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We consider nonlinear 4th-order elliptic equations of double divergence type. We show

that for a certain class of equations where the nonlinearity is in the Hessian, solutions

that are C2,α enjoy interior estimates on all derivatives.

1 Introduction

In this paper, we develop Schauder and bootstrapping theory for solutions to 4th-order

nonlinear elliptic equations of the following double divergence form:

∫
�

aij,kl(D2u)uijηkldx = 0, ∀η ∈ C∞
0 (�) (1.1)

in B1 = B1(0). For the Schauder theory, we require the standard Legendre–Hadamard

ellipticity condition

aij,kl(D2u(x))ξijξkl ≥ �|ξrs|2; (1.2)

while in order to bootstrap, we will require the following condition:

bij,kl(D2u(x)) = aij,kl(D2u(x)) + ∂apq,kl

∂uij
(D2u(x))upq(x) (1.3)
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Regularity Bootstrapping 4325

satisfies

bij,kl(D2u(x))ξijξkl ≥ �1 ‖ξ‖2. (1.4)

Our main result is the following: suppose that conditions (1.1) and (1.4) are met on

some open set U ⊆ Sn×n (space of symmetric matrices). If u is a C2,α solution with

D2u(B1) ⊂ U, then u is smooth on the interior of the domain B1.

One example of such an equation is the Hamiltonian stationary Lagrangian

equation, which governs Lagrangian surfaces that minimize the area functional

∫
�

√
det

(
I + (D2u)TD2u

)
dx (1.5)

among potential functions u. (cf. [9], [10, Proposition 2.2]). The minimizer satisfies a 4th-

order equation, that, when smooth, can be factored into a Laplace type operator on a

nonlinear quantity. Recently in [2], it is shown that a C2 solution is smooth. The results

in [2] are the combination of an initial regularity boost, followed by applications of the

2nd-order Schauder theory as in [1].

More generally, for a functional F on the space of matrices, one may consider a

functional of the form ∫
M

F(D2u)dx.

The Euler–Lagrange equation will generically be of the following double divergence

type:

∂2

∂xi∂xj

(
∂F

∂uij
(D2u)

)
= 0. (1.6)

Equation (1.6) need not factor into 2nd-order operators, so it may be genuinely a 4th-

order double divergence elliptic-type equation. It should be noted that in general, (1.6)

need not take the form of (1.1). It does when F(D2u) can be written as a function of

D2uTD2u (as for example (1.5)). Our results in this paper apply to a class of Euler–

Lagrange equations arising from such functionals. In particular, we will show that if

F is a convex function of D2u and a function of D2uTD2u (such as 1.5 when
∣∣D2u

∣∣ ≤ 1)

then C2,α solutions will be smooth.

The Schauder theory for 2nd-order divergence and non-divergence type elliptic

equations is by now well-developed, see [7], [6] and [1]. For higher-order non-divergence

equations, Schauder theory is available, see [11]. However, for higher-order equations
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4326 A. Bhattacharya and M. Warren

in divergence form, much less is known. One expects the results to be different; for

2nd-order equations, solutions to divergence type equations with Cα coefficients are

known to be C1,α, [7, Theorem 3.13], whereas for non-divergence equations, solutions

will be C2,α [6, Chapter 6]. Recently, Dong and Zhang [4] have obtained general Schauder

theory results for parabolic equations (of order 2m) in divergence form, where the

time coefficients are allowed to be merely measurable. Their proof (like ours) is

in the spirit of Campanato techniques, but requires smooth initial conditions. Our

result is aimed at showing that weak solutions are in fact smooth. Classical Schauder

theory for general systems has been developed, [8, Chapters 5 and 6 ]. However, it

is non-trivial to apply the general classical results to obtain the result we are after.

Even so, it is useful to focus on a specific class of 4th-order double divergence

operators, and offer random access to the nonlinear Schauder theory for these cases.

Regularity for 4th-order equations remains an important developing area of geometric

analysis.

Our proof goes as follows: we start with a C2,α solution of (1.1) whose coefficient

matrix is a smooth function of the Hessian of u. We first prove that u ∈ W3,2 by taking

a difference quotient of (1.1) and give a W3,2 estimate of u in terms of its C2,α norm.

Again by taking a difference quotient and using the fact that now u ∈ W3,2, we prove

that u ∈ C3,α.

Next, we make a more general proposition where we prove a W3,2 estimate for

u ∈ W2,2 satisfying a uniformly elliptic equation of the form

∫ (
cij,kluik + h jl

)
ηjldx = 0

in B1(0), where cij,kl, hkl ∈ W1,2(B1) and η is a test function in B1. Using the fact that

u ∈ W3,2, we prove that u ∈ C3,α and also derive a C3,α estimate of u in terms of its

W3,2 norm. Finally, using difference quotients and dominated convergence, we achieve

all higher orders of regularity.

Definition 1.1. We say an equation of the form (1.1) is regular on U ⊆ Sn×n when the

coefficients of the equation satisfy the following conditions on U:

1. The coefficients aij,kl depend smoothly on D2u.

2. The coefficients aij,kl satisfy (1.2).

3. Either bijkl or −bijkl (given by (1.3)) satisfy (1.4).
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Regularity Bootstrapping 4327

The following is our main result.

Theorem 1.2. Suppose that u ∈ C2,α(B1) satisfies the following 4th-order equation

∫
B1(0)

aij,kl(D2u(x))uij(x)ηkl(x)dx = 0

∀η ∈ C∞
0 (B1(0)).

