MINIMAL LAGRANGIAN SUBMANIFOLDS OF WEIGHTED
KIM-MCCANN METRICS

MICAH WARREN

ABSTRACT. We explore the regularity theory of optimal transport maps for
costs satisfying a Ma-Trudinger-Wang condition, using the graphs of the trans-
port maps as maximal Lagrangian surfaces with respect to a weighted metric
on the product space. For computational simplicity, we restrict to two dimen-
sions.

1. INTRODUCTION

In this note, we explore maximal n-dimensional submanifolds of codimension
n, in a class of pseudo-Riemmanian metrics with signature (n,n). Kim and Mc-
Cann [KM10] defined these metric on the product space M x M, when giving an
alternate formulation of the Ma-Trudinger-Wang regularity theory. In this setting
we show that the regularity properties can be obtained by looking at the graph of
the optimal transport map as a maximal surface, with appropriate weighting. If
the metric is of Kim-McCann type, a calibrated Lagrangian submanifold is either
the graph of a solution to an optimal transportation problem, or, if the manifold
has topology, could be the graph of a Lie solution to the optimal transportation
problem. We slightly reformulate the setting of Kim-McCann [KM10] and Kim-
McCann-Warren [KMW10]. Recall first the setting of Kim-McCann where metrics
on the product space M x M are locally given by

(1.1) h = ( hi; 85,5:) " ((;Cj) )
where

1
(1.2) hij(x,2) = —58381-0(30755)

for some cost function ¢ : M x M — R. We assume here and in the sequel that
c is twice differentiable and satisfies the (A2) condition on N = M x M\C where
C is a measure zero set which we call the ‘cut locus’. In particular, h;; (x,Z) is
non-degenerate almost everywhere and h defines an (n,n) signature metric away
from the cut locus.

We are concerned with an underlying optimal transportation problem: Find
the optimal transportation map between the measures defined by bounded mass
densities p and p for the cost function c¢. In particular, minimize

[ et T@)plards
M
over the space of maps T satisfying

1
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In [KMW10] it was illustrated that when taking the conformal metric

1/n< . ((lvf) hij (61:,56) >

graphs of optimal transportion plans 7" are calibrated maximal submanifolds with
respect to this metric [KMW10, Theorem 1.1]. Unfortunately the conformal ap-
proach can lead to some technical computational issues, especially when the di-
mension satisfies n = 2. So here we suggest that a weighted approach should work
better: Consider instead the weighted manifold

1/2
_ p(x)p(7)
(1.4) M x M, h, (det (—@(’%C(:ﬁ,@))

_ (p(x)p(T))
(1.3) h= [det (—850ic(x, 7))

One can check that the volume of an n-submanifold with this weight is the same as
the volume of the n-submanifold in the conformal setting defined by (1.3). Thus
the minimal surfaces are the same in either setting. = However, instead of the
minimal surface equation occuring in the setting (1.3), in the latter setting (1.4),
the manifolds will be locally defined by the weighted minimal surface equation

(1.5) H+VHY =0

e 1/2

(s
det (—9;0ic(x, 7)) '
Note that when the dimension and codimension of a space-like manifold are both
n, in a metric of signature (n,n) one can try to locally maximize the submanifold.
This leads to the minimal surface equation (1.5) satisfied by the maximizers. In
fact, a calibration argument shows that [KMW10] the submanifolds are maximizing
with respect to an appropriate class of space-like submanifolds. Recall that the
graph of an optimal transportation map will be space-like with respect to h,[KM10,
Section 5.]

In this paper, we would like to demonstrate that the regularity theory can be
derived geometrically, obtaining yet another approach for the Ma Trudinger Wang
regularity theory. The original regularity paper [MTWO05] is a maximum princi-
ple argument applied to the Monge-Ampere equation (2.1), in which the authors
identify a 4th order condition on the cost function which leads to regularity for
general smooth densities. The approach by Loeper [Loe09] is based on analysis of
the cost function requiring less regularity. The setting of Kim-McCann gives a
solid pseudo-Riemannian geometric formulation of the approach offered in Loeper,
in particular, showing that c-segments are geodesics with respect to this metric on
the product manifold.

