PROJECT OVERVIEW
EMU INTERIOR
EMU PROJECT PATTERNS

Layers of Quiet and Buzz

- **How much distraction is good?**
- **Provide a range of distractions.**

Light Attracts Use

- **Direct sun and daylight attract people.**
- **Use daylight functionally to replace electric lighting and architecturally to attract a variety of people and uses.**

Hub of Campus

- **The EMU is in the center of campus but isn’t always the campus center.**
- **Create a university center, a connecting, welcoming hub that reaches out to campus and community.**

Working Together

- **Collaborative work can happen in various environments.**
- **Provide three broad types of informal gathering spaces.**

Destinations Pass Through not Around

- **A large building can be a barrier to passage and lose potential for energy.**
- **Ensure the ability to arrive from many directions and connect indoors with the outdoors.**

Kitchen – Great Room

- **The kitchen is always the room in the family home where people naturally gravitate to.**
- **Create a kitchen/great room, the heart within the Heart, hub within the Hub.**

PROJECT GOALS AND PATTERNS
EMU INTERIOR

USER GROUP DESIGN SESSION

- LOUNGE SPACES
- STUDY SPACES
- COLLABORATIVE SPACES
- EVENT BREAKOUT
- FOOD SERVICE
- QUIET AND ACTIVE SPACES
- ACCESS TO TECHNOLOGY

Layers of Quiet and Buzz

Working Together
EMU INTERIOR

SPACE NEEDS

• FLEXIBLE SPACES
• VARIETY OF SPACES
• LET ARCHITECTURE DRIVE SPACE USE
• SPACES TO SUPPORT EVENTS
• IMPROMPTU CONNECTIONS
• UNLIMITED ACCESS TO TECHNOLOGY
• LET STUDENTS DETERMINE HOW LONG TO USE SPACE

Flexibility and Longevity

Destinations
Pass Through not Around
emu interior

What does the EMU feel like?

- Warm
- Woody
- Soft
- Natural materials
- Natural light

Light attracts use

South facing outdoors
SUSTAINABILITY PLAN UPDATE

PURPOSE:
Discuss updates to the project specific sustainability plan
METRICS

ENERGY / HEALTH
RELATED SUSTAINABLE DESIGN GOALS
- Performance metric around energy use
- Oregon Model min. (35% better than OR code)
- 45% better than OR Code (Adaptable, Specific, Measures)
- Additional 10 to 15% from occupant engagement
- Provide daylighting for most student offices and views for 75% of regularly occupied spaces
- Solar Thermal (Adaptable, Specific, Measures)
- PV Ready (investigate third party funding of demonstration PV array)

MATERIALS
SUSTAINABLE DESIGN GOALS REVISITED
- Reuse most-of-materials from the demolished building in the new student union
- Recycle 90-95% 75-80% of construction debris
- Prioritize sourcing products locally
- Minimize use of toxic products
- Local, Salvaged, Reclaimed, Reused, Recycled, and Wood
- Filter all materials decisions through a lens of Cost & Student Health
- Prioritize Identity & Inspiration
- Prioritize Durability

EQUITY(+)
SUSTAINABLE DESIGN GOALS
- Maintain access for daylighting for surrounding buildings
- Create a universally accessible design
- Incorporate and embrace diversity

WATER
SUSTAINABLE DESIGN GOALS
- Meet Oregon Model for Stormwater mgmt (Treating Stormwater on University)
- 35-40% reduction in water use from fixtures and fittings (with .125 urinals)
- 50-60% reduction in water use

CAMPUS SCALE SYSTEMS(+)
SITE RELATED SUSTAINABILITY GOALS
- Support non-automobile transportation
- Repair / reinforce campus connections
- District ready for future incorporation into a larger network
- Provide locations for edible landscape

DESIGN PROCESS (+)
SUSTAINABLE DESIGN GOALS
- A Student Union that inspires its occupants to live their lives in a more sustainable way
EMU INTERIOR CONCEPTS
Destinations
Pass Through not Around

Kitchen – Great Room

Hub of Campus

Great Room
LAYERS OF QUIET AND BUZZ

Layers of Quiet and Buzz

Security Layers

8am-5pm

24/7
LAYERS OF QUIET AND BUZZ
“Linked together by a central anchor point or circulation spine, the main element aids in internal wayfinding and provides visibility/exposure to the multitude of programs within the EMU.”
Materials along the student boulevard wall aid in wayfinding and provide opportunities for student groups to connect and participate.
LAYERS AND TRANSITIONAL SPACES

Quiet spaces are insulated from the most public and high traffic areas and are accessed through transitional zones such as lounges.
Layers of quiet and buzz