If aij,kl is regular on an open set containing D2u(B1(0)), then u is smooth on Br(0) for

r < 1.

To prove this, we will need the following two Schauder type estimates.

Proposition 1.3. Suppose u ∈ W2,∞(B1) satisfies the following:

∫
B1(0)

[
cij,kl(x)uij(x) + f kl(x)

]
ηkl(x)dx = 0 (1.7)

∀η ∈ C∞
0 (B1(0)),

where cij,kl, f kl ∈ W1,2(B1), and cij,kl satisfies (1.2). Then u ∈ W3,2(B1/2) and

‖D3u‖L2(B1/2) ≤ C
(
||u||W2,∞(B1), ‖f kl‖W1,2(B1), ‖cij,kl‖W1,2 , �1

)
.

Proposition 1.4. Suppose u ∈ C2,α(B1) satisfies (1.7) in B1 where cij,kl, f kl ∈ C1,α(B1) and

cij,kl satisfies (1.2). Then we have u ∈ C3,α(B1/2) with

||D3u||C0,α(B1/4) ≤ C
(
1 + ||D3u||L2(B3/4)

)

and C = C(|cij,kl|Cα(B1), | f kl|Cα(B1), �1, α) is a positive constant.

We note that the above estimates are appropriately scaling invariant; thus, we

can use these to obtain interior estimates for a solution in the interior of any sized

domain.
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4328 A. Bhattacharya and M. Warren

2 Preliminaries

We begin by considering a constant coefficient double divergence equation.

Theorem 2.1. Suppose w ∈ H2(Br) satisfies the constant coefficient equation

∫
cik,jl

0 wikηjldx = 0 (2.1)

∀η ∈ C∞
0 (Br(0)).

Then for any 0 < ρ ≤ r there holds

∫
Bρ

|D2w|2 ≤ C1(ρ/r)n||D2w||2L2(Br)

∫
Bρ

|D2w − (D2w)ρ |2 ≤ C2(ρ/r)n+2
∫

Br

|D2w − (D2w)r|2.

Here (D2w)ρ is the average value of D2w on a ball of radius ρ.

Proof. By dilation we may consider r = 1. We restrict our consideration to the range

ρ ∈ (0, a] noting that the statement is trivial for ρ ∈ [a, 1] where a is some constant in

(0, 1/2).

First, we note that w is smooth [5, Theorem 33.10]. Recall [3, Lemma 2, Section 4,

applied to elliptic case]; for an elliptic 4th-order L0

L0u = 0 on BR

�⇒ ‖Du‖L∞(BR/4) ≤ C3(�, n) ‖u‖L2(BR) .

We may apply this to the 2nd derivatives of w to conclude that

∥∥∥D3w
∥∥∥2

L∞(Ba)
≤ C4(�, n)

∫
B1

∥∥∥D2w
∥∥∥2

. (2.2)
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Regularity Bootstrapping 4329

For small enough a < 1. Now

∫
Bρ

∣∣∣D2w
∣∣∣2 ≤ C5(n)ρn

∥∥∥D2w
∥∥∥2

L∞(Ba)

= C5ρn inf
x∈Ba

sup
y∈Ba

∣∣∣D2w(x) + D2w(y) − D2w(x)

∣∣∣2

≤ C5ρn inf
x∈Ba

[
D2w(x) + 2a

∥∥∥D3w
∥∥∥

L∞(Ba)

]2

≤ 2C5ρn
[

inf
x∈Ba

∥∥∥D2w(x)

∥∥∥2 + 4a2
∥∥∥D3w

∥∥∥
L∞(Ba)

]

≤ 2C5ρn
[

1

|Ba| ||D
2w||2L2(Ba)

+ 4a2C4||D2w||2L2(Ba)

]

≤ C6(a, n)ρn||D2w||2L2(B1)
.

Similarly,

∫
Bρ

∣∣∣D2w − (D2w)ρ

∣∣∣2 ≤
∫

Bρ

∣∣∣D2w − D2w(0)

∣∣∣2

≤
∫

Sn−1

∫ ρ

0
r2

∣∣∣D3w
∣∣∣2 rn−1drdφ

= C7ρn+2||D3w||2L∞(Ba). (2.3)

Next, observe that (2.1) is purely 4th order, so the equation still holds when a 2nd-order

polynomial is added to the solution. In particular, we may choose

D2w̄ = D2w −
(
D2w

)
1

for w̄ also satisfying the equation. Then

D3w̄ = D3w;

so by the Poincaré inequality we have

∥∥∥D3w
∥∥∥2

L∞(Ba)
=

∥∥∥D3w̄
∥∥∥2

L∞(Ba)
(2.4)

≤ C4

∫
B1

∥∥∥D2w̄
∥∥∥2 = C4

∫
B1

∥∥∥D2w −
(
D2w

)
1

∥∥∥2
.
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4330 A. Bhattacharya and M. Warren

We conclude from (2.4) and (2.3)

∫
Bρ

∣∣∣D2w − (D2w)ρ

∣∣∣2 ≤ C7ρn+2C4

∫
B1

∥∥∥D2w −
(
D2w

)
1

∥∥∥2
.

�

Next, we have a corollary to the above theorem.