To significantly simplify the computation we restrict to the case where both
manifolds are compact and have dimension n = 2. We also restrict to the case
where the metric is of the Kim-McCann form (1.2), however, it may be possible to
loosen this to more general pseudo-Riemmanian submanifolds satisfying a suitable
curvature condition. Indeed, our approach is motivated by the paper of Li and
Salavessa [LS11] where general regularity result follow from curvature conditions.

where
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2. PRELIMARIES

We will consider a product of compact, oriented manifolds of the form M x M,
with metrics of the form (1.1) and consider some function

T:M — M.
Recall h;;(x, %) = —49;0;c¢(x, ) for some cost function c¢ that is twice differentiable
with non-degenerate mixed Hessian on N = M x M\C . We denote the graph of

the map T by ~
I'={(z,T(z):xe€ M} C M x M.

The following is the Ma-Trudinger-Wang curvature condition as uncovered by
Kim and McCann in the product manifold setting [KM10, Definition 2.3].

Definition 2.1. The metric h is strictly regular, if whenever (z,Z) € N and
0#£0,€l,M
0#0; € TzM
h(a;,:i) (81', 85) =0,
then the curvature of the metric h satisfies

R (8;,8;5,0;,0;) > 0.

1y Yy Vg Ui

The following is our main theorem.

Theorem 2.2. Suppose that (x,T(x)) is a mazimal Lagrangian submanifold in a
weighted Kim-McCann metric, where T'(x) is locally an optimal transport map, M
and M are compact, oriented of dimension 2, and the metric h is strictly regular.
Suppose also that the graph ' has positive distance from the cut locus C. Suppose
the mass densities p and p being paired are bounded above and away from zero.
Then, given a metric g1 on M and metric g on M there is a constant such that

|DT|| < C.
Here the norm is defined as

|DT|| = sup DT (v, -
t€EMwET M, |v]l, =1

This establishes the C! estimates for the optimal transport maps. Recall
[MTWO5, (2.17)] that solutions of this optimal transportation problem can be de-
termined by a potential function u satisfying

p(x)
p(Tu())
where T}, is cost transform of the function u defining a map from M to M implicitly
[MTWO05, (2.12)] via
(2.2) Du(z) = Dyc(x, Ty(x)).

Form the perspective of Monge-Ampere type equations, this C! estimates obtained
above is on the map T,, which has the same regularity as Du. Thus the above the-
orem provides C1'! estimates on the potential, which puts bounds on the ellipticity
of the Monge-Ampere equation (2.1). Once this ellipticity is in place, one can

(2.1) det(ugj + cij) = |det(—c;3)|
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apply Schauder theory to obtain higher order estimates (provided the densities are
smooth enough).

Note that this is true for Lie solutions of optimal transport equations, see [Del08§],
which will exist when M has nontrivial first Betti number, [Warll].

3. MORE SETUP

We start by fixing g1, g2 to be arbitrary Riemmanian metrics on M, M. These
will be fixed and will serve as a gauge against which to obtain estimates. On the
other hand, the metric g on M will be the metric induced on I', that is

oT* oT*
9(0;,0;) = hjkaTci + hiké.Tj'

As M is oriented, at each point there exists a local oriented orthonormal frame
(w.r.t g1), e1,e2. Let U C M be a neighborhood on which this frame exists. These
define a local frame for the cotangent space

(3.1) wi(+) = g1(ei, )

We then define the forms
V; = h(ei, '), = 1,2
on U x M.
Now w; extends to a form on U x M :

L:)l' :WiOPTmM

where Pr,_ s is the projection onto the tangent space using the natural decomposi-
tion. Add the two forms and create a form as follows:

Q= ((1)1 + Vl) A ((.:)2 + 1/2).
Lemma 3.1. The form € is globally well-defined.
Proof. We need to show that any chart we choose, we get the same form. At any
point, choose any arbitrary oriented orthonormal frame é1,€s. This is related to

any other oriented orthonormal frame via a an orthogonal transformation O. In
this case, the form is defined as

((;Jl + 1/1) A ((2)2 -+ 1/2)
= 07 (@), +vj,) AN O (G, +vg,)
= (det O) ((2}1 + V1) A (@2 + Vg).

