions satisfying

(26)
∂ft
∂t

= 2λt(Ψ ◦ Ift),

then Ft = Ψ ◦ Ift satisfies the curvature flow (25).

Proof. We note that by Proposition 5, if the initial data F0 has zero Maslov
class, then so does Ft, for any t > 0. Hence, in this case, the Legendrian
angle λt is a well-defined R-valued function and (26) is well-posed.

Assuming we have a short time smooth solution to (26), we need to
show that Ft satisfies (25). Since we know that the Legendrian condition is
preserved by such a deformation, it follows from [18, Lemma 3.1] that we only
need to show that ∂tFt has the right component along ξ, namely η(∂tFt) =
2λt. By a direct computation, we have ∂tIf = (∂tf, 0,−∂tdft). Since Ψ∗η =
ds+ β0, it follows that

η(∂tFt) = η(∂t(Ψ ◦ If )) = Ψ∗(η)(∂tIf ) = ∂tft = 2λt.

�

Theorem 5. Let F0 : L→ S be a compact Legendrian submanifold with
zero Maslov class in a Sasaki-Einstein manifold S. Then there exists T > 0
and a family Ft, t ∈ [0, T ), of Legendrian submanifolds that solves (25) with
initial condition F0.

Proof. The family of Legendrian submanifolds (ft(x), x,−dft(x)) in R× T ∗L
with contact form η0 = ds+ β0 projects onto a family of Lagrangian sub-
manifolds Φft(x) = (x,−dft(x)) in T ∗L with Kähler form dβ0. Here the Leg-
endrian angle λt, corresponding to Ψ ◦ Ift , is the same as the Lagrangian
angle Λt, corresponding to Φft ; namely,

Λt(Φt) = λt(Ψ ◦ Ift).

In this way, the short time existence follows from applying the results of
Behrndt [8, Sections 5.3–5.4] directly to the second order scalar equation
∂
∂tft = 2Λt(Φft), with initial condition f |t=0 = 0. �
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