Corollary 2.2. Suppose w is as in the Theorem 2.1. Then for any u ∈ H2(Br), and for

any 0 < ρ ≤ r, there holds

∫
Bρ

∣∣∣D2u
∣∣∣2 ≤ 4C1(ρ/r)n

∥∥∥D2u
∥∥∥2

L2(Br)
+ (

2 + 8C1

) ∥∥∥D2(u − w)

∥∥∥2

L2(Br)
(2.5)

and

∫
Bρ

∣∣∣D2u − (D2u)ρ

∣∣∣2 ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2u − (D2u)r

∣∣∣2 (2.6)

+ (
8 + 16C2

) ∫
Br

∣∣∣D2(u − w)

∣∣∣2 .

Proof. Let v = u − w. Then (2.5) follows from direct computation:

∫
Bρ

|D2u|2 ≤ 2
∫

Bρ

|D2w|2 + 2
∫

Bρ

|D2v|2.

≤ 2C1(ρ/r)n||D2w||2L2(Br)
+ 2

∫
Br

|D2v|2

≤ 4C1(ρ/r)n
[
||D2v||2L2(Br)

+ ||D2u||2L2(Br)

]
+ 2

∫
Br

|D2v|2

= 4C1(ρ/r)n
∥∥∥D2u

∥∥∥2

L2(Br)
+ 2[1 + 2C1(ρ/r)n]

∥∥∥D2v
∥∥∥2

L2(Br)
.
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Regularity Bootstrapping 4331

Similarly,

∫
Bρ

∣∣∣D2u − (D2u)ρ

∣∣∣2 ≤ 2
∫

Bρ

∣∣∣D2w − (D2w)ρ

∣∣∣2 + 2
∫

Bρ

∣∣∣D2v − (D2v)ρ

∣∣∣2

≤ 2
∫

Bρ

∣∣∣D2w − (D2w)ρ

∣∣∣2 + 8
∫

Bρ

∣∣∣D2v
∣∣∣2

≤ 2C2(ρ/r)n+2
∫

Br

|D2w − (D2w)r|2 + 8
∫

Bρ

∣∣∣D2v
∣∣∣2

≤ 2C2(ρ/r)n+2

{
2

∫
Br

∣∣D2u − (D2u)r

∣∣2
+2

∫
Br

∣∣D2v − (D2v)r

∣∣2
}

+ 8
∫

Br

∣∣∣D2v
∣∣∣2

≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2u − (D2u)r

∣∣∣2

+
(
8 + 16C2(ρ/r)n+2

) ∫
Br

∣∣∣D2v
∣∣∣2 .

The statement follows, noting that ρ/r ≤ 1. �

We will be using the following lemma frequently, so we state it here for the

reader’s convenience.

Lemma 2.3. [7, Lemma 3.4]. Let φ be a nonnegative and nondecreasing function on

[0, R]. Suppose that

φ(ρ) ≤ A
[(ρ

r

)α + ε
]
φ(r) + Brβ

for any 0 < ρ ≤ r ≤ R, with A, B, α, β nonnegative constants and β < α. Then for any

γ ∈ (β, α), there exists a constant ε0 = ε0(A, α, β, γ ) such that if ε < ε0 we have for all

0 < ρ ≤ r ≤ R

φ(ρ) ≤ c
[(ρ

r

)γ

φ(r) + Brβ
]

,

where c is a positive constant depending on A, α, β, γ . In particular, we have for any

0 < r ≤ R

φ(r) ≤ c
[
φ(R)

Rγ
rγ + Brβ

]
.

3 Proofs of the Propositions

We begin by proving Proposition 1.3.
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4332 A. Bhattacharya and M. Warren

Proof. By approximation, (1.7) holds for η ∈ W2,2
0 . We are assuming that u ∈ W2,∞, so

(1.7) must hold for the test function

η = −[
τ4uhp

]−hp ,

where τ ∈ C∞
c is a cutoff function in B1 that is 1 on B1/2, and the superscript hp refers

to taking difference quotient in the ep direction. We choose h small enough after having

fixed τ , so that η is well defined. We have

∫
B1

(
cij,kluij + f kl)[τ4uhp

]−hp

kl dx = 0

For h small we can integrate by parts with respect to the difference quotient to get

∫
B1

(
cij,kluij + f kl)hp

[
τ4uhp

]
kldx = 0.

Using the product rule for difference quotients we get

∫
B1

[(
cij,kl(x)

)hpuij(x) + cij,kl(x + hep

)
u

hp

ij + ( f kl)hp
] [

τ4uhp
]
kldx = 0

Letting v = uhp , differentiating the 2nd factor gives

∫
B1

[(
cij,kl(x)

)hpuij(x) + cij,kl(x + hep

)
vij(x) + ( f kl)hp(x)

]

×
[

τ4vkl + 4τ3τkvl + 4τ3τlvk

+4v (τ3τkl + 3τ2τkτl)

]
(x)dx = 0

from which

∫
B1

τ4cij,kl(x + hep)vijvkldx =

−
∫

B1

[(
cij,kl(x)

)hpuij(x) + cij,kl(x + hep)vij(x) + ( f kl)hp(x)
]

×
[

4τ3τkvl + 4τ3τlvk

+4v
(
τ3τkl + 3τ2τkτl

)
]

dx (3.1)

−
∫

B1

[(
cij,kl(x)

)hpuij(x) + ( f kl)hp(x)
]
τ4vkldx.
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Regularity Bootstrapping 4333

First we bound the terms on the right side of (3.1). Starting at the top:

∫
B1

[
(cij,kl(x))hpuij(x) + ( f kl)hp(x)

]
×

[
4τ3τkvl + 4τ3τlvk

+4v (τ3τkl + 3τ2τkτl)

]
dx

≤
[
‖u‖2

W2,∞(B1)
+ 1

] ∫
B1

(∣∣∣(cij,kl(x))hp

∣∣∣2 +
∣∣∣( f kl)hp(x)

∣∣∣2)
dx (3.2)

+ C8(τ , Dτ , D2τ)

∫
B1

(
|Dv|2 + |v|2

)
dx.