Many front doors
Longevity and flexibility

Through not around

Working together
Longevity and flexibility

Pass Through not Around

Destinations

Flexibility and Longevity

Digital layers
EMU INTERIOR DESIGN
visual connections to activities, invitation to participants
layers of quiet and buzz

writable surfaces for collaborative & impromptu interactions
working together layers of quiet and buzz

visually soft areas provide transition between boulevard and student programs
layers of quiet and buzz

repetition of materials creates rhythm and provides identity for student programs
light attracts use

2nd layer of seating, more private, protected
layers of quiet and buzz working together

STUDENT STREET – LEVEL 1 BRIDGE
SUSTAINABILITY AND PROJECT GOALS REINFORCED BY STRUCTURAL SYSTEM SELECTION
HEARTH – FROM BREEZEWAY
HEARTH – FROM BREEZEWAY
our one “O”
SIMPPLICITY / MATERIAL REUSE

SECURITY

24 HOUR USE
Longevity and flexibility

Layers of quiet and buzz

Digital layers

Through not around

A few front doors

LOBBY DIAGRAM
EMU LOBBY

- Emphasize historic details
- Screen offices from public lobby
- Create clear communication lines
- Mediate connection with conference program
- Layers of quiet and buzz
- The hub of campus
- Connect entry to food
- Kitchen/living room
I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character. I have a dream..."
ACCESS TO DAYLIGHT – NORTH WING PROGRAM SUITES
VISUAL CONNECTION TO PUBLIC SPACES
WOMEN'S CENTER PROGRAM SUITE – VIEW TOWARDS STUDENT BLVD
POLISHED CONCRETE
WALK OFF CARPET
CARPET 1
CARPET 2
TILE
RESILIENT FLOORING

FINISH PLAN – NORTH WING GROUND FLOOR
CRAFT CENTER – PUBLIC SPACE ELEVATIONS
BREAK
PROJECT SPECIFIC SUSTAINABILITY MEASURES
ENERGY / HEALTH
RELATED SUSTAINABLE DESIGN GOALS

• Performance metric around energy use
 • Oregon Model min. (35% better than OR code)
 Currently estimating 21-30%
 • With Added Solar Thermal 25-36%
 • With Steam Tunnel Heat Recovery 29-42%
 • Together 30-44%

• Provide daylighting for most student offices
 and views for 75% of regularly occupied spaces

• PV Ready (investigate third party funding of
demonstration PV array)
ENERGY EFFICIENT ENVLP.
INSULATION

TARGET: AS MUCH INSULATION AS PAYS BACK USING LCCA

ANTICIPATED SAVINGS 3-5% 1% - 3%

STRATEGIES:

Currently Modeling:
- R-40 roof insulation
- R-15 wall insulation
- R-10 floor slab insulation
ENERGY EFFICIENT ENVLP.

WINDOWS

TARGET: 32% 30% WINDOWS WITH NO IMPACT TO DAYLIGHTING
ANTICIPATED SAVINGS INCLUDED IN PREVIOUS SLIDE

STRATEGIES:

Currently Modeling:
- $U = 0.29 \text{ to } 0.33$
- Thermally broken frames
- High performance low-e coating ($e = 0.05$)
- Tinted / reflective coatings tuned per elevation and floor level
WINDOWS

31.7% GLAZING
NEW ADDITION

36% GLAZING
EAST FACADE

30% GLAZING
NORTH FACADE

32% GLAZING
SOUTH FACADE

1.2% GLAZING
WEST FACADE

UPDATED FACADES
OPTIMIZE DAYLIGHTING

TARGET: LIGHTS OFF 50% OF DAYLIGHT HOURS FOR 75% 90% OF SPACES
ANTICIPATED SAVINGS 6 - 9% 5% - 8%

STRATEGIES:

• Use light colors on walls and ceilings
• Locate windows high in space – not below 30”
• Locate closed offices away from windows
• Balance brightness to minimize contrast
• Separate circuits for zoning flexibility in daylit zones
LIGHTING SYSTEM
EFFICIENT LUMINAIRES

TARGET: LIGHTING POWER DENSITY 35% LESS THAN CODE
ANTICIPATED SAVINGS INCLUDED IN PREVIOUS SLIDE

STRATEGIES:

- Efficient fixture selection
- Optimize ballast selection
- Efficient lamp selection
- LED technology for exits signs and other applications
LIGHTING SYSTEM
SENSORS AND CONTROLS

TARGET: EXCEED CODE AND USE VACANCY SENSORS
ANTICIPATED SAVINGS INCLUDED IN PREVIOUS SLIDE

STRATEGIES:

