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Abstract. Nash’s classical bargaining solution suggests that N players in a

non-cooperative bargaining situation should find a solution that maximizes the

product of each player’s utility functions. We consider a special case: Suppose
that the players are chosen from a continuum distribution µ and suppose they

are to divide up a resource ν that is also on a continuum. The utility to each

player is determined by an integral of the exponential of a distance type func-
tion. The maximization problem becomes an optimal transport type problem,

where the target density is the minimizer to the functional

F (β) = Hν(β) +W 2(µ, β)

where Hν(β) is the entropy and W 2 is the 2-Wasserstein distance. This

minimization problem is also solved in the Jordan-Kinderlehrer-Otto scheme.
Thanks to optimal transport theory, when the measures are supported on con-

vex regions of the same Euclidean space, the solution may be described by a

potential that solves a fourth order nonlinear elliptic PDE, similar to Abreu’s
equation. Using the PDE, we see solutions are smooth when the measures

have smooth positive densities.

1. Introduction

In the 1950’s [8] John Nash characterized a solution to the bargaining problem
that has since been central to the theory. Namely, the Nash bargaining solution is
the allocation that maximizes the product of the utilities to each player, over the
total space of possible allocations of a surplus. The Nash bargaining solution is
not only mathematically natural but can be achieved by strategic approaches, see
[2]. Bargaining solutions represents a class of allocations that are neither centrally
planned nor wholly decentralized. For a general overview of the economic theory,
see [7].

In this paper, we consider utility functions that are given as an integral of a
utility density function, namely

(1) Ui (νi) =

∫
Y

s(pi, y)dνi(y).

Here Y is a surplus space, X is a player space, νi is a measure on the space Y that
determines the allocation of resources to player pi ∈ X, and

s : X × Y → R+

is a utility density function. More details are found in section 2.
We begin by extending an observation of Schumacher [10] to continua. For utility

of the form

s(x, y) = e−c(x,y)
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for a cost function c, Nash bargaining solutions will be optimal transport plans
between a measure µ which is known a priori, and some measure β which is de-
termined by the solution. Thus, for the purpose of maximizing the product of
the utility functions Ui, we need only to parameterize a space of measures on the
resource space, or equivalently, a set of Kantorivich potentials. This allows us to
do analysis in the spirit of Benamou-Carlier-Mérigot-Oudat [1], in order to show
that discrete solutions have continuous limits.

This paper has two objectives. First, we would like to frame the Nash Bargaining
Problem in terms of theory of measures on product spaces. We see that much of
theory applicable to the optimal transport problem fits very nicely in this setting.

Second, we demonstate the problem has nice continuous solutions that arise by
passing to the limit, by considering the particular case when the spaces X,Y ⊂ Rn
are both convex compact domains, players are distributed according to a probability
measure µ, and surplus is distributed according to a measure ν, both of which are
absolutely continuous with respect to Lebesgue measure, and the utility density is
given by

s(x, y) = e−|x−y|
2/2.

Following the arguments in [1], we find that the limit of solutions can be described
by a gradient mapping, whose potential satisfies a fourth order PDE. The problem
becomes equivalent to minimizing

(2) G(ϕ) =

∫
X

ln

(
detD2ϕ(x)

ν(∇ϕ(x))

)
dµ(x) +

1

2

∫
X

‖x−∇ϕ‖2 dµ,

which gives a fourth order nonlinear PDE similar to Abreu’s equation [4]. In
particular, the quantity detD2ϕ(x) satisfies a second order elliptic equation. By
arguments such as in [9, Proposition 8.7] detD2ϕ(x) is bounded and Lipshitz con-
tinuous; from here we can apply Caffarelli’s Schauder theory for Monge-Ampère
equations. Smoothness will follow by the general Schauder theory, see Section 5.
Abreu’s equation involves minimizing a functional of the form (2), where the gradi-
ent term is replaced by a integral involving the potential ϕ. Details on regularity
for Abreu’s equation can be found in [6].

Our main result (stated roughly for now) is as follows

Theorem 1.1. Under appropriate conditions on the measures µ, ν and for c(x, y) =

|x− y|2 /2, solutions to finite player Nash bargaining solutions (say, by sampling
points according to µ) converge to a continuum Nash bargaining solution.