Next, by Young’s inequality we have

∫
B1

cij,kl(x + hep)vij(x)× (3.3)

[
4τ3τjvl + 4τ3τlvj + 4v

(
τ3τjl + 3τ2τjτl

)]
dx

≤ C9(τ , Dτ , D2τ , cij,kl)

ε

∫
B1

(
|Dv|2 + v2

)
dx + ε

∫
B1

τ4
∣∣∣D2v

∣∣∣2 dx (3.3)

and also

∫
B1

[
(cij,kl(x))hpuij(x) + ( f kl)hp(x)

]
τ4vkldx

≤ ε

∫
B1

τ4
∥∥∥D2v

∥∥∥2
dx

+ C10

ε

(
||u||2W2,∞(B1)

, |τ |L∞(B1)

) ∫
B1

[
|(cijkl)hp |2 + |(hjl)hp |2

]
dx. (3.4)

Now by uniform ellipticity (1.2), the left-hand side of (3.1) is bounded below by

�

∫
B1

τ4
∥∥∥D2v

∥∥∥2
dx ≤

∫
B1

τ4cij,kl(x + hep)vik(x)vkl(x)dx. (3.5)

Combining all (3.1), (3.2),(3.4), (3.3) and (3.5) and choosing ε appropriately, we get

�

2

∫
B1

τ4
∥∥∥D2v

∥∥∥2
dx

≤ C11

(||τ ||W2,∞(B1), ||u||2W2,∞(B1)

) (∫
B1

|( f kl)hp |2 + |cij,kl|2 + |(cij,kl)hp |2
)

≤ C12

(
||τ ||W2,∞(B1), ||u||2W2,∞(B1)

, || f kl||2W1,2(B1)
,
∥∥∥cij,kl

∥∥∥2

W1,2(B1)
, �

)
.
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4334 A. Bhattacharya and M. Warren

Now this estimate is uniform in h and direction ep so we conclude that the

difference quotients of u are uniformly bounded in W2,2(B1/2). Hence, u ∈ W3,2(B1/2)

and

||D3f ||L2(B1/2)

≤ 2C12

�

(
||τ ||W2,∞(B1), ||u||2W2,∞(B1)

, || f kl||2W1,2(B1)
,
∥∥∥cij,kl

∥∥∥2

W1,2(B1)
, �

)
.

�

We now prove Proposition 1.4

Proof. We begin by taking a difference quotient of the equation

∫
(cij,kluij + f kl)ηkldx = 0

along the direction hm. This gives

∫ [
(cij,kl(x))hmuij(x) + cij,kl(x + hem)uhm

ij (x) + ( f kl)hm
]
ηkl(x)dx = 0,

which gives us the following partial differential equation in uhm
ij :

∫
cij,kl(x + hem)uhm

ij (x)ηkl(x)dx =
∫

q(x)ηkl(x)dx,

where

q(x) = −( f kl)hm(x) − (cij,kl(x))hmuij(x).

Note that q ∈ Cα(B1) and cij,kl(x + hem) is still an elliptic term for all x in B1. For

compactness of notation we denote

g = uhm (3.6)

and replace cij,kl(x + hem) with cij,kl, as the difference is immaterial. Our equation

reduces to ∫
cij,klgijηkldx =

∫
qηkldx (3.7)
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Regularity Bootstrapping 4335

Using integration by parts, we have

∫
cij,klgijηkldx = −

∫
qlηkdx

= −
∫

(q − q(0))lηkdx

=
∫

(q − q(0))ηkldx.

Now for each fixed r < 1 we write g = v + w where w satisfies the following

constant coefficient partial differential equation on Br ⊆ B1 :

∫
B1(0)

cij,kl(0)wijηkldx = 0 (3.8)

∀η ∈ C∞
0 (Br(0))

w = g on ∂Br

∇w = ∇g on ∂Br.

By the Lax–Milgram theorem the above partial differential equation with the given

boundary condition has a unique solution in the space H2
0 . By combining (3.7) and (3.8)

we conclude

∫
Br

cij,kl(0)vijηkldx =
∫

Br

(cij,kl(0) − cij,kl(x))gijηkldx +
∫

Br

qηkldx. (3.9)

Now w is smooth (again see [5, Theorem 33.10]), and g = uhm is C2,α, so v = g−w

is C2,α and can be well approximated by smooth test functions in H2
0 (Br). It follows that

v can be used as a test function in (3.9); on the left-hand side we have by (1.2)

[∫
Br

cij,kl(0)vijvkldx
]2

≥
[
�

∫
Br

|D2v|2dx
]2

.

Defining

ζ(r) = sup
{| cij,kl(x) − cij,kl( y)| : x, y ∈ Br

}
(3.10)

and using the Cauchy–Schwarz inequality we get

[∫
Br

(cij,kl(0) − cij,kl(x))gijvkldx
]2

≤ ζ 2(r)
∫

Br

|D2g|2dx
∫

Br

|D2v|2dx.
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4336 A. Bhattacharya and M. Warren

Using Holder’s inequality

[∫
Br

∣∣(q(x) − q(0))vkl(x)
∣∣ dx

]2

≤
∫

Br

|q(x) − q(0)|2dx
∫

Br

|D2v|2dx.

