A BERNSTEIN RESULT AND COUNTEREXAMPLE FOR ENTIRE SOLUTIONS TO DONALDSON’S EQUATION

MICAH WARREN
UNIVERSITY OF OREGON

Abstract. We show that convex entire solutions to Donaldson’s equation are quadratic, using a result of Weiyong He. We also exhibit entire solutions to the Donaldson equation that are not of the form discussed by He. In the process we discover some non-trivial entire solutions to complex Monge-Ampère equations.

1. Introduction

In this note we show the following.

Theorem 1. Suppose that u is a convex solution to the Donaldson equation on $\mathbb{R} \times \mathbb{R}^{n-1} = (t, x_2, ..., x_n)$

\[
\tilde{\sigma}_2(D^2 u) = u_{11}(u_{22} + u_{33} + ... + u_{nn}) - u_{12}^2 - ... - u_{1n}^2 = 1.
\]

Then u is a quadratic function.

Donaldson introduced the operator

\[Q(D^2 u) = u_{tt} \Delta u - |\nabla u_t|^2 \]

arising in the study of the geometry of the space of volume forms on compact Riemannian manifolds [1]. On Euclidean space, [1] becomes an interesting non-symmetric fully nonlinear equation. Weiyong He has studied aspects of entire solutions on Euclidean space, and was able to show that [2, Theorem 2.1] if $u_{11} = \text{const}$, then the solution can be written in terms of solutions to Laplace equations.

Here we show that any convex solution must also satisfy $u_{11} = \text{const}$. It follows quickly that the solution must be quadratic. We also show that, in the absence of the convexity constraint, solutions exists for which $u_{11} = \text{const}$ fails.

Theorem 2. There exists solutions to the Donaldson equation which are not of the form given by He.

In real dimension 3 we note that solutions of [1] can be extended to solutions of the the complex Monge-Ampère equation on \mathbb{C}^2

\[\det (\partial \bar{\partial} u) = 1 \]

and we can conclude the following.

Corollary 3. There exist a nonflat solution of the complex Monge-Ampère equation [2] on \mathbb{C}^2 whose potential depends on only three real variables.

The author’s work is supported in part by the NSF via DMS-1161498.
2. Proof of Theorem 1

Lemma 4. Suppose that K_h is the sublevel set $u \leq h$ of a nonnegative solution to
\[
\tilde{\sigma}^2(D^2u) = u_{11}(u_{22} + u_{33} + \ldots + u_{nn}) - u_{12}^2 - \ldots - u_{1n}^2 = 1.
\]
Then for all ellipsoids $E \subset K_h$ such that if $A : E \to B_1$ is affine diffeomorphism with
\[
A = Mx + \vec{b},
\]
we have
\[
\tilde{\sigma}^2(M^2) \geq \frac{1}{4h^2}.
\]
Proof. Consider the function v on \mathbb{R}^n defined by
\[
v(x) = h|A(x)|^2.
\]
On the boundary of E, we have
\[
v(x) = h \geq u.
\]
We have
\[
Dv = 2hM \left(Mx + \vec{b} \right)
\]
\[
D^2v = 2hM^2.
\]
Thus
\[
\tilde{\sigma}^2(D^2v) = 4h^2\tilde{\sigma}^2(M^2).
\]
Now suppose that
\[
\tilde{\sigma}^2(M^2) < \frac{1}{4h^2}.
\]
Then
\[
\tilde{\sigma}^2(D^2v) < 1,
\]
so v is a supersolution to the equation, and must lie strictly above the solution u. But v must vanish at $A^{-1}(0)$. Because u is nonnegative, this is a contradiction of the strong maximum principle. \square

Proposition 5. Suppose that u is an entire convex solution to
\[
\tilde{\sigma}^2(D^2u) = u_{11}(u_{22} + u_{33} + \ldots + u_{nn}) - u_{12}^2 - \ldots - u_{1n}^2 = 1
\]
Then
\[
\lim_{t \to \infty} u_1(t, 0, \ldots, 0) = \infty.
\]
Proof. Assume not. Instead assume that $u_1 \leq A$. Assume that $u(0) = 0$ and $Du(0) = 0$, adjusting A if necessary. Then
\[
u(t, 0, \ldots, 0) = \int_0^t u_1(s)ds \leq \int_0^t Ads \leq At.
\]
Now consider the convex sublevel set $u \leq h$. This must contain the point
\[
\left(\frac{h}{A}, 0, \ldots, 0 \right).
\]
The level set \(u = h \) intersect the other axes at

\[
(0, a_2(h), 0, \ldots)
\]

\[
(0, 0, a_3(h), \ldots, 0)
\]

e tc.