We also have a regularity result:

Theorem 1.2. Suppose that X,Y ⊂ Rn are smooth, bounded, convex domains.
Suppose that µ and ν and smooth measure densities on X and Y respectively, that
are bounded and bounded away from zero. Then, the minimizers of the functional
(2) are smooth.

2. Setup

Our goal in this section is to describe the bargaining problem in terms of mea-
sures.

Suppose that Y is any topological space, and ν is a Borel probability measure
on Y. We call the pair (Y, ν) the surplus. When there are N players vying for
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portions of the surplus, we can think of the space of possible allocations of the
surplus as N -tuples of non-negative Borel measures (ν1, ..., νN ), such that

N∑
i=1

νi ≤ ν.

The function
s : X × Y → R+

is called a utility density function. The value s(x, y) gives the utility to player at
x ∈ X for a unit of y ∈ Y. As we will be integrating the density, it makes most
sense to assume the utility is linear in terms of a fixed resource y, in the sense that
the marginal utility to a player at x of a unit y is determined only by the utility
density function, and not by a function of the same or other player’s allocations.

Example 2.1. Suppose two emporers have set up capital cities at points x1 and
x2 in a region Ω ⊂ R2, and must negotiate how to split the region. Each emporer

decides that the value of any unit y of land to their kingdom is given by e−|xi−y|2/2.
The possible allocations of the region are measures ν1, ν2 such that

ν1 + ν2 = dy|Ω.

The utility function to each is

Ui(νi) =

∫
Y

e−|xi−y|2/2dνi(y).

Notice that in the N -player case, when the utility density is positive, Pareto-

optimal solutions are a set of N measures with
∑N
i=1 νi = ν. If X = {p1, ..., pn}

and π ∈ P (X×Y ) is a probability measure such that πY = ν ( here πY = (ProjY )#

π, i.e. the right marginal) we may consider the measures νi = π|{pi}×Y . In this
case, we can define the utility to each player as follows

(3) Ui (π) =

∫
{pi}×Y

s(pi, y)dπ.

The Nash bargaining solution is determined by maximizing the Nash product,
namely

N =
N∏
i=1

Ui.

(Note that we are assuming the disagreement point is the 0-allocation, that is, all
players get nothing when they do not agree.) Equivalently, one can maximize the
logarithm

lnN =

N∑
i=1

lnUi.

With this in mind, for the case of N players, we define the Nash bargaining
problem as follows:

Problem 2.2. Find a measure π that maximizes the functional

(4) F (π) = lnN +
1

N

N∑
i=1

ln

∫
{pi}×Y

s(pi, y)dπ
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over the space of measures π ∈ P (X × Y ), under the constraint

πY = ν.

The term lnN and factor 1/N do not affect the arg max, however, they are
present for normalization reasons which will become clear when we attempt to
build a continuous solution.

2.1. Reformulating the functional. Working with (4):

F (π) = lnN +
1

N

N∑
i=1

[
ln (π ({pi} × Y )) + ln

(
1

π ({pi} × Y )

∫
{pi}×Y

s(pi, y)dπ

)]

= lnN +
1

N

N∑
i=1

[
ln

(
π ({pi} × Y )

1/N

)
+ ln(1/N) + ln

(
1

π ({pi} × Y )

∫
{pi}×Y

s(pi, y)dπ

)]

=
1

N

N∑
i=1

[
ln

(
π ({pi} × Y )

1/N

)
+ ln

(
1

π ({pi} × Y )

∫
{pi}×Y

s(pi, y)dπ

)]
.

At this point, we define a measure on X = {p1, ..., pN} as

α = πX

or equivalently,

α(pi) = π ({pi} × Y ) .

Defining

(5) µN =
1

N

N∑
i=1

δpi

we get

F (π) =
1

N

N∑
i=1

[
ln

(
α(pi)

µN (pi)

)
+ ln

(
1

α(pi)

∫
{pi}×Y

s(pi, y)dπ

)]
(6)

=

∫
X

ln

(
dα

dµN

)
dµN
dα

dα+

∫
X

AµN

where

A(pi) = ln

(
1

α(pi)

∫
{pi}×Y

s(pi, y)dπ

)
.

