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Abstract. For a submanifold
Σ ⊂ RN

Belkin and Niyogi showed that one can approximate the Laplacian operator using
heat kernels. Using a definition of coarse Ricci curvature derived by iterating
Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the
same way. More generally, on any metric measure space, we are able to approximate
a 1-parameter family of coarse Ricci functions that include the coarse Bakry-Emery
Ricci curvature.
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1. Introduction

In [BN08], Belkin and Niyogi show that the graph Laplacian of a point cloud of
data samples taken from a submanifold in Euclidean space converges to the Laplace-
Beltrami operator on the underlying manifold. (See also [HAvL05].) Our goal in
this paper is to demonstrate that this process can be continued to approximate Ricci
curvature as well. This is a step towards answering a question of Singer and Wu
[SW12, pg. 1103] , in principle allowing one to approximate the Hodge Laplacian on
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1-forms. The Hodge Laplacian allows one to extract certain topological information,
thus we expect our result to have applications to manifold learning.

To do this, we need to use a modified notion of coarse Ricci curvature defined in
[AW17]. Coarse Ricci curvature is a quantity that is derived from a Laplace-type
operator and defined on pairs of points rather than tangent vectors, thus it can be
defined on any metric measure space. We define a family of coarse Ricci curvature
operators which depend on a scale parameter t. We show that when taken on a smooth
manifold embedded in Euclidean space, these operators converge to the corresponding
smooth Ricci curvature operators as t→ 0.

Our goal is to reconstruct the Ricci using the distance function on the ambient
space, and approximation of the Laplacian. A problem arises in that the ambient
distance squared function manifests an error at fourth order, see [BN08, Lemma 4.3]
Because the definition in [AW17] requires five derivatives to recover Ricci tensor, we
have to modify this to a quantity that recovers the tensor using only three derivatives.

More specifically, by iterating the approximate Laplacian operators in [BN08] one
can construct an approximate Γ2 operator, and test this operator on a set of “linear”
functions. This defines a coarse Ricci curvature on any two points from a submanifold.
This approach recovers the Ric∞ tensor and can be modified to recover the standard
Ricci curvature as well, provided the volume density is smooth.

In this paper we accomplish two things. First, following [BN08] we define a coarse
Ricci operator at scale t on any metric measure space. Second, we show that these
operators converge to the intrinsic coarse Ricci, as t → 0, when taken on a fixed
smooth submanifold. In [AW] we show there exists an explicit choice of scales tn → 0
such that the quantities converge almost surely when computed from a set of n points
sampled from a smooth probability distribution on the manifold.

The motivation for the paper stems from both the theory of Ricci lower bounds on
metric measure spaces and the theory of manifold learning. For a more extensive
background on the motivation for coarse Ricci and relation to Ricci curvature lower
bounds and some other motivating problems, see [AW] and [AW17].

2. Preliminaries and statement of results

2.1. Iterated Carré du Champ. Given an operator L we define the Carré du
champ as follows.

(2.1) Γ(L, u, v) =
1

2
(L(uv)− L(u)v − uL(v)) .

We will also consider the iterated Carré du Champ introduced by Bakry and Emery
[BÉ85] denoted by Γ2 and defined by

(2.2) Γ2(L, u, v) =
1

2
(L(Γ(L, u, v))− Γ(L,Lu, v)− Γ(L, u, Lv)) .

When L is the rough Laplacian with respect to the metric g, then

Γ(∆g, u, v) = 〈∇u,∇v〉.
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Notation 2.1. When considering the operators (2.1) and (2.2) we will use the slightly
cumbersome three-parameter notation, as the main results will be stated in terms of
a family of operators {Lt}.

2.2. Coarse Ricci Curvature. In this section we provide a definition of coarse Ricci
curvature on general metric measures spaces, using a family of operators which are
intended to approximate a Laplace operator on a space at scale t. The coarse Ricci
curvature will then be defined on pairs of points. To obtain a quantity for the operator
(2.2), we need a function to evaluate. For submanifolds in Euclidean space, we use a
linear function whose gradient is the vector that points from a point x to a point y.
On a genereal metric space X, given x, y ∈ X define

fx,y(z) =
1

2

(
d2(x, y)− d2(y, z) + d2(z, x)

)
.

Note that in Euclidean space this is

(2.3) fx,y(z) = 〈y − x, z〉.
This leads us to the following definition of coarse Ricci curvature.

Definition 2.2. Given an operator L we define the coarse Ricci curvature for L as

RicL(x, y) = Γ2(L, fx,y, fx,y)(x).

