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Abstract. We consider the Hamiltonian stationary equation for
all phases in dimension two. We show that solutions that are C1,1

will be smooth and we also derive a C2,α estimate for it.

1. Introduction

In this paper, we study the regularity of the Lagrangian Hamiltonian
stationary equation, which is a fourth order nonlinear PDE. Consider
the function u : B1 → R where B1 is the unit ball in R2. The gradient
graph of u, given by {(x,Du(x))|x ∈ B1} is a Lagrangian submanifold
of the complex Euclidean space. The function θ is called the Lagrangian
phase for the gradient graph and is defined by

θ = F (D2u) = Im log det(I + iD2u)

or equivalently,

(1.1) θ =
∑
i

arctan(λi)

where λi represents the eigenvalues of the Hessian.
The non-homogeneous special Lagrangian equation is given by the

following second order nonlinear equation

(1.2) F (D2u) = f(x).

The Hamiltonian stationary equation is given by the following fourth
order nonlinear PDE

(1.3) ∆gθ = 0

where ∆g is the Laplace-Beltrami operator, given by:

∆g =
2∑

i,j=1

∂i(
√
detggij∂j)√
detg
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and g is the induced Riemannian metric from the Euclidean metric on
R4, which can be written as

g = I + (D2u)2.

Recently, Chen and Warren [CW19] proved that in any dimension,
a C1,1 solution of the Hamiltonian stationary equation will be smooth
with uniform estimates of all orders if the phase θ ≥ δ + (n − 2)π/2,
or, if the bound on the Hessian is small. In the two dimensional case,
using [CW19]’s result, we get uniform estimates for u when |θ| ≥ δ > 0
(by symmetry). In this paper, we consider the Hamiltonian stationary
equation for all phases in dimension two without imposing a smallness
condition on the Hessian or on the range of θ, and we derive uniform
estimates for u, in terms of the C1,1 bound which we denote by Λ.
We write ||u||C1,1(B1) = ||Du||C0,1(B1) = Λ. Our main results are the
following:

Theorem 1.1. Suppose that u ∈ C1,1(B1) and satisfies (1.3) on B1 ⊂
R2 where θ ∈ W 1,2(B1). Then u is a smooth function with interior
Hölder estimates of all orders, based on the C1,1 bound of u.

Theorem 1.2. Suppose that u ∈ C1,1(B1) and satisfies (1.2) on B1 ⊂
R2. If f ∈ Cα(B1), then there exists R = R(2,Λ, α) < 1 such that
u ∈ C2,α(BR) and satisfies the following estimate

(1.4) |D2u|Cα(BR) ≤ C1(||u||L∞(B1),Λ, |f |Cα(B1)).

To be clear, for any given function u we denote

(1.5) θ(x) = F (D2u(x))

so that for solutions of (1.2) we always have

(1.6) θ(x) ≡ f(x).

Our proof of Theorem 1.1 goes as follows: We start by applying the De
Giorgi-Nash theorem to the uniformly elliptic Hamiltonian stationary
equation (1.3) on B1 to prove that θ ∈ Cα(B1/2). Next we consider
the non-homogeneous special Lagrangian equation (1.2) where θ ∈
Cα(B1/2). Using a rotation of Yuan [Yua02] we rotate the gradient
graph so that the new phase θ̄ of the rotated gradient graph satisfies∣∣θ̄∣∣ ≥ δ > 0. Now we apply [CC03] to the new potential ū of the ro-
tated graph to obtain a C2,α interior estimate for it. On rotating back
the rotated gradient graph to our original gradient graph, we see that
our potential u turns out to be C2,α as well. A computation involving
change of co-ordinates gives us the corresponding C2,α estimate, shown
in (1.4). Once we have a C2,α solution of (1.3), smoothness follows by
[CW19, Corollary 5.1].
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In two dimensions, solutions to the second order special Lagrangian
equation

F (D2u) = C

enjoy full regularity estimates in terms of the potential u [WY09]. For
higher dimensions, such estimates fail [WY13] for θ = C with |C| <
(n− 2)π/2.

2. Proof of theorems:

We first prove Theorem 1.2, followed by the proof of Theorem 1.1.
We prove Theorem 1.2 using the following lemma. Recalling (1.5, 1.6)
we state the following lemma:

Lemma 2.1. Suppose that u ∈ C1,1(B1) satisfies (1.2) on B1 ⊂ R2.
Suppose

(2.1) 0 ≤ θ(0) < (π/2− arctan Λ)/4.

If θ ∈ C ᾱ(B1), then there exists 0 < α < ᾱ and C0 such that

|D2u(x)−D2u(0)| ≤ C0(||u||L∞(B1),Λ, |θ|Cα(B1)) ∗ |x|α.