Because the basis is assumed to be oriented, we will always have det O = 1. O

Our goal now is to control above and away from zero the ratio

Y
~ dVol,’

I

Because 2 and dVol, are top forms, the ratio is a well-defined quantity on M.
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3.1. Setting up coordinate systems near a point. Because M is compact,
a maximum for g must happen at some point zy. To control p we are going to
compute the Laplacian operator with respect to g at this point. The coordinates
setup is crucial and so we go through the setup of a coordinate system around x¢ in
detail here. We begin with a set of normal coordinates generated by an arbitrary
tangent basis e/, e}, for g1 at g (call this System 1’). Now the (induced) metric g,
is a symmetric matrix when written in terms of basis {e/, €5}, so is orthogonally
diagonalizable, with respect to some basis {e1,ea}, which is still a basis for a
normal tangent system at the point xy with respect to g;. We may thus choose
normal coordinates (System 1) with respect to g1 that are diagonal with respect to
g, that is

lesll2 = A7, i =1,2.
<61762>g =0
leill,, =1, i =1,2.

As the submanifold is space-like g is positive definite. Rotating ej, es if necessary,
we choose A\; > Ay > 0. (We will use ¢; in two senses, identifying e; first as an
abstract tangent vector on the manifold M, which is measured by g or g;, but also
as a submanifold tangent vector to the graph I', which is measured by h.) Take an
arbitrary, but controlled chart (say normal coordinates at Zo w.r.t. go) for M. In
these coordinates (together with System 1 in the first variable), the metric h has

the form

We can take a local change of coordinates o of M at T, so that Dz, = h3 (wo, fo)_1 ,
as h;; is nondegenerate. In this case, the metric at the point (x¢, Zg) becomes

(3.2) h:i(? é)

Notice here that so far our choice of coordinates only depends on rotational prop-
erties of g, that is, the dependence is on the direction of diagonalization. Thus
the derivatives of objects (such as §2) can be controlled in a uniform way in terms
of the background metric g1, g2. We continue to call this system (extended to a
neighborhood in the product M x M) Product System 1. We note that particular,
the vertical basis vectors {€1, &>} satisfy

(3.3) lezll,, < C1

for some universal constant, in particular does not depend on || DT .

We now define another set of coordinates (System 2) that we will use later in
our geometric computations. Namely take the coordinates given by exponentiating
the tangent space with respect to g, where

1
a = —_—
1 ¥ €1
1
8 = —
2 Ao €2

noting that
[01]ly = l102]l, = 1.
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In (Product System 1) coordinates on M x M we have

1
61 = (TlaoaAh*)

(92 = (0, %2, *, )\2)
Now if we are assuming that the submanifold is Lagrangian, then the symplectic
form given by ([KM10, 5.3])
hijdz' A dz’
is simply dx A dT at the point (xo,Z). The submanifold is Lagrangian ([KM10,
Theorem A.1]): combining this with the fact that the tangent vectors are orthogonal
with respect to (3.2) the tangent vectors must take the form:

1
61 = (7305A170)

A1
By = (0,0, \s)
2 — ’)\2’ s N2 ).
We also have in the ambient space the representation (Product System 1)
(3.4) e1 = (1,0,)%,0)

€2 = (0, ]-7 07 )‘g)
and at the point (xg,Zo) we have
Q= (dry + dy1) A (dzo + dy2)

still with respect to Product System 1. Thus

(3.5)

) = et = ©(01.02) = (sn(e1. )+ hler, ) A o ea. )+ hea. ) (000
= (g1(e1,01) + h(e1,01)) (g1 (€2, 02) + h(e2, 02))

(3.6)
— (91(e1,02) + h(ez, 02)) (g1(e2, 01) + h(e2, 1))

1 1 1
= ()\1+)\1) <>\2+)\2> = Ny + A2 + A1+ Aa.

We will also use the following normal vectors at the point (xg, Zo)

1
ny = ()\71707 _)‘170)

1
ng = (077

0,—MA2).

)\27 ) 2)
4. COMPUTATIONS

The major technical goal is to show the following.

Proposition 4.1. Assume the same conditions as in Theorem 2.2. There exists
a C depending on h, p1, p2, and the uniform regularity of ¢ etc such that

< Cp.