This gives us

�2
[∫

Br

|D2v|2dx
]2

≤ ζ 2(r)
∫

Br

|D2g|2dx
∫

Br

|D2v|2dx +
∫

Br

|q(x) − q(0)|2dx
∫

Br

|D2v|2dx,

which implies

�2
∫

Br

|D2v|2dx ≤ ζ 2(r)
∫

Br

|D2g|2dx +
∫

Br

|q(x) − q(0)|2dx. (3.11)

Using Corollary 2.2 for any 0 < ρ ≤ r, we get

∫
Bρ

∣∣∣D2g
∣∣∣2 dx ≤ 4C1(ρ/r)n

∥∥∥D2g
∥∥∥2

L2(Br)
+ (

2 + 8C1

) ∥∥∥D2v
∥∥∥2

L2(Br)
. (3.12)

Now combing (3.12) and (3.11) we get

∫
Bρ

∣∣∣D2g
∣∣∣2 dx ≤ 4C1(ρ/r)n

∥∥∥D2g
∥∥∥2

L2(Br)

+
(
2 + 8C1

)
�2

[
ζ 2(r)

∫
Br

|D2g|2dx +
∫

Br

|q(x) − q(0)|2dx
]

=
[(

2 + 8C1

)
ζ 2(r)

�2 + 4C1(ρ/r)n

] ∫
Br

|D2g|2dx

+
(
2 + 8C1

)
�2

∫
Br

|q(x) − q(0)|2dx. (3.13)

Also from Corollary 2.2

∫
Bρ

∣∣∣D2g − (D2g)ρ

∣∣∣2 dx ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)r

∣∣∣2 dx

+ (
8 + 16C2

) ∫
Br

∣∣∣D2v
∣∣∣2 dx

≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)ρ

∣∣∣2 dx

+
(
8 + 16C2

)
�2

[
ζ 2(r)

∫
Br

|D2g|2dx +
∫

Br

|q(x) − q(0)|2dx
]

.
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Because cij,kl ∈ C1,α we have from (3.10) that

ζ(r)2 ≤ C13r2α. (3.14)

Again q is a Cα function that implies

|q(x) − q(0)| ≤ ‖q‖Cα(B1) |x − 0|α

and ∫
Br

|q − q(0)|2dx ≤ C14 ‖q‖Cα(B1) rn+2α.

So we have

∫
Bρ

|D2g − (D2g)ρ |2 (3.15)

≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)ρ

∣∣∣2

+
(
8 + 16C2

)
�2 C13r2α

∫
Br

|D2g|2

+
(
8 + 16C2

)
�2 C14 ‖q‖Cα(B1) rn+2α.

For r < r0 < 1/4 to be determined, we have (3.13)

∫
Bρ

∣∣∣D2g
∣∣∣2 ≤ C15

{
[(ρ/r)n + r2α]

∫
Br

∣∣∣D2g
∣∣∣2 + r2α+2δ

0 rn−2δ

}
,

where δ is some positive number. Now we apply [7, Lemma 3.4]. In particular, take

φ(ρ) =
∫

Bρ

∣∣∣D2g
∣∣∣2

A = C15

B = r2α+2δ
0

α = n

β = n − 2δ

γ = n − δ.
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4338 A. Bhattacharya and M. Warren

There exists ε0(A, α, β, γ ) such that if

r2α
0 ≤ ε0, (3.16)

we have

φ(ρ) ≤ C15

{[
(ρ/r)n + ε0

]
φ(r) + r2α+2δ

0 rn−2δ
}

,

and the conclusion of [7, Lemma 3.4] says that for ρ < r0

φ(ρ) ≤ C16

{
[(ρ/r)γ ]φ(r) + r2α+2δ

0 ρn−2δ
}

≤ C16
1

rn−δ
0

ρn−δ
∥∥∥D2g

∥∥∥
L2(Br0 )

+ r2α+2δ
0 ρn−2δ

≤ C17ρn−δ.

This C17 depends on r0 that is chosen by (3.16) and
∥∥D2g

∥∥
L2(B3/4)

. So there is

a positive uniform radius upon which this holds for points well in the interior. In

particular, we choose r0 ∈ (0, 1/4) so that the estimate can be applied uniformly at

points centered in B1/2(0) whose balls remain in B3/4(0). Turning back to (3.15), we now

have

∫
Bρ

|D2g − (D2g)ρ |2 ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)ρ

∣∣∣2 + C18r2αρn−δ

+ C19 ‖q‖Cα(B1) rn+2α

≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)ρ

∣∣∣2 + C20rn+2α−δ.

Again we apply [7, Lemma 3.4]; this time, take

φ(ρ) =
∫

Bρ

|D2g − (D2g)ρ |2

A = 4C2

B = C20

α = n + 2

β = n + 2α − δ

γ = n + 2α
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and conclude that for any r < r0

∫
Br

|D2g − (D2g)ρ |2 ≤ C21

{
1

rn+2α
0

∫
Br0

|D2g − (D2g)r0
|2rn+2α + C20rn+2α−δ

}

≤ C22rn+2α−δ

with C22 depending on r0,
∥∥D2g

∥∥
L2(B3/4)

, ‖q‖Cα(B1) etc. It follows by [7, Theorem 3.1] that

D2g ∈ C(2α−δ)/2(B1/4), in particular, must be bounded locally:

∥∥∥D2g
∥∥∥

L∞(B1/4)
≤ C23

{
1 +

∥∥∥D2g
∥∥∥

L2(B1/2)

}
. (3.17)

This allows us to bound ∫
Br

|D2g|2 ≤ C24rn,

which we can plug back in to (3.15):

∫
Bρ

|D2g − (D2g)ρ |2 ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)ρ

∣∣∣2 + C25r2αC24rn

+ C19 ‖q‖Cα(B1) rn+2α

≤ C26rn+2α.