Note that if α(pi) = 0, then
∫

ln
(
dα
dµ

)
dµ = −∞, in which case A(pi) may be

undefined, but we agree that F (π) = −∞.

2.2. Solutions are Optimal Transport Plans. (Cf. [10, section 3].) Suppose
that π is a maximizer for F, and s is a positive, continuous function. Define

c(x, y) = − ln s(x, y).

Recall that a measure π ∈ P (X × Y ), is a solution to the optimal transportation
problem pairing the measures µ and ν, when π minimizes∫

X×Y
c(x, y)dπ
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under the constraint

πX = µ

πY = ν.

By Kantorovich duality, we have that, [11, Theorem 5.10 (iii)]

min
π∈P (X×Y )

∫
c(x, y)dπ = max

ϕ∈L1(X,αN )

∫
Y

ϕc(y)dν −
∫
X

ϕ(x)dµ.

where ϕc is the ”cost-transform” of ϕ. This is a general fact. For many cost
functions of interest (for example c(x, y) = |x− y|2 /2) the functions ϕc and ϕ are
determined uniquely up to a constant.

Proposition 2.3. The measure π is an optimal plan, pairing α and ν.

Proof. We proceed as in [11, proof of Theorem 5.10, step 3 on page 65]. We show
that π is c-cyclically monotone.

Suppose that

{(x1, y1), ..., (xn, yn)} ⊂ Supp(π).

We would like to show that
N∑
i=1

c (xi, yi) ≤
N∑
i=1

c (xi, yi−1)

(using convention that y0 = yN ). Moving a bit of mass from (x1, y1) to (x2, y1)
will preserve the right marginal condition, but cannot increase the functional (4),
by maximality. Because (x1, y1) ∈ Supp(π), there is some mass available to move.
Choose an arbitrarily small set Bε near (x1, y1) in y and consider the competing
family of measures for t ∈ [0, 1] :

π(t) = {ν̃1(t), ν̃2(t), ν3, ..., νN}
ν̃1 = ν1 − tν1|Bε

ν̃2 = ν2 + tν1|Bε
.

Clearly π(t) is a path of admissible measures, so we can take a one-sided derivative
of (4) with respect to t :

0 ≥ dF

dt
|t=0 =

1

N

[
−
∫
{p1}×Bε

s(x1, y)dν1∫
{p1}×Y s(x1, y)dν1

+

∫
{p1}×Bε

s(x2, y)dν1∫
{p2}×Y s(x2, y)dν2

]
.

That is

0 ≥

[
− 1
ν1(Bε)

∫
{p1}×Bε

s(x1, y1)dν1∫
{p1}×Y s(x1, y)dν1

+

1
ν1(Bε)

∫
{p1}×Bε

s(x2, y1)dν1∫
{p2}×Y s(x2, y)dν2

]
.

Choosing Bε small, since s is continuous, the average values in the numerator must
converge to point values, and in the limit we see

(7)
s(x1, y1)∫

{p1}×Y s(x1, y)dν1
≥ s(x2, y1)∫

{p2}×Y s(x2, y)dν2
.

Then we have

ln s(x1, y1)− ln s(x2, y1) ≥ ln

∫
{p1}×Y

s(x1, y)dν1 − ln

∫
{p2}×Y

s(x2, y)dν2
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or

c(x1, y1)− c(x2, y1) ≤ lnκ1 − lnκ2.

By relabeling,

c(x2, y2)− c(x3, y2) ≤ lnκ2 − lnκ3,

...

c(xN , yN )− c(x1, yN ) ≤ lnκN − lnκ1.

Summing, we have
N∑
i=1

c(xi, yi)−
N∑
i=1

c(xi, yi−1) ≤ 0.

�

Corollary 2.4. Suppose that

s(x, y) = e−|x−y|
2/2

and X,Y ⊂ Rn. Then the solution maximizing (4) can be described as

νi = ν|Ei

where each Ei is a Laguerre cell, defined as the subgradient of a convex function ϕ
at point xi.