Proposition 4.2. The above proposition implies Theorem 2.2
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Proof of Proposition 4.2 . Take Product System 1 coordinates as above at a point
xg. For any unit vector v with respect to g; we have

2 2
v =wvie; + vez, v] +vy =1

We have (3.4) with respect to Product System 1

A0
(4.1) DT = ( 0 x )
that is
(4.2) DT (v) = viA\]&; + va\3és.

We have by (3.5), and Proposition 4.1

(4.3) +AA2+ A1+ A2 <G

A1 A2
which implies that the largest eigenvalue A; < Cy. Combining (4.2) and (4.3) with
(3.3) we have
IDT(v)|| < CECL.
O

Now in order to prove Proposition 4.1, we will use System 2 coordinates on M,
so we may do the following geometric computation.

Lemma 4.3. Suppose that T' = (z,T(x)) is a weighted minimal submanifold. At
the point (xg,Zo) € T', working in normal coordinates for M with respect to g, we
have

> Vo, Vo, 01,02) = > ViV, 0s)
k k

= — | BI*Q(01,05) =2 QAB(3k, 1), B(0k, D))
k
-2 Z {ka(Bk’la o) + ka(al, Bkg)} - Z ?B(k,k)Q(al, 2)
k k
+ Z {Q(Rmp, (02,01, 02,n5) g, O2) + (01, Rmy, (01,02, 01,m5) ng) }

- Q((Wf(np,al) -wn" vlnp) nPng, 9)
— Q0. (W Flnp,d2) — (V)" vznp) nPn,)

Here, || B||? is the positive norm of the second fundamental form B, of the subman-
ifold, By; is the normal vector field defined by B(0, 0;), Rmy, the curvature tensor
of h and nP? is the (negative definite) inverse metric on the normal vectors.

4.0.1. Proof of Lemma. Our goal is to come up with an expression for the following
quantity, taken in normal coordinates, at a point.

Vo, Vo, 01, 8) — Vi, Vo, 01, 0y).

Here 0, is a (System 2) normal coordinate derivative along M with respect to g,
V denotes differentiation w.r.t. g, while Vg, denote covariant differentiation with
respect to h.

To begin
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Q(01,02) = 0xQ(01,02) — UV, 01,02) — 1, Vg, 02).
Differentiating again
Vo, Vo, Q01,02) = O {akQ(al,az) —Q(Vp,01,02) — Q01, ?3k82)}
{ Vo, 0:201,02) — AV, 5,01,02) — U1, Vg, 5,02) }

HSUVa,01,02) — AV, Vak d1,02) — UV 5,01, Vak J2)
6kQ(817 vak 82) (Vak 817 vak 62) (813 Vak vak 82)

Now repeat, but with respect to the submanifold connection
Vo, Vo, 201, 02) = 0k {0kQ(01, 02) — UV 101, 02) — Q(01, Vo, 02) }

Vo, 0801, 82) — AV, 5,01,02) — U1, Vv, 5,02)
OV, 01,02) — V5, Vg, 01,02) — UV, 01, Va,02)
0k§2(01,V5,02) — Q(Vo,01,V5,02) — Q(01,V5,Va,02)

Now, consider the difference:
V., Vo, 201,02) — Vo, Vo, 201, 0,)
_s D1, 02) — Q(Vo, 01, 02) — Q(1, Vo, Do)
1 —0kQ(01,82) + Q(V5,01,02) + Q1, Vo, 0s)

{ Vo, 0601, 02) — UV, 5,01,05) — 21, Vg, o,0) }

UV ,01,05) — VUV, Vi, 01,0) — UV, 01, Vi, Do)

U1, Vo, ) — AV, 01, Vo, 0) — 01, Vo, Vo, 0s)

{ Vo, 0601, 02) — A(Vv,, 9,01,02) — U, Vv, 0,02) }
OV, 1, 82) — UV, Vo, 01, 92) — UV, 01, Vo, )
0Dy, Vo, 02) — UV, 01, Vo, 02) — U1, Vo, Va, o)

At the origin in normal coordinates, we can eliminate terms of the form Vy, 9; and
we get