Proof. Consider the gradient graph {(x,Du(x))|x ∈ B1} where u has
the following Hessian bound

−ΛIn ≤ D2u ≤ ΛIn

a.e. where it exists.
Define δ as

(2.2) δ = (π/2− arctan Λ)/2 > 0.

Since by (2.1) we have 0 ≤ θ(0) < δ/2, there exists R′(δ, |θ|Cᾱ) > 0
such that

|θ(x)− θ(0)| < δ/2

for all x ∈ BR′ ⊆ B1. This implies for every x in BR′ for which D2u
exists, we have

δ > θ > θ(0)− δ/2.
So now we rotate the gradient graph {(x,Du(x))|x ∈ BR′} downward
by an angle of δ.

Let the new rotated co-ordinate system be denoted by (x̄, ȳ) where

x̄ = cos(δ)x+ sin(δ)Du(x)(2.3)

ȳ = − sin(δ)x+ cos(δ)Du(x).(2.4)

On differentiating x̄ (2.3) with respect to x we see that

dx̄

dx
= cos(δ)In + sin(δ)D2u(x) ≤ cos(δ)In + Λ sin(δ)In
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Thus

cos(δ)In − Λ sin(δ)In ≤
dx̄

dx
≤ cos(δ)In + Λ sin(δ)In.

To obtain Lipschitz constants so that

(2.5)
1

L2

In ≤
dx̄

dx
≤ L1In

let

L1 = cos(δ) + Λ sin(δ)

L2 = max{
∣∣∣∣ 1

cos(σ)In +D2u(x) sin(σ)

∣∣∣∣|x ∈ BR′}.

To find the value of L2, we see that in BR′ we have the following:
let min{θ1, θ2} ≥ −A where A = arctan Λ.

cos(δ)In + sin(δ)D2u(x) ≥ cos(δ)− sin(δ) tan(A)

= cos(δ)(1− tan(δ) tan(A))

= cos(δ)
tan(δ) + tan(A)

tan(δ + A)

= cos(δ)
tan(δ) + tan(A)

tan(π/2−A
2

+ A)

= cos(δ)
tan(δ) + tan(A)

tan(π/2− δ)
.

This shows that
1

L2

= cos(δ)
tan(δ) + tan(A)

tan(π/2− δ)
.

Clearly 1/L2 is positive.
Now, by [CW19, Prop 4.1] we see that there exists a function ū such

that

ȳ = Dx̄ū(x̄)

where

(2.6) ū(x) = u(x) + sin δ cos δ
|Du(x)|2 − |x|2

2
− sin2(δ)Du(x) · x

defines ū implicitly in terms of x̄ (since x̄ is invertible). Here x̄ refers
to the rotation map (2.3).

Note that

θ̄(x̄)− θ̄(ȳ) = θ(x)− θ(y)
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which implies that θ̄ is also a C ᾱ function

|θ̄(x̄1)− θ̄(x̄2)|
|x̄1 − x̄2|α

=
|θ(x1)− θ(x2)|
|x1 − x2|ᾱ

∗ |x1 − x2|ᾱ

|x̄1 − x̄2|ᾱ

thus,
|θ̄|Cᾱ(Br0 ) ≤ Lᾱ2 |θ|Cᾱ(BR′ )

.

Let Ω = x̄(BR′). Note that Br0 ⊂ Ω where r0 = R′/2L2. So our new
gradient graph is {(x̄, Dx̄ū(x̄))|x̄ ∈ Ω}. The function ū satisfies the
equation

F (D2
x̄ū) = θ̄(x̄)

in Br0 where θ̄ ∈ C ᾱ(Br0). Observe that on Br0 we have

θ̄ = θ − 2δ < δ − 2δ = −δ < 0

as θ < δ on BR′ .

Claim 2.2. : If |̄θ| > δ, then F (D2ū) = θ̄ is a solution to a uniformly
elliptic concave equation.

Proof. The proof follows from [CPW17, lemma 2.2] and also from
[CW19, pg 24]. �

Now using [CC03, Corollary 1.3] we get interior Schauder estimates
for ū:

(2.7) |D2ū(x̄)−D2ū(0)| ≤ C(||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2))

for all x̄ in Br0/2 where C = C(Λ, α). This is our C2,α estimate for ū.
Next, in order to show the same Schauder type inequality as (2.7)

for u in place of ū, we establish relations between the following pairs:

(i) oscillations of the Hessian of D2u and D2ū
(ii) oscillations of θ and θ̄

(iii) the supremum norms of u and ū .