In particular solutions to this type of bargaining solution are pure, in the sense
that a generic resource will not be split between two players.

We won’t prove this directly, but refer the reader to [11, Chapter 5] and [1,
Section 2]. We include a condensed recap of [1, Section 2] which will help our
discussion moving forward: Suppose P ⊂ Rn is a finite set of points, and Y ⊂ Rn.
Given a function ϕ defined on P, define

ϕKY
= max

{
ψ ∈ KY ;ψ|P ≤ ϕ|P

}
where

KY =
{
ψ∗;ψ : Y → R̄

}
is the set of functions which are Legendre-Fenchel transforms of functions on Y,
which are necessarily convex. Define

KY (P ) = {ϕ : P → R;ϕ = ϕKY
|P }

and

LagϕP (p) := {y ∈ Rn;∀q ∈ P,ϕ(q) ≥ ϕ(p) + 〈q − p|y〉} .
For normalization, we define

KY (P )0 = {ϕ ∈ KY (P ); minϕ = 0} .

Lemma 2.5. [1, Lemma 2.2] Let P be a finite point set. A function ϕ on P belongs
to KY (P ) if and only if for every p in P, the intersection LagϕP (p)∩Y is non-empty.
Moreover, if this is the case, then

∂ϕK(p) = LagϕP (p) ∩ Y.
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2.3. Reformulating the problem again. Now that we have established that the
solution must be an optimal transport plan, we may formulate the problem over
the space of optimal transport plans. First, we need

Lemma 2.6. A maximizing solution to (4) exists, and is unique.

Proof. The constraint πY = ν is linear on the set of nonnegative probability mea-
sures, which form a compact convex set. For each i, the functional

fi =

∫
{pi}×Y

s(pi, y)dπ

is clearly linear in the measure π. It follows that the sum of logarithms is strictly
concave. A concave function on a convex compact set achieves its maximum value,
which is unique by strict concavity. �

It is clear that the maximizing measure must be supported on P × Y : Moving
any mass from a point not in P to a point on P will increase the value of F. By
Kantorovich duality, the optimal transport plans with target ν can be parameterized
by convex functions on the set P, which is just a set of N values. The functional
can be expressed as follows.

(8) F̃N (ϕ) =
1

N

N∑
i=1

[
ln

(
ν(Ei)

µN (pi)

)
+ ln

(
1

ν(Ei)

∫
Ei

s(pi, y)dν

)]
where

Ei = LagϕP (pi).

We now offer a second formulation of the problem.

Problem 2.7. [ Nash bargaining problem, Version 2 ] : Maximize (8) over the
space of functions KY (P )0.

2.4. Absolutely continuous pushforward measures. Given a potential func-
tion ϕ ∈ KY (P )0, we have a Laguerre decomposition of Y. The subgradient map
is set-valued, so one cannot define the pushforward directly. However, following
[1], if we have chosen a background measure ν, we can “average” over the Laguerre
cell to define an absolutely continuous pushforward measure.

Given any decomposition of Y into cells Ei, each with positive measure, define
the following probability measure on Y : For measurable Z ⊂ Y,

(9) βϕ(Z) =
1

N

N∑
i=1

ν(Ei ∩ Z)

ν(Ei)
.

In the measure π, which is optimal between α and ν, each cell {pi}×Ei has measure
ν(Ei). By multiplying each piece by

1

N
/ν(Ei)

we get a new measure, π′, which has the same support as π, but now has marginals

(π′)X = µN

(π′)Y = βϕ.

This means that the set-valued mapping induced by the subgradient of ϕ is an
optimal transport mapping not only between α and ν , but also between µN and
βϕ.
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3. Limits of finite source solutions

Our next goal is to take a limit of solutions, when the set of points is drawn
from a distribution µ and the number of points becomes infinite. In the following
we assume that X,Y ⊂ Rn are both bounded convex regions, and that µ, ν are
probability measures on X,Y respectively, each of which are absolutely continuous
with respect to Lebesgue measure, with densities bounded away from zero. For
each N, choose a set of points PN from X and define the measure

µN =
1

N

N∑
i=1

δpi .