?&cvakQ(alv 82) - VﬁkvakQ(ah 62)
= 0O {Q(Vakal - ?a,ﬁl, 62) + Q(al, Vakag — vakag)}
{ Vo, 081, 0) — (Vva 8,01,02) — (517Vv@ 0,02) }

8kQ(vak?1a 82) - (vakvdkala 82) (vakala vdk 82)
akQ(ala vak 82 - (Vak al, Vak 82) (817 vak Vak 82)

)
hQ(Va,01,02) — UV V01, 00)
OkQ(01,V5,02) — (01, Vi V02) [

+Q(Yakal7 a2) + Q(alv Y8k82)
_Q(Vak817 82) - 9(817 vakaQ)

{ Vo, 021, 02) — AV, 5,01, 82) — A, Vs, 5,0) }

{ Q(Vakal — ?akahag) + Q(Z?l, Vakag - @akag) }
O

—Q(V5,Vo,01,02) — V4,01, Vo, 02)
—Q(V5,01,Vo,02) — Q(01, V5, Vo, 02)

" —Q(Vy, Vs, 01,02)
—Q(01,V5,Va,02)
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= 204 { Q(Vakal — vakal,az) + Q(&l, Vakag — vakaz) }
+ 2Q(Vo, 01, Va,02) — Vo, 0,201, 02)

Q(?ak ?ak a_l - Vak v(‘)k o1 + ?ﬁa]&ak o1, 82)
+Q(01,Vs, Vo, 02 — V5, Vo, 02 + V@ak 0,02)

= —20y {Q(B((’)k, 81), 82) + Q((’)l, B(@k, 82))}
+ 2Q(B(8k, 61), B(@k, (92)) — B(&k, 8k)Q(81, 82)
+Q(v3k?ak?1 — ViVio1 + ?@%akal,ag)
+Q(61, VakVakﬁz — Vi V50 + V%kak@) )

Now letting By := B(0k,01) etc, denote the normal vector field along M, covari-
antly differentiating 2 (Bj1,02) etc gives

O {QUB(0k, 01), 02) + (01, B(9k, 02)) }
= ViBi1, 02) + UV B, 02) + Q(By1, Vida)
+ ViQ(01, Brz) + (01, Vi Biz) + Q(V1,01, Bia).
Recalling that we are at the origin of a normal coordinate system
= ViQ(By1,02) + UV By, 02) + QB Biz)
+ V201, Bra) + 01, ViBiz) + Q(Bi1, Bia).
Now plug this back into the larger expression
Vo, Vo, 01, 02) — Vi,V Q(01, 02)

_ 9 ViQ(By1, 02) + Q(Vi By, 02) + QUBga, Bra)
+ViQ(01, Bra) + Q(01, Vi Bi2) + Q(By1, Brz)

+ QQ(B(ak, (91), B(0y, 82)) — B(ak, 8k)Q(6l, (92)

+Q(?ak_?ak_81 — Vo, Vs, 01 + ?@%&cal, 2)
+Q(81, Va, Vakag - VakVakag + V@akakﬁg)

_ ?kQ(Bkl,ag) + Q(kaikla 02)
V8201, Bia) + (01, Vi By2)

— By Q(01,02) — 2Q(Bg1, Bi2)

2V, Vo, 01 — Vo, Vp,01 + Vg, 5,01,02)
+Q(01,Vy, Vo, 02 — V5, Vo, 02 + V%kakag) ’

Now we inspect the last two terms
Vo, Vo, 01—V, Vo, 01
= Vo, {Vo,01 + Bi1} — Vo, Vo, 0
= Vo, {T%101 + Bi1 } — Vo, (Ih10))

= {8&2181 + ng (Vkal + B(k, l)) + ?ak Bkl} — (8,;2161 + Fﬁﬂvkal)
== vakBkl.

again using the fact that that Christoffel symbols vanish at the point. Thus
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Vo, Vo, Q(01,02) — ViV, 05) = —2 { ViQ(By1,02) + Q(Vi By, 02) }

V201, Bra) + (01, Vi By2)
— Bip§2(01, 02) — 2Q(Bia1, Bi2)

{ Q(vak§k1782) } Q(vakvﬁ_akakal’(b)
+Q(01, Vo, Br2) +Q(01, Vg, 0,02)

which further simplifies
= —2{ViQ(By1,02) + ViQ(01, Bi2) } — 2Q(By1, Biz)
—{UVo,Bi1,02) + Q(01, Vo, Biz2) }
+Q(Vg, 5,01,02) + 01, Vg, 5,02) — Brr(01,02)

(4.4) =-2 {ka(Bkly d2) + ka(al, Bkg)} —2Q(B(0y, 01), B(Ok, 02))
—{Q(Va,Bi1,02) + 01, Vo, Bra) }
— VB, (01, 02).