This is precisely the hypothesis in [7, Theorem 3.1]. We conclude that

∥∥∥D2g
∥∥∥

Cα(B1/4)
≤ C27

{√
C26 +

∥∥∥D2g
∥∥∥

L2(B1/2)

}
.

Recalling (3.6) we see that u must enjoy uniform C3,α estimates on the interior, and the

result follows. �

4 Proof of the Theorem

The propositions in the previous section allow us to prove the following corollary, from

which the main theorem will follow.

Corollary 4.1. Suppose u ∈ CN,α(B1), N ≥ 2, and u satisfies the following regular (recall

(1.3)) 4th-order equation

∫
�

aij,kl(D2u)uijηkldx = 0, ∀η ∈ C∞
0 (�).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/6/4324/5289692 by Acquisition D
ept Serials user on 07 O

ctober 2022



4340 A. Bhattacharya and M. Warren

Then

‖u‖CN+1,α(Br)
≤ C(n, b, ‖u‖WN,∞(B1)).

In particular

u ∈ CN,α(B1) �⇒ u ∈ CN+1,α(Br).

Case 1 N = 2. The function u ∈ C2,α
(
B1

)
and hence also in W2,∞ (

B1

)
. By

approximation (1.1) holds for η ∈ W2,∞
0 , in particular, for

η = −[
τ4uhm

]−hm ,

where τ ∈ C∞
c

(
B1

)
is a cutoff function in B1 that is 1 on B1/2, and superscript hm refers

to the difference quotient. As before, we have chosen h small enough (depending on τ )

so that η is well defined. We have

∫
�

aij,kl(D2u)uij

[
τ4uhm

]
kldx = 0.

Integrating by parts as before with respect to the difference quotient, we get

∫
B1

[
aij,kl(D2u)uij

]hm
[
τ4uhm

]
kldx = 0.

Let v = uhm . Observe that the 1st difference quotient can be expressed as

[
aij,kl(D2u)uij

]hm(x) = aij,kl(D2u(x + hem)
)uij(x + hem) − uij(x)

h
(4.1)

+ 1

h

[
aij,kl(D2u(x + hem)

) − aij,kl(D2u(x))
]

uij(x)

= aij,kl(D2u(x + hem)
)
vij(x)

+
[∫ 1

0

∂aij,kl

∂upq

(
tD2u(x + hem) + (1 − t)D2u(x)

)
dt

]
vpq(x)uij(x).

We get ∫
B1

b̃ij,klvij[τ
4v]kldx = 0, (4.2)
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Regularity Bootstrapping 4341

where

b̃ij,kl(x) = aij,kl(D2u(x + hem)
) +

[∫ 1

0

∂apq,kl

∂uij

(
tD2u(x + hem

) + (1 − t)D2u(x))dt

]
upq(x).

(4.3)

Expanding derivatives of the 2nd factor in (4.2) and collecting terms gives us

∫
B1

b̃ij,klvijτ
4vkldx ≤

∫
B1

∣∣∣b̃ij,kl
∣∣∣ ∣∣∣vij

∣∣∣ τ2C28(τ , Dτ , D2τ) (1 + |v| + |Dv|) dx.

Now for h small, b̃ij,kl very closely approximates bij,kl, so we may assume h is small.

Applying (1.4) and Young’s inequality,

∫
B1

τ4�1|D2v|2 ≤ C28 sup b̃ij,kl
∫

B1

(
ετ4|D2v|2 + C32

1

ε
(1 + |v| + |Dv|)2

)
dx.

That is, ∫
B1/2

|D2v|2 ≤ C29

∫
B1

(1 + |v| + |Dv|)2dx.

Now this estimate is uniform in h (for h small enough) and direction em, so we conclude

that the derivatives are in W2,2(B1/2). This also shows that

||D3u||L2(B1/2) ≤ C30

(
||Du||L2(B1),

∥∥∥D2u
∥∥∥

L2(B1)

)
.

Remark: We only used uniform continuity of D2u to allow us to take the limit, but we

did require the precise modulus of continuity.

For the next step, we are not quite able to use Proposition 1.4 because the

coefficients aij,kl are only known to be W1,2. So we proceed by hand.

We begin by taking a single difference quotient

∫
B1

[
aij,kl(D2u)uij

]hmηkldx = 0

and arriving at the equation in the same fashion as to (4.2) above (this time letting

g = uhm ); we have ∫
B1

b̃ij,klgij(x)ηkldx = 0.

Inspecting (4.3) we see that b̃ij,kl is Cα :

∥∥∥b̃ij,kl(x) − b̃ij,kl(y)

∥∥∥ ≤ C31 |x − y|α ,
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4342 A. Bhattacharya and M. Warren

where C31 depends on
∥∥D2u

∥∥
Cα and on bounds of Daij,kl and D2aij,kl. As in the proof of

Proposition 1.4, for a fixed r < 1 we let w solve the boundary value problem

∫
Br

b̃ij,kl(0)wijηkldx = 0, ∀η ∈ C∞
0 (Br)

w = g on ∂Br

∇w = ∇g on ∂Br.