In the sequel we will assume that µN → µ weakly on X. By arguments in the
previous section, for each N we have

πN ∈ P (X × Y )(10)

ϕN ∈ KY (P )0

αN ∈ P (X)

βϕN
∈ P (Y )

each of which are unique and can be used to identify the solution. We will see
that when µ, ν are nice measures, all four of the objects (10) converge to limiting
objects, respectively, each of which uniquely defines a solution on the continuous
space X × Y.

Inspecting (6), note the following. The first term is the relative entropy of a
known measure µ with respect to a measure α, to be determined. The second term
is the integral of the natural log of the average of an exponential function, over a
small cell. As the size of the cells becomes smaller, one expects the average to
recover the value, and the second term will become the negative total cost of the
mass transport plan between µ and its image β under the mapping, which is also
to be determined. Under changes of measures

µ→ β

α→ ν

the first term becomes the negative relative entropy of β with respect to the measure
ν. Thus we may formulate the problem by trying to minimize the following function
over the set of probability measures on Y .

F̂ : P (Y )→ R−

F̂ (·) = −Hv(·)−W 2(µ, ·).(11)

The concave functional F̂ will have a unique maximizer on P (Y ). Define

β̂ = arg max F̂ (·)
and choose ϕ̂ such that

β̂ = (∇ϕ̂)# µ.

Our main theorem is the following.

Theorem 3.1. Let πN be a sequence of maximizers to (4), and let βN be the
associated absolutely continuous right marginals (9), Then

F̂ (βN )→ F̂ (β̂).
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In particular, because F̂ is strictly concave,

βN → β̂.

In this case, choose ϕ̂ such that

β̂ = (∇ϕ̂)# µ.

We define ϕ̂ as the potential solution, ∇ϕ̂ as the map solution, and the measure
π = (I ×∇ϕ̂)# µ ∈ P (X × Y ) as the measure solution of the Nash bargaining
problem.

3.1. Outline of Proof. We outline four steps, and then combine these in step 5
to get the proof. The detailed proof of steps 1-4 will appear in section 4.

Note that this result almost follows from [1, Theorem 4.1]. Instead of a pure
Wasserstein term, however, in our problem we have a term that should converge to a
Wasserstein term, provided the measures concentrate on the graph of a map. So we
must justify that the maximimizers of our finite problem are indeed concentrating
on the graph of map. We reproduce some, but not all of the proof.

Step 1. The functional F̂ has maximizer, β̂. The density dβ̂
dν is Lipschitz

continuous.
This is essentially [9, Propostion 7.32, Proposition 8.7] applied when τ = 1

Step 2. There is a sequence of optimal transportation plans pairing µN with β̂.

To these we can associate a function ϕ̂N and an absolutely continuous measure β̂N.
Then β̂N → β̂ and F̂ (β̂N ) → F (β̂). The associated Laguerre cells have diameters
which go uniformly to 0.

Step 3. For the maximizers ϕN of the finite problem, we can also associate an
absolutely continuous measure βN (16). The limits of both exist, and the diameters
of the associated Laguerre cells go uniformly to 0.

Step 4. Because the diameters of the Laguerre cells go to zero, the second term
in the F̃N functional (8) (defined on ϕN or ϕ̂N ) converges to the second term in in

the F̂ functional (defined on the associated βN ). That is

(12)

∣∣∣∣∣ 1

N

N∑
i=1

ln

(
1

ν(Ei)

∫
Ei

s(pi, y)dν(y)

)
−W 2(µN , βN )

∣∣∣∣∣→ 0.

It follows that ∣∣∣F̂ (βN )− F̃N (ϕN )
∣∣∣→ 0,(13) ∣∣∣F̂ (β̂N )− F̃N (ϕ̂N )
∣∣∣→ 0.(14)

Step 5. Proof of Theorem. Choose ε > 0 : Because we have chosen ϕN as a
maximizer for (8) we have

(15) F̃N (ϕN ) ≥ F̃N (ϕ̂N ).
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Thus for N large depending on ε,

F̂ (βN ) ≥ F̃N (ϕN )− ε by (13)

≥ F̃N (ϕ̂N )− ε, by (15)

≥ F̂
(
β̂N

)
− 2ε, by (14)

≥ F̂
(
β̂
)
− 3ε, by step 2.