Now using alternating nature of €2 and tangential and normal decomposition, we
have

Q(ViBi1,02) = Q((?kBm)T + (?kBm)N ,02)
= Q(((ViBi) -01) 01, 82) + (ViBia) ", 02)
= —By1 - BaQ(01,02) + Q((?kBm)N ,02)
where we have used
0=V (By1-01)
= ViBi1 - 01+ (Br1 - Vidh)
= Vi Bg1 - 01 + By - By
again using V;0; = 0 at the point. Thus (4.4) becomes
Vo, Vo, 201, 02) — ViV, 02) = =2 {VpQ(By1,02) + Vi (01, Br2) } — 2Q(Bj1, Biz)

+ By - Bp12(01,02) — Q((?k?kl)N ; ?Vz)
+Bya - Bra(01,02) — Q01, (ViBr1) )
— V5,201, 0).

At this point we begin summing over k

Z Vo, Vo, 01,02) — ViViQ(01,02) = =2 {ViQ(Bx1,02) + ViQ(01, Biz) } — 2Q(By1, Biz)
k

— |BI* (01, 02)
—Q((ViBi)" ,02) — Q01, (ViBia)")
- kakQ(al782)-

using— || B||* to denote a negative number.
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Now we still have left the terms
kakl cNp

The following version of the Codazzi equation can easily verified to hold on pseudo-
Riemmanian manifold

Proposition 4.4. (Codazzi Equation) Let nn be a normal vector. Then,
VxB(Y,Z,n) — VyB(X, Z,n) = Rmy, (X,Y, Z,7).
In our case, this gives us
ViB(01,0k,n,) — V1B(0k, Ok, np) = Rmy, (Ok, 01, O, nyp)
that is
(4.5) ViB(01,0k,n,) = V1B(0k, O, np) + Bmy, (O, 01, Ok, nyp) -
Now
ViB(01,0k,np) = Ok (Big - np) — B(Va, 01,0k, n,) — B(01, Vs, 0k, np) — B(01, 0k, Viny)
= Vo, Bik - np + By - Va,n, — B(Va, 01,0k, mp)
— B(01,V,0k,np) — B(01, 0k, Vo, np).
So we can use the Codazzi formula (4.5) to get
ViBik - ny = Vi.B(01,0k,np) — Bix - Vo, n, + B(Va, 01,0k, nyp)
+ B(01,Va,0k,n,) + B(01,0k, Vo, np)
= Vo, B(0k, O, np) + Rmy, (O, 01, Ok, np)
— B - Vo,np + B(V, 01,0k, np) + B(01, Vo, 0k, nyp) + Bi1 - Vanyp)
= 01 B (0, Ok, np) — B(V10k, Ok, np) — B(Ok, V10K, np) — B(Ok, Ok, Viny)
+ Rmy, (Ok, 01, Ok, np) + B(Vi01, 0k, np) + B(01, Vik,ny).

Summing over k and noting that B evaluates the tangential components of Vg, O,
which vanish at the point, we have

> ViBik-ny =Y 01B(0, Ok, np) — B(Ok, Ok, Viny) + Rmp (O, 01, Ok, nyp)
K B

= 0\(H -np) — H-Vin, + > Rmy (Ok, 01,0k, np)
k
= ?1H SNy + Rmy, (62,81, az,np)

in the last line, using symmetries of Riemannian tensor along with fact that n = 2.
Thus we can represent the normal component as

N
(Z VkB1k> = (?1H Ny + Rmy, (02,01, 02, np)) nPng.
%

So now we have

Z Q((?kBkl)N ,09) = Q((le -ny, + Rmy, (82,61,82,7117)) n”sns,ag)
k

- Q((vl (V)™ - np + By, (02,01, 05, n,,)) nPn, 92)
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Now note that
o1 (V)" ny) =01 (V1) )
= ?Qf(np, 81) + (val Tlp) f