Let v = g − w. Note that

∫
Br

b̃ij,kl(0)vijηkldx =
∫

Br

(
b̃ij,kl(0) − b̃ij,kl(x)

)
gijηkldx.

Now v vanishes to 2nd order on the boundary, and we may use v as a test function. We

get

∫
Br

b̃ij,kl(0)vijvkldx =
∫

Br

(
b̃ij,kl(0) − b̃ij,kl(x)

)
gijvkldx.

As before,

(
�

∫
Br

∣∣∣D2v
∣∣∣2 dx

)2

≤
[

sup
x∈Br

∣∣∣b̃ij,kl(0) − b̃ij,kl(x)

∣∣∣
]2 ∫

Br

∣∣∣D2g
∣∣∣2 dx

∫
Br

∣∣∣D2v
∣∣∣2 dx.

Defining

ζ(r) = sup
{∣∣∣b̃ij,kl(x) − b̃ij,kl(y)

∣∣∣ x, y ∈ Br

}
(4.4)

≤ 4αC31r2α

then

∫
Br

(b̃ij,kl(0) − b̃ij,kl(x))gijvkldx)2 ≤ ζ 2(r)
∫

Br

∣∣∣D2g
∣∣∣2 ∫

Br

∣∣∣D2v
∣∣∣2 .

So now we have

∫
Br

∣∣∣D2v
∣∣∣2 ≤ ζ 2(r)

�2

∫
Br

∣∣∣D2g
∣∣∣2 .
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Using Corollary 2.2, for any 0 < ρ ≤ r we get

∫
Bρ

∣∣∣D2g − (D2g)ρ

∣∣∣2 ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)r

∣∣∣2

+ (
8 + 16C2

) ∫
Br

∣∣∣D2v
∣∣∣2

≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)r

∣∣∣2 +
(
8 + 16C2

)
ζ 2(r)

�2

∥∥∥D2g
∥∥∥2

L2(Br)
.

(4.5)

Also by Corollary 2.2

∫
Bρ

∣∣∣D2g
∣∣∣2 ≤ 4C1(ρ/r)n

∥∥∥D2g
∥∥∥2

L2(Br)
+ (

2 + 8C1

) ∥∥∥D2v
∥∥∥2

L2(Br)

≤ 4C1(ρ/r)n
∥∥∥D2g

∥∥∥2

L2(Br)
+ (

2 + 8C1

) ζ 2(r)

�2

∥∥∥D2g
∥∥∥2

L2(Br)
.

This implies

∫
Bρ

∣∣∣D2g
∣∣∣2 ≤

(
4C1(ρ/r)n + (

2 + 8C1

)
42αC2

31r2α
) ∥∥∥D2g

∥∥∥2

L2(Br)
.

Now we can apply [7, Lemma 3.4] again, this time with

φ(ρ) =
∫

Bρ

∣∣∣D2g
∣∣∣2

A = 4C1

α = n

B, β = 0

γ = n − 2δ

ε = (
2 + 8C1

)
42αC2

31r2α.

There exists a constant ε0(A, α, γ ) such that by chosing

r2α
0 ≤ ε0(

2 + 8C1

)
42αC2

31

<
1

4
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4344 A. Bhattacharya and M. Warren

we may conclude that for 0 < r ≤ r0

∫
Br

∣∣∣D2g
∣∣∣2 ≤ C32rn−2δ

∫
Br0

∣∣D2g
∣∣2

rn−2δ
0

. (4.6)

Next, for small ρ < r < r0 we have, combining (4.5), (4.4) and (4.6),

∫
Bρ

∣∣∣D2g − (D2g)ρ

∣∣∣2 ≤ 4C2(ρ/r)n+2
∫

Br

∣∣∣D2g − (D2g)r

∣∣∣2 (4.7)

+
(
8 + 16C2

)
4α

�2

∫
Br0

∣∣D2g
∣∣2

rn−2δ
0

C31C32rn−2δr2α

≤ C33rn+2α−δ

with C33 depending on
∥∥D2g

∥∥
L2(B3/4)

, r0, ε0. Again, we apply [7, Theorem 3.1] to D2g ∈
C(2α−δ)/2(B1/4). From here, the argument is identical to the argument following (3.17). We

conclude that

∥∥∥D2g
∥∥∥

Cα(B1/4)
≤ C34

{
1 +

∥∥∥D2g
∥∥∥

L2(B3/4)

}
.

Substituting g = uhm we see that u must enjoy uniform C3,α estimates on the interior,

and the result follows.

Case 2 N = 3. We may take a difference quotient of (1.1) directly.

∫
�

[
aij,kl(D2u)uij

]hm
ηkldx = 0, ∀η ∈ C∞

0 (�).

(To be more clear we are using a slightly offset test function η(x + hem) and then using

a change of variables, subtracting and dividing by h.)