We recall the main results from [AW17].

Theorem 2.3. Let
∆ρv = ∆gv − 〈∇ρ,∇v〉g

be the wieghted Laplacian and let

Ric∞ = Ric+∇2
gρ

Then

(2.4) Ric∞(γ′ (0) , γ′ (0)) =
1

2

d2

ds2
Ric∆ρ(x, γ (s)),

and

(2.5) Ric∞ ≥ K

if and only if
Ric∆ρ(x, y) ≥ Kd2(x, y).

As mentioned in the introduction, the ambient distance squared function osculates
the instrinsic distance squared function only to third order on the diagonal along the
submanifold. So the above formula could manifest some error terms. To side-step
this, we appeal to the Bochner formula, which says

Γ2(∆g, f, f) = Ric(∇f,∇f) + ‖∇2f‖2.

We note that if we evaluate Γ2 on functions with vanishing Hessian at a point, we
can recover the Ricci curvature exactly. For submanifolds in Euclidean space, we
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normalize the functions (2.3) to linear function whose gradient is the unit vector that
points from a point x to a point y. In particular, given x, y

Fx,y(z) =
1

2

d2(y, z)− d2(x, z)− d2(x, y)

d(x, y)
.

That is

(2.6) Fx,y(z) = 〈 y − x
|y − x|

, z〉.

This leads us to the following definition of life-sized coarse Ricci curvature.

Definition 2.4. Given an operator L we define the life-sized coarse Ricci curvature
for L as

RICL(x, y) = Γ2(L, Fx,y, Fx,y)(x).

As we will see, this also can be used to recover the Ricci curvature, without taking
any derivatives.

2.2.1. Approximations of the Laplacian, Carré du Champ and its iterate. We now
construct operators which can be thought of as approximations of the Laplacian on
metric measure spaces. This construction is a slight modification of the approximation
constructed by Belkin-Niyogi in [BN08] and more generally Coifman-Lafon in [CL06].
Consider a metric measure space (X, d, µ) with the Borel σ-algebra such that µ(X) <
∞. Given t > 0, let θt be given by

(2.7) θt(x) =

∫
X

e−
d2(x,y)

2t dµ(y).

We define a 1-parameter family of operators Lt as follows: given a function f on X
define

(2.8) Ltf(x) =
2

tθt(x)

∫
X

(f(y)− f(x)) e−
d2(x,y)

2t dµ(y).

With respect to this Lt one can define a Carré du Champ on appropriately integrable
functions f, h by

(2.9) Γ(Lt, f, h) =
1

2
(Lt(fh)− (Ltf)h− f(Lth)) ,

which simplifies to

(2.10) Γ(Lt, f, h)(x) =
1

tθt(x)

∫
X

e−
d2(x,y)

2t (f(y)− f(x))(h(y)− h(x))dµ.

In a similar fashion we define the iterated Carré du Champ of Lt to be

(2.11) Γ2(Lt, f, h) =
1

2
(Lt(Γ(Lt, f, h))− Γ(Lt, Ltf, h)− Γ(Lt, f, Lth)) .

Remark 2.5. This definition of Lt differs from Belkin-Niyogi operator in that we
normalize by θt(x) instead of (2πt)d/2 for an assumed manifold dimension d.
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2.3. Statement of Results. We will consider a closed, smooth, embedded subman-
ifold Σ of RN , and the metric measure space will be (Σ, ‖ · ‖, dvol), where

• ‖ · ‖ is the distance function in the ambient space RN ,
• dvolΣ is the volume element corresponding to the metric g induced by the

embedding of Σ into RN .

In addition we will adopt the following conventions

• All operators Lt, Γ(Lt, ·, ·) and Γ2(Lt, ·, ·) will be taken with respect to the
distance ‖ · ‖ and the measure dvolΣ.

The choice of the above metric measure space is consistent with the setting of
manifold learning in which no assumption on the geometry of the submanifold Σ
is made, in particular, we have no a priori knowledge of the geodesic distance and
therefore we can only hope to use the chordal distance as a reasonable approximation
for the geodesic distance. We will show that while our construction at a scale t involves
only information from the ambient space, the limit as t tends to 0 will recover the
life-size coarse Ricci curvature of the submanifold with intrinsic geodesic distance. As
pointed out by Belkin-Niyogi [BN08, Lemma 4.3], the chordal and intrinsic distance
functions on a smooth submanifold differ first at fourth order near a point , so while
much of the analysis is done on submanifolds, the intrinsic geometry will be recovered
in the limit. We are able to show the following.