Thus,

lim
N→∞

F̂ (βN ) ≥ F̂
(
β̂
)
.

But F̂
(
β̂
)

is the maximum. By strict concavity, it follows that βN → β̂. Thus

β = β̂.

4. Proof details

Unless otherwise specified, c will refer to an arbitrary cost function

c : X × Y → R

and Wc will refer to the Wasserstein distance, given the cost c. The cost c is
assumed to have global bounds and global Lipschitz bounds. The results of
Step 1 should hold for general cost c, whereas the results in Step 2 and 3 rely on
Caffarelli’s regularity theory for c = |x− y|2 /2.

4.1. Step 2. This is essentially [1, Steps 4 and 5, section 4]. In short: by Brenier’s

Theorem, we may find φN such that ∇φN β̂ = µN . Because µN → µ, the potentials
φN converge uniformly. It follows that the Legendre transforms ϕ̂N converge
uniformly as well, to ϕ̂. If the diameter of the Laguerre cells does not shrink
to zero, there will be a line segment on which the convex potential ϕ̂ is linear.
This contradicts Caffarelli’s regularity result [3], which ensures that the potential

defining the mapping between the absolutely continuous measures µ and β̂ must
be strictly convex.

Each φN defines a set of Laguerre cells {Ei} . We can define a measure:

β̂N (Z) =
1

N

N∑
i=1

ν(Ei ∩ Z)

ν(Ei)

which has the property that

∇φN β̂N = µN .

The densities dβ̂N

dν will converge pointwise uniformly to dβ̂
dν , because the density

dβ̂N

dν (y) is simply the average of the continuous density of dβ̂dν over the cell containing

y, and the cell diameters are shrinking to zero. It follows quickly that F̂ (β̂N )→
F̂
(
β̂
)
.
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4.2. Step 3. For each finite player Nash bargaining problem, we choose ϕN max-
imizing (8), and obtain a set of Laguerre cells {Ei} . As before, we construct a
probability measure on Y

(16) βN (Z) =
1

N

N∑
i=1

ν(Ei ∩ Z)

ν(Ei)
.

We would like to conclude these βN → β, but we do not yet have a unique limit β.
We need to use properties of βN to conclude properties of possible limits β.

Claim 4.1. The measures αN are uniformly mutually absolutely continuous with
respect to µN .

Proof. Proceeding as in the proof of Proposition 2.3, we have∫
Bε
s(p1, y)dν∫

E1
s(p1, y)dν

≥

∫
Bε
s(p2, y)dν∫

E2
s(p2, y)dν

or ∫
E2
s(p2, y)dν∫

E1
s(p1, y)dν

≥

∫
Bε
s(p2, y)dν∫

Bε
s(p1, y)dν1

≥ min s(x, y)

max s(x, y)
> 0.

Similarly, ∫
E1
s(p1, y)dν∫

E2
s(p2, y)dν

≥ min s(x, y)

max s(x, y)
> 0

so also

ν(E1)

ν(E2)
≥

1
max s(x,y)

∫
Y
s(p1, y)dν2

1
min s(x,y)

∫
Y
s(p2, y)dν1

>

[
min s(x, y)

max s(x, y)

]2

= a0 > 0.

This will be true for any pair, so the ratios of the measures is uniformly bounded:

(17)
a0

a0 +N − 1
≤ α(pi) ≤

1

1 + (N − 1)a0
.

�

Claim 4.2. The measures αN have a weak limit α which is absolutely continuous
with respect to µ. The density dα/dµ is bounded away from zero.

Proof. On the compact space X, the Wasserstein metric is compact, and equivalent
to weak topology, so there is a weak limit α. A straightforward argument in the
spirit of Littlewood’s principles using (17) shows that for all measurable E,

a0µ(E) ≤ α (E) ≤ 1

a0
µ(E).

�

Next we consider the convergence of ϕN . In order to extend these to X, we
denote

ϕ̄N = max
{
ψ ∈ KY : ψ|P ≤ ϕN |P

}
.

Claim 4.3. The functions ϕ̄N converge uniformly on compact subsets of X.