So
Vil ny =01 (V) ny) = (V)" Vimy
= v2f(np7 81) + (valnp) f - (vf)N . ?171]0
= V2 f(ny,d1) — (Vf)" - Vin,
that is
(4.6)

3 Q(ViBi) ", 0) = Q((Wf(np, o) — (V)" Viny + R(2,1,2, np)) NP1, 8s).
k

Now we go back and plug (4.6) in

> Vo, Vo, 01, 02) — ViViQ0y, 02)
k
= —2{ViQ(By1,02) + ViQ(01, Br2) } — 2Q(By1, Bys)

— | BI” (01, 82)
- Q((Wf(np,al) — (V)" - Viny + Rmy, (02,01, az,np)) NP1, 8s)

— Q0. (Wf(np, ) — (V)" - Van, + Ry, (1,05, 01, np)) nPn,)
— VB, 01, 0).
This finishes the proof of Lemma 4.3.

4.0.2. More computations. Still at the point (xg,Zo), we have

Lemma 4.5.

A\ 2 3o\ 2
Rm(02,01,02,1n1) = Rigo1 (;) — Ri33 (;)
2 1

A A
Rm(02,01,02,n2) =2 [Rziiz (Al) + R3132 (Aj)]

A 1
Rm(al, 82751,711) = —2R1§11*2 — 2R+ M
A1 Ao

A\ 2 A2
Rm(01,02,01,n2) = Ry33; () — Ro112 <)\2)

where
R1221 = Rmh(éh €2, €2, él); etc.

Proof. Note that in the Kim-McCann metric [KM10, Lemma 4.1], these computa-
tions become massively simplified by the fact that the only curvature terms that
do not vanish are those with two barred and two unbarred indices. There will be
six nontrivial terms in each expression. Straightforward computations using the
symmetries of the curvature tensor yield the results. [
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Lemma 4.6. At the point (xg,To) we have

Q(01,n1)=0

Q (8, my) = ﬁ (CAZXZ3 4 A2~ 22 4 1)
Q(Dy,my) = —ﬁ (=A3A3 = AT+ A3 +1)
Q(92,n2) =0

@ (01,0) = 1 (VX 448+ 33 +1)
Q(ny,n9) = S (MAS = AT — A3 +1)

Proof. Calculation.

Now combining the above two lemmas, we get
Corollary 4.7. As above,
2 Z Rm 82, (91, 82, np)np, 32) -+ 9(81, Rm(al, (92, 81, np)np)]

1 A\ A\ 2
= 4A1)\2 ()\g - )\%) {R1221 <)\;> - Rlégl <)\j> } .

Proof.
2> " [Q(Rm(0a, 01, 02, mp )1y, 2) + 01, Rm(y, 0, 01, np)nyp)]
p
1
Rm(0s, 01, 02, m) 3= (=A0N = AT+ 25 + 1)

1

+2Rm(81,82,817n2)/\1/\2( MAS+ AT - A3+ 1)

A2 A\ 1
=2 R (31) ~ R () | 5 (00 22+ 38 41)

A A 1
2 | Ria;m (/\j> — Ro112 (/\;> ] o (_)‘%)‘g +M - A+ 1)

1 A A
)\1)\2 ()‘2 A%) {R1221 ()\;> R1221 ()\j> }

Lemma 4.8.

2
IBIF (01, 82) + 2B(0k, 01), B0y 02)) = - I1BI

Proof. Taking
hijs = (B(aivaj) M)

13
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||B|| Zhus

5,8

20(B (0, 01), B(0k,02)) = Y _ 2hg1shaapQ(ns, ny)

k,s,p
= Z 2hg11hg22Q(n1, ) + Z 2hg12hk21 (N2, n1)
% %

1
= 22 (hk11hiaz2 — hrizhiat) Qn1,no)
k /\1/\2
= 22 (hk11hr22 — Prizhgo1) {AM =1 —1)}
k e
1
< /\1/\2 Z (hi11 + hiaz + B + hiar) [\ = D) (A2 — 1))
—1
Al AQ ];hksp 1)(Ae — 1)