Theorem 2.6. Let Σd ⊂ RN be a closed embedded submanifold, let g be the Riemann-
ian metric induced by the embedding, and let (Σ, ‖ · ‖, dvolΣ) be the metric measure
space defined with respect to the ambient distance. Then there exists a constant C1

depending on the geometry of Σ and the function f such that

sup
x∈Σ
|Γ2(∆g, f, f)(x)− Γ2(Lt, f, f)(x)| < C1(Σ, D5f)t1/2.(2.12)

Theorem 2.6 will follow from Corollary 3.2 which is proved in Section 3.

Corollary 2.7. With the hypotheses of Theorem 2.6 we have

Ric∆g(x, y) = lim
t→0

Γ2(Lt, fx,y, fx,y)(x).

Theorem 2.6 applies to all functions on the manifold. To obtain the life-size Ricci
curvature we apply these to Fx,y to obtain the following.

Theorem 2.8. Let Σd ⊂ RN be a closed embedded submanifold, and let g be the
metric induced by the embedding. Let γ(s) be a unit speed geodesic in Σ such that
γ(0) = x. There exists constants C2, C3 depending on the geometry of Σ such that

|Ric(γ′(0), γ′(0))− RICLt(x, γ(s))| ≤ C2t
1/2 + C3s.

This will be proved in section 3.4.

2.3.1. Smooth Metric Measure Spaces and non-Uniformly Distributed Samples. Con-
sider a smooth metric measure space (M, g, e−ρdvol) and let ∆ρ be the operator

4ρu = 4gu− 〈∇ρ,∇u〉g.
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In [CL06], the authors consider a family of operators Lαt which converge to 42(1−α)ρ.
Note that a standard computation (cf [Vil09, Page 384]) gives

(2.13) Γ2(42(1−α)ρ, f, f) =
1

2
∆g ‖∇f‖2

g − 〈∇ρ,∇∆gf〉g + 2(1− α)∇2
gρ(∇f,∇f).

We adapt [CL06] to our setting: Recall that

(2.14) θt(x) =

∫
X

e−
d2(x,y)

2t dµ(y),

and define, for α ∈ [0, 1]

(2.15) θt,α(x) =

∫
X

e−
d2(x,y)

2t
1

[θt(y)]α
dµ(y).

We can define the operator

(2.16) Lαt f(x) =
2

t

1

θt,α(x)

∫
e−

d2(x,y)
2t

1

[θt(y)]α
(f(y)− f(x)) dµ(y)

and again obtain bilinear forms Γ(Lαt , f, f) and Γ2(Lαt , f, f). We consider the metric
measure space (Σ, ‖ ·‖, e−ρdvolΣ) where Σd ⊂ RN is an embedded submanifold, ‖ ·‖ is
the ambient distance and ρ is a smooth function on Σ. We again take all the operators
Lt,Γt(Lt, ·, ·) and Γ2(Lt, ·, ·) with respect to the data of (Σ, ‖ · ‖, e−ρdvolΣ).

Theorem 2.9. Let Σd ⊂ RN be an embedded submanifold and consider the smooth
metric measure space (Σ, ‖·‖, e−ρdvolΣ). Let f ∈ C5(Σ) such that ‖f‖C5 ≤M . There
exists C4 = C4(Σ,M, ρ) such that

sup
ξ∈Σ

∣∣Γ2(Lαt , f, f)(ξ)− Γ2(42(1−α)ρ, f, f)(ξ)
∣∣ ≤ C4t

1/2.(2.17)

In particular, if the density is positive and smooth enough, we can still recover the
Ricci curvature, using α = 1 in the above expression.

3. Bias Error Estimates

3.1. Bias for Submanifold of Euclidean Space. In this section we prove Theorem
2.6. The theorem will follow from Proposition 3.1 and Corollary 3.2 below. For
simplicity we will assume that (Σ, dvolΣ) has unit volume. Recall the definitions
(2.7), (2.8), (2.9), (2.10) and (2.11).
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Proposition 3.1. Suppose that Σd is a closed, embedded, unit volume submanifold
of RN . For any x in Σ and for any functions f, h in C5(Σ) we have

(2πt)d/2

θt(x)
= 1 + tG1(x) + t3/2R1(x),

(3.1)

Γ(Lt, f, h)(x) = 〈∇f(x),∇h(x)〉+ t1/2G2(x, J2(f)(x), J2(h)(x))

(3.2)

+ tG3(x, J3(f)(x), J3(h)(x)) + t3/2R2(x, J4(f)(x), J4(h)(x)),(3.3)

Ltf(x) = ∆gf(x) + t1/2G4(x, J3(f)(x)) + tG5(x, J4f(x)) + t3/2R3(x, J5f(x)),(3.4)

where each Gi is a locally defined function, which is smooth in its arguments, and
Jk(u) is a locally defined k-jet of the function u. Also, each Ri is a locally defined
function of x which is bounded in terms of its arguments.