We get

∫
B1

[
aij,kl(D2u(x + hem))uhm

ij (x) + ∂aij,kl

∂upq
(M∗(x))uhm

pq (x)uij(x)

]
ηkl = 0,

where M∗(x) = t∗D2u(x + hm) + (1 − t∗)D2u(x) and t∗ ∈ [0, 1]. Now we are assuming

that u ∈ C3,α(B1), so the 1st and 2nd derivatives of the difference quotient will converge

to the 2nd and 3rd derivatives, uniformly. We can then apply dominated convergence;
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passing the limit as h → 0 inside the integral and recalling um = v as before, we obtain

∫
B1

[
[ aij,kl(D2u(x))vij(x) + ∂apq,kl

∂uij

(
D2u(x)

)
vij(x)upq(x)

]
ηkl = 0

that is ∫
B1

bij,kl(D2u(x))vij(x)ηkl(x) = 0, ∀η ∈ C∞
0 (�). (4.8)

It follows that v ∈ C2,αsatisfies a -order double divergence equation, with

coefficients in C1,α. First, we apply Proposition 1.3:

∥∥∥D3v
∥∥∥

L2(B1/2)
≤ C35

(||v||W2,∞(B1)

)
(1 + ||bij,kl||W1,2(B1)).

In particular, u ∈ W4,2(B1/2). Next, we apply 1.4

||D3v||C0,α(B1/4) ≤ C(1 + ||D3v||L2(B1/2)) ≤ C(||u||W2,∞(B1), |bij,kl||W1,2(B1))

≤ C36(n, b, ‖u‖C3,α(B1)).

We conclude that u ∈ C4,α(Br) for any r < 1.

Case 3 N ≥ 4. Let v = Dαu for some multi-index α with |α| = N − 2. Observe that

taking the 1st difference quotient and then taking a limit yields (4.8), when u ∈ C3,α.

Now if u ∈ C4,α we may take a difference quotient and limit of (4.8) to obtain

∫
B1

[
bij,kl(D2u(x))uijm1m2

(x) + ∂bij,kl

∂upq
(D2u(x))upqm2

uij

]
ηkl(x) = 0, ∀η ∈ C∞

0 (�),

and if u ∈ CN,α, then v ∈ C2,α, so we may take N − 2 difference quotients to obtain

∫
B1

[
bij,kl(D2u(x))vij(x) + f kl(x)

]
ηkl(x) = 0, ∀η ∈ C∞

0 (�), (4.9)

where

f kl = Dα
(
bij,kl(D2u(x))uij

)
− bij,kl(D2u(x))Dαuij.

One can check by applying the chain rule repeatedly that f kl is C1,α. So we may apply

Proposition 1.3 to (4.9) and obtain that

∥∥∥D3v
∥∥∥

L2(B1/2)
≤ C37(‖v‖W2,∞(B1))(1 + ||bij,kl||W1,2(B1))
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4346 A. Bhattacharya and M. Warren

that is

‖u‖WN+1,2(Br)
≤ C38(n, b, ‖u‖WN,∞(B1)).

Now apply Proposition 1.4:

||D3v||C0,α(B1/4) ≤ C39(1 + ||D3v||L2(B3/4)),

that is,

‖u‖CN+1,α(Br)
≤ C40(n, b, ‖u‖WN,∞(B1)).

The main theorem follows.

5 Critical Points of Convex Functions of the Hessian

Suppose that F(D2u) is either a convex or a concave function of D2u, and we have found

a critical point of ∫
�

F(D2u)dx (5.1)

for some � ⊂ R
n, where we are restricting to compactly supported variations, so that the

Euler–Lagrange equation is (1.6). If we suppose that F also has the additional structure

condition,

∂F(D2u)

∂uij
= apq,ij(D2u)upq (5.2)

for a some aij,kl satisfying (1.2), then we can derive smoothness from C2,α as follows.

Corollary 5.1. Suppose u ∈ C2,α(B1) is the critical point of (5.1), where F is a smooth

function satisfying (5.2) with aij,kl satisfying (1.2) and F is uniformly convex or uniformly

concave on U ⊆ Sn×n where U is the range of D2u(B1) in the Hessian space.

Then u ∈ C∞(Br), for all r < 1.

Proof. If u is a critical point of (5.1), then it satisfies the weak equation (1.1), for aij,kl

in (5.2). To apply the main theorem, all we need to show is that

bij,kl(D2u(x)) = aij,kl(D2u(x)) + ∂apq,kl

∂uij
(D2u(x))upq(x)
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satisfies (1.2). From (5.2):

∂

∂ukl

(
∂F(D2u)

∂uij

)
= akl,ij(D2u) + ∂apq,ij(D2u)

∂ukl
upq. (5.3)

So

bij,kl(D2u(x))ξijξkl = ∂

∂ukl

(
∂F(D2u)

∂uij

)
ξijξkl ≥ � |ξ |2

for some � > 0, because F is convex. If F is concave, u is still a critical point of −F and

the same argument holds. �

We mention one special case.

Lemma 5.2. Suppose F(D2u) = f (w) where w = (D2u)T(D2u). Then

∂F(D2u)

∂uij
= aij,kl(D2u)ukl. (5.4)

Proof. Let

wkl = ukaδabubl.

Then

∂F(D2u)

∂uij
= ∂f (w)

∂wkl

∂wkl

∂uij

= ∂f (w)

∂wkl

(
δka,ijδ

abubl + ukaδabδbl,ij

)

= ∂f (w)

∂wkl

(
δkiujl + ukiδlj

)

= ∂f (w)

∂wil
δjmuml + ∂f (w)

∂wkj
ukmδim

= ∂f (w)

∂wil
δjkukl + ∂f (w)

∂wkj
uklδil.

This shows (5.4) for

aij,kl = ∂f (w)

∂wil
δjk + ∂f (w)

∂wkj
δil.

�
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