This level set is convex. It must contain the simplex with the above points as vertices, and this simplex must contain an ellipsoid \(E \) which has an affine transformation to the unit ball of the following form

\[
A = Mx + \vec{b}
\]

\[
M = c_n \begin{pmatrix} \frac{A}{h} & \frac{1}{a_2} & \frac{1}{a_3} & \ldots \end{pmatrix}
\]

Thus

\[
M^2 = c_n^2 \begin{pmatrix} \left(\frac{A}{h} \right)^2 & \left(\frac{1}{a_2} \right)^2 & \left(\frac{1}{a_3} \right)^2 & \ldots \end{pmatrix}
\]

and

\[
\bar{\sigma}_2(M^2) = c_n^2 \left(\frac{A}{h} \right)^2 \left(\frac{1}{a_2} \right)^2 + \ldots + \left(\frac{1}{a_n} \right)^2 \geq \frac{1}{4} \frac{1}{h^2}
\]

with the latter inequality following from the previous lemma.

Thus

\[
\left(\frac{1}{a_2} \right)^2 + \left(\frac{1}{a_3} \right)^2 + \ldots + \left(\frac{1}{a_n} \right)^2 \geq \frac{1}{c_n^2 A^2}
\]

It follows that for some \(i \),

\[
\frac{1}{a_i^2} \geq \frac{1}{4(n-1)c_n^2 A^2}
\]

That is

\[
a_i \leq 2\sqrt{n-1}c_n A.
\]

Now to finish the argument, let

\[
R = 2\sqrt{n-1}c_n A.
\]

On a ball of radius \(R \), there is some bound on the function (not a priori but depending on \(u \)) say \(\bar{U} \). That is

\[
u(x) \leq \bar{U} \text{ on } B_R.
\]

Now by convexity for any large enough \(h \) the level set \(u = h \) is non-empty and convex. Choose \(h > \bar{U} \). According to the above argument, this level set must intersect some axis at a point less than \(R \) from the origin, which is a contradiction.

\[\square\]
Now using this Proposition, we may repeat the argument of He [2, section 3]: Letting $z = u_1(t, x)$ the map

$$
\Phi : \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R} \times \mathbb{R}^{n-1}
$$

$$
\Phi(t, x) = (z, x)
$$

is a diffeomorphism. Thus for x fixed, there exists a unique $t = t(z, x)$ such that $z = u_1(t, x)$. Defining

$$
\theta(z, x) = t(z, x)
$$

the computations in [2, section 3] yield that θ is a harmonic function. It follows that $\frac{\partial \theta}{\partial z} = 1/u_{11}$ is a positive harmonic function, so must be constant. Now we have

$$
u(t, x) = at^2 + tb(x) + g(x)
$$

which satisfies [2, section 2]

$$
\Delta b = 0
$$

$$
\Delta g = \frac{1}{2a} \left(1 + |\nabla b|^2 \right).
$$

Letting $t = 0$ we conclude that g is convex. Letting $t \to \pm \infty$ we conclude that b is convex and concave, so must be linear. It follows that $|\nabla b|$ is constant, and

$$
\Delta g - c |x|^2
$$

is a semi-convex harmonic function, which must be a quadratic.

3. Counterexamples

We use the method described in [3] and restrict to $n = 3$. Consider

$$
u(t, x) = r^2 e^t + h(t)
$$

where $r = (x_2^2 + x_3^2)^{1/2}$. At any point we may rotate \mathbb{R}^2 so that $x_2 = r$ and get

$$
D^2 u = \begin{pmatrix}
 r^2 e^t + h''(t) & 2re^t & 0 \\
 2re^t & 2e^t & 0 \\
 0 & 0 & 2e^t
\end{pmatrix}.
$$

We compute

$$
\tilde{\sigma}_2 (D^2 u) = 4e^t \left(r^2 e^t + h''(t) \right) - 4r^2 e^{2t} = 4e^t h''(t).
$$

Then

$$
u = r^2 e^t + \frac{1}{4} e^{-t}
$$

is a solution.

Now defining complex variables

$$
z_1 = t + is
$$

$$
z_2 = x + iy
$$

we can consider the function

$$
u = (x^2 + y^2) e^t + \frac{1}{4} e^{-t}.
$$

The function satisfies the equation complex Monge-Ampère equation

$$
(\partial_{z_1} \partial_{\bar{z}_1} u) (\partial_{z_2} \partial_{\bar{z}_2} u) - (\partial_{z_1} \partial_{\bar{z}_2} u) (\partial_{z_2} \partial_{\bar{z}_1} u) = 1.
$$
One can check that the induced Ricci-flat complex metric
\[g_{i\bar{j}} = \partial_{z_i} \partial_{\bar{z}_j} u \]
on \mathbb{C}^2 is neither complete complete nor flat.

References