Corollary 3.2. We have the following expansions

Lt(Γ(Lt, f, f))(x) = ∆g‖∇f(x)‖2
g + t1/2R4(x, J5(f)(x)),(3.5)

Γt(Ltf, f)(x) = 〈∇∆gf(x),∇f(x)〉+ t1/2R5(x, J5(f)(x)).(3.6)

3.2. Proof of Proposition 3.1. Our first goal is to fix a local structure which we
will use to define the quantities Gi and Ri and Jk(u) that appear in Proposition 3.1.
Choose a point x ∈ Σ, and an identification of tangent plane TxΣ with Rn. Locally
we may make a smooth choice of ordered orthonormal frame for nearby points in Σ
so that at each point y there now is a fixed identification of the tangent plane. At
each nearby point y ∈ Σ, we can represent Σ as the graph of a function Uy over the
tangent plane TyΣ. Each Uy will satisfy

Uy(0) = 0,(3.7)

DUy(0) = 0.(3.8)

By our choice of identification, the functions Uy are well defined and for y near x and
z ∈ TyΣ near 0, the function (y, z) 7→ Uy(z) has the same regularity as Σ. Fixing
a point x, consider a function f on Σ. The function f is locally well defined as a
function over the tangent plane, i.e.

(3.9) f(y) = f(y, Ux(y)) for y ∈ TxΣ.

With the above identification we obtain coordinates on the tangent plane at x, and
we may take derivatives of f in this new coordinate system to define the m-jet of f
at the point x by

(3.10) Jmf(x) = (f(x), Df(x), ..Dmf(x)) .

More concretely, all derivatives in (3.10) are taken with respect to the variable y in
(3.9). Since Σ is compact, there exists τ0 > 0 such that for every y ∈ Σ we have

(1) The function Uy is defined and smooth on Bτ0(0) ⊂ TyΣ,
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(2) BRN ,τ0(y)∩Σ is contained in the graph of Uy over the ball Bτ0(0) ⊂ TyΣ where
BRN ,τ0(y) is the ball in RN centered at y with respect to the ambient distance.

We will use the following notation: given y ∈ Σ and τ0 > 0 as above, we let

Σy,τ = Σ ∩ {(z, Uy(z)), y ∈ Bτ (0) ⊂ TyΣ} ,(3.11)

in other words, Σy,τ0 is the part of Σ contained in the graph of Uy on Bτ0(0) ⊂ TyΣ.
Observe that with this notation, the statement in (2) above simply says that

BRN ,τ0(y) ∩ Σ ⊂ Σy,τ0 .(3.12)

Observe that for any f ∈ L∞(Σ) we have∫
Σ

f(y)e−
‖x−y‖2

2t dµ(y) =

∫
Σx,τ0

f(y)e−
‖x−y‖2

2t dµ(y)(3.13)

+

∫
Σ\Σx,τ0

f(y)e−
‖x−y‖2

2t dµ(y),(3.14)

and by (2)

(3.15)

∫
Σ\Σx,τ0 (x)

f(y)e−
‖x−y‖2

2t dµ(y) ≤ ‖f‖L∞(Σ)e
− τ

2
0
2t .

Note also that for any polynomial p(z), there is a constant C such that

(3.16)

∣∣∣∣∣
∫
Rd\Bτ0/

√
t

e−‖z‖
2/2p(z)dz

∣∣∣∣∣ ≤ C(p)e−
τ20
2t .

The volume form over TxΣ will be

(3.17) µx(z)dz =
√

det (δij + 〈DiUx(z), DjUx(z)〉)dz.