Proof. This follows from the fact that (KY )0 is compact: The space of convex
functions with subgradients in a bounded set is compact up to addition of a con-
stant. �
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Claim 4.4. Let ϕ = lim ϕ̄N . Then

(∇ϕ)# α = ν.

Proof. We consider the dual problem (cf. [11, Theorem 5.10 (iii)]). For each N,
we have

min
π∈P (X×Y )
πX=αN
πY =ν

∫
c(x, y)dπ = max

ϕ∈L1(X,αN )

∫
Y

ϕc(y)dν −
∫
X

ϕ(x)dαN ,

which is realized by∫
c(x, y)dπN =

∫
Y

ϕcN (y)dν −
∫
X

ϕN (x)dαN .

Now the set of cost-transpose functions {ϕc;ϕ : X → R} is also compact up to
addition of a constant. Thus the functions ϕcN converge uniformly as well. Taking
all limits and letting π be the weak limit of πN , we have∫

c(x, y)dπ =

∫
Y

ϕc(y)dν −
∫
X

ϕ(x)dα.

By duality, it follows that ϕ describes the optimal map between α and ν. In
particular, for c = |x− y|2 /2 we conclude that (∇ϕ)# α = ν. �

Now, we simply define

(18) β := (∇ϕ)# µ.

Despite knowing less about the regularity of β than we did for β̂ in Step 2, we
may repeat the essential portion of the argument found in [1]. Caffarelli’s strict
convexity result [3] only requires the densities are bounded and bounded away from
zero, which is true by Claim 4.1 for α and ν. We conclude that the potential ϕ is
strictly convex and that the Laguerre cells associated to ϕN must have vanishing
diameters.

4.3. Step 4. For either ϕN or ϕ̂N , note that for each cell Ei the following holds
for pi and any yi ∈ Ei :∣∣∣∣s(pi, yi)− 1

ν(Ei)

∫
Ei

s(pi, y)dν(y)

∣∣∣∣ ≤ oscy∈Ei
s(pi, y).

The average value of the cost over any set must be larger than

b0 = e−maxX×Y c(x,y).

It follows immediately by the fundamental theorem of calculus that∣∣∣∣ln(s(pi, yi)− 1

ν(Ei)

∫
Ei

s(pi, y)dν(y)

)
− ln s(pi, yi)

∣∣∣∣ ≤ 1

b0
oscy∈Ei

s(pi, y).

Now for any set of choices of {yi ∈ Ei}
(19)∣∣∣∣∣ 1

N

N∑
i=1

ln

(
1

ν(Ei)

∫
Ei

s(pi, y)dν(y)

)
− 1

N

N∑
i=1

ln s(pi, yi)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

1

b0
oscy∈Ei

s(pi, y).
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The utility function is continuous, so as the diameters of Ei shrink, so does the
right hand side of (19). On the other hand

1

N

N∑
i=1

ln s(pi, yi) = −
∫
X

c(xi, yi)dµN .

The cost function is continuous, and the values yi are being chosen from the sub-
gradient of ∇ϕN (pi), and µN → µ, so we conclude

(20) lim
N→∞

1

N

N∑
i=1

ln

(
1

ν(Ei)

∫
Ei

s(pi, y)dν

)
= −

∫
X

c(x,∇ϕ(x))dµ(x).

This proves the first claim in Step 4.
Next, note that

−Hν(βN ) = −
N∑
i=1

∫
Ei

ln

(
1

N
/ν(Ei)

)
1

N
/ν(Ei)dν

= −
N∑
i=1

ln

(
1

N
/ν(Ei)

)
1

N

=
1

N

N∑
i=1

ln

(
ν(Ei)

µN (pi)

)
.(21)

Thus, using (20),(18), recalling (11), and (8)

lim
N→∞

(
F̃N (ϕN )− F̂ (βN )

)
= lim
N→∞

(
1

N
ln

(
1

ν(Ei)

∫
Ei

s(pi, y)dν

)
+W 2(µ, βN )

)
= −

∫
c(x,∇ϕ(x))dµ+ lim

N→∞
W 2(µ, βN )

= −W 2(µ, (∇ϕ)# µ) +W 2(µ, β)

= 0.