We rotate back to our original gradient graph by rotating up by an
angle of δ and consider again the domain BR′(0). This gives us the
following relations:

x = cos(δ)x̄− sin(δ)Dx̄ū(x̄)

y = sin(δ)x̄+ cos(δ)Dx̄ū(x̄).(2.8)

This gives us:

dx

dx̄
= cos(δ)In − sin(δ)D2

x̄ū(x̄)

Dx̄y = sin(δ)In + cos(δ)D2
x̄ū(x̄).
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So we have

D2
xu(x) = Dx̄y

dx̄

dx
= [sin(δ)In+cos(δ)D2

x̄ū(x̄)][cos(δ)In−sin(δ)D2
x̄ū(x̄)]−1.

The above expression is well defined everywhere because D2
x̄ū(x̄) <

cot(δ)In for all x̄ ∈ Br0 .

Note that we have cos(δ)In −D2
x̄ū(x̄) sin(δ) ≥ 1

L1
, since

dx

dx̄
= cos(δ)In − sin(δ)D2

x̄ū(x̄) =

(
dx̄

dx

)−1

≥ 1

L1

In

by (2.5).
Next,

D2
xu(x)−D2

xu(0) = [sin(δ)In + cos(δ)D2
x̄ū(x̄)][cos(δ)In − sin(δ)D2

x̄ū(x̄)]−1

− [sin(δ)In + cos(δ)D2
x̄ū(0)][cos(δ)In − sin(δ)D2

x̄ū(0)]−1.(2.9)

For simplification of notation we write

D2
x̄ū(x̄) = A

D2
x̄ū(0) = B

cos(δ) = c, sin(δ) = s.

Noting that [sIn + cA] and [cIn − sA]−1 commute with each other we
can write (2.9) as the following equation

D2
xu(x)−D2

xu(0) =

[cIn − sB]−1[cIn − sB][sIn + cA][cIn − sA]−1−
[cIn − sB]−1[sIn + cB][cIn − sA][cIn − sA]−1.

Again we see that

[cIn − sB][sIn + cA]− [sIn + cB][cIn − sA] = A−B.

This means

D2
xu(x)−D2

xu(0) = [cIn − sB]−1[A−B][cIn − sA]−1.

We have already shown that

|cIn − sA| ≥
1

L1

which implies

|cIn − sA|−1 ≤ L1.
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Thus we get

|D2
xu(x)−D2

xu(0)| ≤ L2
1|D2

x̄ū(x̄)−D2
x̄ū(0)|.

≤ CL2
1(||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2))|x̄|α

≤ CL2+α
1 (||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2)|x|α(2.10)

where L1 is the Lipschitz constant of the co-ordinate change map. This
implies

(2.11)
1

Lα+2
1

|D2
xu(x)|Cα(BR) ≤ |D2

x̄u(x̄)|Cα(Br0/2).

Recall from (2.6) that

ū(x) = u(x) + v(x).

This shows

||ū(x̄)||L∞(Br0/2) = ||ū(x)||L∞(x̄−1(Br0/2)) ≤ ||ū(x)||L∞(BR′ )

≤ ||u(x)||L∞(BR′ )
+ ||v||L∞(BR′ )

.(2.12)

Note that

(2.13) ||v||L∞(BR) ≤ R||Du||L∞(BR) +
1

2
[R2 + ||Du||2L∞(BR)]

and combining (2.11), (2.12), (2.13) with (2.10) we get

|D2
xu(x)−D2

xu(0)|

≤ CLα+2
1

{
||u||L∞(BR′ )

+R||Du||L∞(BR)+
1
2
[R2 + ||Du||2L∞(BR)] + Lα2 r0|θ|Cα(BR′ )

}
|x|α .

This proves the Lemma. �

Proof of Theorem 1.2. First note that the lemma provides a bound for
the Hölder norm of the Hessian on any interior ball, so by a rescaling
of the form

uρ(x) =
u(ρx)

ρ2

for values of ρ > 0 and translation of any point to the origin. Consider
the gradient graph {(x,Du(x))|x ∈ B1} where u satisfies

F (D2u) = θ

on B1 and θ ∈ C ᾱ(B1). Then there exists a ball of radius r inside B1

on which oscθ < δ/4 where δ is as defined in (2.2).
Now this means that either we have θ(x) < δ/2 in which case, by the
above lemma we see that u ∈ C2,α(Br) satisfying the given estimates; or
we have θ(x) > δ/4 in which case u ∈ C2,α(Br) with uniform estimates,
by claim (2.2) and [CC03, Corollary 1.3]. �
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Proof of Theorem 1.1. Since u ∈ C1,1(B1) and θ ∈ W 1,2(B1) satisfies
the uniformly elliptic equation

∆gθ = 0,

by the De Giorgi-Nash Theorem we have that θ ∈ Cα(B1/2). This
means that u satisfies

F (D2u) = θ.

By Theorem 1.2 we see that u ∈ C2,α(Br) where r < 1/2. Smoothness
follows by [CW19, Corollary 5.1]. �
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