If in (2.7) we choose our distance to be the ambient distance ‖ · ‖ in RN and the
measure µ to be the volume measure in Σ, the density θt(x) takes the form

θt(x) =

∫
Σ

e−
‖x−y‖2

2t dµ(y).(3.18)

In the following, we will use Tkf(x)(y) to denote the k-th order term in the Taylor
expansion of f at x, in the variable y.
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We now prove (3.1). Observe that

θt(x)−
∫

Σ\Σx,τ0
e−
‖x−z‖2

2t dµ(z)

=

∫
Bτ0

e−(‖z‖2+‖Ux(z)‖2)/2tµx(z)dz

= tn/2
∫
Bτ0/

√
t

e−‖w‖
2/2e−‖Ux(

√
tw)‖2/2tµx(

√
tw)dw

= tn/2
∫
Rd
e−‖w‖

2/2e−‖Ux(
√
tw)‖2/2tµx(

√
tw)dw

− tn/2
∫
Rd\Bτ0/

√
t

e−‖w‖
2/2e−‖Ux(

√
tw)‖2/2tµx(

√
tw)dw.

Now considering (3.17), (3.8) we have

µx(
√
tw) = 1 + tT2µx(0)(w) + t3/2R2µx(0, w),(3.19)

e−
‖Ux(

√
tw)‖2

2t = 1 + tT4

[
e−‖Ux(

√
t·)‖2/2t

]
(0)(w) + t3/2R4

[
e−‖Ux(

√
t·)‖2/2t

]
(0, w).(3.20)

Expanding, collecting lower order terms, integrating and absorbing the exponentially
decaying terms into t3/2R1(x, z) using (3.15) and (3.16) yields (3.1).

Next we prove (3.4). First compute∫
Σ

(f(y)− f(x)) e−
‖x−y‖2

2t dµ(y).∫
Bτ0

(f(y)− f(x)) e−
‖x−y‖2

2t µx(y)dy = td/2
∫
Bτ0/

√
t

e−
‖z‖2
2

(
f(
√
tz)− f(0)

)
µx(
√
tz)dz

Now,

f(
√
tz)− f(0) =

√
tT1f(z) + tT2f(z) + t3/2T3f(z) + t2T4f(z) + t5/2R4(z)(3.21)

and also recall (3.19). (3.20). Note that if A is a symmetric d× d matrix we have the
identity ∫

Rd
e−
‖z‖2
2 zTAzdz = (2π)d/2tr(A),(3.22)

where tr denotes Trace. From this it follows that∫
Rd
e−
‖z‖2
2 T2f(0)(z)dz = (2π)d/2tr(T2f(0)).(3.23)

Again, expanding, collecting lower order terms, integrating odd and even terms, and
absorbing the exponentially decaying terms via (3.15) and (3.16) yields

t−d/2
∫

Σ

(f(y)− f(x)) e−
‖x−y‖2

2t dµ(y) = t (2π)d/2 ∆gf + t3/2G4(J3f(x))

+ t2G5(J4f(x)) + t5/2R3(J5f(x)).
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Combining with (3.1) yields (3.4). A very similar calculation yields (3.2).

Proof of Corollary 3.2. Directly from (3.2)

Lt(Γ(Lt, f, f))(x) = Lt
{
‖∇f‖2 (x) + t1/2G2(x, J2(f)(x)) + tG3(x, J3(f)(x))

}(3.24)

+ t3/2LtR2(x, J4(f)(x))(3.25)

This last term can be bounded directly by the definition of Lt :

t3/2 |LtR(x)| = t3/2
∣∣∣∣1t 2

θt(x)

∫
(R(y)−R(x)) e−

‖x−y‖2
2t dµ(y)

∣∣∣∣
≤
∣∣∣∣t1/2 2

θt(x)
2 ‖R‖L∞

∫
e−
‖x−y‖2

2t dµ(y)

∣∣∣∣
= 4t1/2 ‖R‖L∞ .

The first three terms are differentiable, so can be dealt with directly by (3.4), giving
an expression involving J5(f)(x). The estimate (3.6) follows from a similar argument.
The result follows by combining the above lemmata for the first term, and then
directly bounding the second term. �

3.3. Bias for Smooth Metric Measure Space with a Density. The bias es-
timate Theorem 2.6 for a metric measure space with density will follow from the
following proposition whose proof is very similar to that of Proposition 3.1. Recall
definitions (2.15) and (2.16) .

Proposition 3.3. Let f ∈ C5. We have the following expansions

Lαt f(x) =∆gf(x) + (1− α)〈∇f(x),∇ρ(x)〉g(3.26)

+ t1/2G1(x, J3(f)) + t3/2R1(x, J5(f))

Γα(Lt, f, h)(x) = 〈∇f,∇h〉g + t1/2G2(x, J2(f), J2(h)) + t3/2R2(x, J4(f), J4(h)).