On the other hand
| B]|? (81, 82) th{ (A +1)(A2 + 1)}.
1,7,S

It follows that
(4.7)

—|BI? Q(01,02) -2 QB(0k,01), B(9k, d2)) < N )\ {I(1 = D2 = D = [\ + D (A2 + D} B]? < 0.
k

Now we take two cases. First case, Ay < 1. In this case we have

1 2(14+ A 2) 1
—— (A =1 (X = D] —[(A 1)(A D} =-— -2 .
o (I = D0 = Dl = [ + D0 + DI} =~ 22 < -2

In the other case A1 > Ay > 1 we have

1 2(A1 + A2) 1
—— (A =D (X —=1D)| —[(A (A D} =-— — .
o (100 = D0 = Dl = [+ D0 + DIy = =TT < 2

Finally, we will need the following.

Lemma 4.9. For some universal constants C

2 AMA 1 1
12V 1By, 02) — 2V,Q(01, Bia)| < 1220 (5 (5 + M2
A1z A2 A2

Jsl(he

V2 1
Z Vo, Vo, 01, 02) ( +)\2)] [)\2+)\2 XZH?}

1 1
vB(kk)Q (01,00) < C —|—/\% 72_|_/\2
)\ A5
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= = - 1
Q((v2f(np,al) - (Vf)T . vlnp) nPng, dy) < C </\2 + )\2> A1A2 (MIA3 + A7)
001, (9 0rys05) = (1) Famy ) ) <€ (g +28) 35 (D2 4 4)

Proof. Note that the size of the components of the VQ itself are controlled by a
priori bounds on the derivatives of Q and the length of the vector J;. As

/1
|01] = )\?4‘/\%
we have
1 1 2 2 A2 1
2V.Q(B <20, = )\2B1/— X< = B A2 A2 ).
ViQ(Bgi1,02) < 2C /\%'l- 211 B]] A§+ 27)\1A2|| 1"+ 5 C(A2+ )(/\2+

Next

_ B 3 1 3/2 1 1/2 )\2
¥0,%0,001.00)| < [0l 01 10w < € (554 08) (3+48)  =c 1+ 33| awne

2

or

1/2
90.92,9001.09)] <[00 il < (55 +30) (55 +8)

Next, using the minimal surface equation (1.5) we have

VB (k) Q(01,02) = ( 7y~ 201, 02)

< |Df||DQ|\/)\2 + A2 P+/\2

Next, when considering terms of the form €( (@Qf(np, o1) — (@f)T V1 n,,) nPng, 0a)

note that we only need consider (by Lemma 4.6) terms with s = p = 1.

(V2 (. 01) = (V)" Vam ) ma,02) < (9 7) Il 193] 55 (B3 + A3 =23 — 1)

1
<C (AQ + A%) S (A2A2 + A})
1 1

We collect the above computations in the following:
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- kaka(ahaz)

k

1 2 1 2 1z 1 2 1 2
<c|(mr) (5% PR VRR ——||B||

2 AA 1 1
—/\2||B||2+ 1220()\2+>\2> </\2+A2 +O\//\2+A2 F+A2

1
1 A A
10 () 2
C A A+ AT
()\2 + ) )\ )\ ( + )
Now recalling, (4.1), (2.2), (2.1), as the densities are bounded above and away from

zero, with respect to the volume forms for g; and go, there is a constant C' such
that

1

C—p <A <G
Using this, recalling that
A1 > A2
and using
i/\1 < L < Co\
Cp Xy T P

we continue the above computation

- ZVkaQ(31,32)
%

1
<CAT+1D) +4= (A3 -

Cp R1221>‘1

) o

Now suppose that the maximum value for u happens at a point xg € M. By
the maximum principle,using the fact that the covariant derivative commutes with
the Hodge-star operator, we have

> Vo, Vo, 201,02) = > Ok < 0.
k k

In particular

1 1
P p

or
coRigei A} < C(AT +1)

for some positive ¢y bounded away from 0 and C' bounded above. Because we are

on the compact manifold the positive quantity Riso7 has a strict minimum, and we
can conclude that

A <Oy

for some constant Co. Recalling (3.5) this proves Proposition 4.1
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