This proves (13). A nearly identical argument proves (14).

5. A Fourth Order PDE and smoothness of solutions

In this section we observe that the function ϕ satisfies an elliptic quasilinear
fourth order PDE and enjoys derivative estimates of all orders.

Given a smooth probability measure µ on X, one can parameterize the space of
probability measures on Y by convex potentials ϕ on X : For any β, we can solve
the optimal transportation problem pairing µ with β, obtaining ϕ such that

(22) β = (∇ϕ)# µ.

On the other hand, for any convex ϕ the subgradient mapping defines a probability
measure via (22). Using this, we can insert ϕ into the functional F̂ :

F̂ (ϕ) = −
∫
Y

ln

(
dβ

dν
(y)

)
dβ

dν
(y)dν(y)− 1

2

∫
X

‖x−∇ϕ(x)‖2 dµ(x).

= −
∫
Y

ln

(
dβ

dν
(y)

)
dβ(y)− 1

2

∫
X

‖x−∇ϕ(x)‖2 dµ(x).
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Now ∇ϕ is a change of measure, so

F̂ (ϕ) = −
∫
X

ln

(
dβ

dν
(∇ϕ(x))

)
dµ(x)− 1

2

∫
X

‖x−∇ϕ(x)‖2 dµ(x)

= −
∫
X

ln

(
µ(x)

det(D2ϕ(x))ν(∇ϕ(x))

)
dµ(x)− 1

2

∫
X

‖x−∇ϕ(x)‖2 dµ(x).

= −
∫
X

[
lnµ(x)− ln det(D2ϕ(x))− ln ν(∇ϕ(x))

]
dµ(x)− 1

2

∫
X

‖x−∇ϕ(x)‖2 dµ(x).

Now consider a compactly supported variation:

ϕt = ϕ(x) + tη(x)

for some compactly supported smooth test function η. We compute

dF̂ (ϕt)

dt
|t=0 = −

∫
X

[
−ϕijηij −

1

ν(∇ϕ)
∇ν(∇ϕ) · ∇η

]
dµ−

∫
X

(x−∇ϕ) · ∇ηdµ

=

∫
X

{
∂i∂j

(
µϕij

)
+ div

(
−µ 1

ν(∇ϕ)
∇ν(∇ϕ) + µ (x−∇ϕ)

)}
ηdx.

Here ϕij is the inverse of the Hessian matrix ϕij . Now if the measure β = (∇ϕ)# µ
is a maximizer, any compactly supported variation will not change the functional
to first order, so we have an Euler-Lagrange equation:

∂i∂j
(
µϕij

)
+ div

(
µ

1

ν(∇ϕ(x))
∇ν(∇ϕ(x)) + µ (x−∇ϕ)

)
= 0.

This becomes an equation on det(D2ϕ(x)) : Write the first term as

∂i∂j
(
µϕij

)
= ∂i∂j

(
µ

Cijϕ
detD2ϕ(x)

)
where

Cijϕ = detD2ϕ(x)ϕij

is the (divergence-free) cofactor matrix. We see

∂i∂j
(
µϕij

)
= L

(
µ(x)

detD2ϕ(x)

)
where

L = Cij∂i∂j

the equation becomes

(23) L

(
µ(x)

detD2ϕ(x)

)
= div

(
µ(x)

1

ν(∇ϕ(x))
∇ν(∇ϕ(x))− µ(x) (x−∇ϕ(x))

)
.

Now the density dβ̂
dν must be Lipschitz continuous [9, Prop. 8.7]. It follows that

the potential ϕ satisfying

det(D2ϕ(x)) =
µ(x)

β̂(∇ϕ(x))

will be C2,α, for any α < 1, with estimates on any interior set [3]. In particular,
the cofactor matrix defining L is uniformly elliptic. Thus the equation (23) is
uniformly elliptic with Hölder coefficients. Also note that because ϕ ∈ C2,α, the
right hand side of (23) is C0,α. Thus we can apply the classical Schauder theory
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[5, Theorem 6.19] and conclude that detD2ϕ(x) is itself C2,α. Repeating these
two steps gives estimates of arbitrarily high order.
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