(3.27)

Proof. Following the proof of Proposition 3.1 we have the following expansions

θt(x) = (2πt)d/2e−ρ(x)
(
1 + tG1(x, ρ) + t3/2R1(x, ρ)

)
,(3.28)

θt,α(x) = (2πt)(1−α)d/2e(α−1)ρ(x) (1 + tG2(x, ρ)R2(x, ρ)) ,(3.29)

as t → 0. Also, taking coordinates on the tangent plane of Σ at the point x and
identifying x with 0 we have the expansion

dµx(z)

θt(z)α
= e(α−1)ρ(0)

(
1 + (1− α)〈Dρ(0), z〉+O(‖z‖2)

)
dz,(3.30)

which holds in a small neighborhood of 0. The rest of the proposition follows from a
straightforward computation. �
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Corollary 3.4. We have the following expansions

Lαt (Γα(Lαt , f, h))(x) = ∆〈∇f,∇h〉g(x) + (1− α)〈∇ρ,∇〈∇f,∇h〉g〉g(x)

+ t1/2R3(x, J5(f), J5(h), J5(ρ)),

Γα(Lαt , L
α
t f, h)(x) = 〈∇∆gf,∇h〉g + (1− α)〈∇〈∇ρ,∇f〉g,∇h〉g

+ t1/2R4(x, J5(f), J5(h), J5(ρ))

as t→ 0.

From Corollary 3.4 we obtain Theorem 2.9.

3.4. Convergence of Coarse Ricci to Actual Ricci on Smooth submanifolds.
We now prove Theorem 2.8:

Proof of Theorem 2.8 . Our goal is to show that

|Ric(γ′(0), γ′(0))− RICLt(x, γ(s))| ≤ C1t
1/2 + C2s.

First, note that letting

fs = Fx,γ(s)(·) =

〈
γ(s)− x
|γ(s)− x|

, ·
〉

and

f0 = 〈γ′(0), ·〉
we have

|RICLt(x, γ(s))− Ric(γ′(0), γ′(0))| = |Γ2(Lt, fs, fs)(x)− Ric(γ′(0), γ′(0))|

(3.31)

=

∣∣∣∣∣∣
Γ2(Lt, fs, fs)(x)− Γ2(4g, fs, fs)(x)

+Γ2(4g, fs, fs)(x)− Γ2(4g, f0, f0)(x)
+Γ2(4g, f0, f0)(x)− Ric(γ′(0), γ′(0))

∣∣∣∣∣∣(3.32)

≤ R(J5fs)t
1/2 + C7(Σ)s.(3.33)

Here we have used the following facts:
First,

|Γ2(Lt, fs, fs)(x)− Γ2(4g, fs, fs)(x)| ≤ R(x, J5fs)t
1/2

by Corollary 3.2.
Second, a straightforward computation yields that for any two functions f0, fs

|Γ2(4g, fs, fs)(x)− Γ2(4g, f0, f0)(x)| ≤ (‖f0‖C2 + ‖fs‖C2) ‖fs − f0‖C2

(3.34)

+ ‖f0‖C3 ‖fs − f0‖C1 + ‖fs‖C1 ‖fs − f0‖C3 .(3.35)
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Since the functions f0, fs are ambient linear functions restricted to a submanifold,
the higher derivatives are well-controlled. The derivatives of the difference are
controlled as follows

‖fs − f0‖C3 =

∥∥∥∥〈 γ(s)− x
‖γ(s)− x‖

− γ′(0), ·
〉∥∥∥∥

C3

≤
∥∥∥∥ γ(s)− x
‖γ(s)− x‖

− γ′(0)

∥∥∥∥ ‖z‖C3

where ‖z‖C3 is the norm of the derivatives of the coordinate functions, which is also
controlled by the geometry of Σ. Certainly, for any unit speed curve with curvature
bounded by κ we have ∥∥∥∥ γ(s)− x

‖γ(s)− x‖
− γ′(0)

∥∥∥∥ ≤ κs.

The curvature of any geodesic inside Σ is controlled by the geometry of Σ.
Finally, because

∇f0 = γ′(0)

we have by the Bochner formula

(3.36) Γ2(4g, f0, f0)(x)− Ric(γ′(0), γ′(0)) =
∥∥∇2f0

∥∥2
.

Using the tangent plane as coordinates at a point, it is easy to compute that the
Hessian of any coordinate function vanishes at the origin. The vector γ′(0) is in the
tangent space, so we conclude that (3.36) vanishes.

�
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