• Vacancy sensors
• Selective switching
• Egress lighting scheduled off during unoccupied periods
• Exterior lighting controls (lights extinguished after occupied period)
• Exterior LED lighting – different light levels for different times
MECHANICAL SYSTEM

RADIANT PANELS / CHILLED SAILS SEE MECH. MATRIX

TARGET: MAXIMIZE ENERGY SAVINGS + IMPROVED COMFORT

ANTICIPATED SAVINGS 12-16% 10% – 20%

STRATEGIES:

• Radiant heating in all new spaces and many retrofit areas
• Minimized mechanical system air leaks and static pressure losses
• Airflow / temperature setback in unoccupied spaces through occupancy sensors / schedules
• Separate make-up air units for high ventilation areas
• Variable ventilation based on CO2 control
• Night-flush cooling cycle
HEAT RECOVERY & EFFICIENT SYSTEMS
NOT INCLUDED in BASE

STRATEGIES:
Currently being priced as Alternates.
- Kitchen Refrigeration Systems
- Heat Pump Hot Water
- Steam Tunnel Reheat
- Heat Recovery on Dishwashing
- Craft Center Makeup Air
- Variable Flow on Kitchen Makeup Air
- Water Cooled Refrigeration
- Exhaust Hoods
 - Minimize exhaust hood airflow and run time
 - Separate make-up air unit set at lower temperature
STEP 1:
Review first cost relative to budget

STEP 2:
Rank importance of attributes according to importance to UO

ENERGY
(ENERGY REDUCTION, OPERATING COST)

AIR QUALITY
(POLLUTANT CONTROL, CO2 LEVELS)

COMFORT
(THERMAL COMFORT, AIR MOVEMENT, SURFACE TEMPERATURES)

FLEXIBILITY
(COST AND EASE OF RECONFIGURATION)

ACOUSTICS
(SPEECH PRIVACY, NOISE LEVELS, SOUND TRANSMISSION)

AESTHETICS
(INTEGRATION WITH ARCHITECTURE)

EASE OF MAINTENANCE
(SYSTEM SIMPLICITY, “SET IT, FORGET IT.”)

CONTROLLABILITY
(DEGREE OF INDIVIDUAL CONTROL, GRANULARITY OF CONTROLS)
Mechanical Systems Selection Criteria

Step 3: Evaluate Choices – Choosing by Advantages Framework

<table>
<thead>
<tr>
<th>VENTILATION TYPE</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>HYDROKIC RADIANT CEILING PANEL HEATING & COOLING</td>
<td>IN FLOOR RADIANT HEATING AND COOLING</td>
</tr>
<tr>
<td>BETTER</td>
<td>HYDROKIC HEATING W/ CONVECTORS & SUPPLY AIR, HYDROKIC CHILLED BEAMS</td>
<td></td>
</tr>
<tr>
<td>GOOD</td>
<td>ALL AIR HEATING & COOLING</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIRST COST</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>$$$</td>
<td>$$+</td>
</tr>
<tr>
<td>BETTER</td>
<td>$$</td>
<td>$</td>
</tr>
<tr>
<td>GOOD</td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENERGY</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•••</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•••</td>
<td>•</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIR QUALITY</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•••</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•••</td>
<td>•</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMFORT</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•••</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•••</td>
<td>•</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLEXIBILITY</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>BETTER</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACOUSTICS</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•••</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•••</td>
<td>•</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AESTHETICS</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>INTEGRATED CEILING SYSTEM</td>
<td>HIDDEN SYSTEM</td>
</tr>
<tr>
<td>BETTER</td>
<td>CAN BE EXPOSED OR CONCEALED</td>
<td></td>
</tr>
<tr>
<td>GOOD</td>
<td>REQUIRES CEILING FINISH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAINTENANCE</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•</td>
<td>••</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td>••</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROLLABILITY</th>
<th>NORTH WING ADDITION</th>
<th>HEARTH & STUDENT ST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td>•••</td>
<td>••</td>
</tr>
<tr>
<td>BETTER</td>
<td>•••</td>
<td>•</td>
</tr>
<tr>
<td>GOOD</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

Step 4: Bring Selection to UO
ALT. SYSTEMS TO EXPLORE

DISPLACEMENT VENTILATION

GOAL: SAVE ENERGY by TRACKING A LARGER TEMP. SWING (68-78 F)

STRETCH GOAL: EXPLORE ELIMINATION OF COOLING IN ATRIUM
ALT. SYSTEMS TO EXPLORE
SOLAR HOT WATER

STRETCH GOAL: EXPLORE IMPLEMENTATION OF SOLAR HOT WATER
ANTICIPATED SAVINGS 4 - 6% 2% - 4%

STRATEGIES:

• Preheat water for kitchen equipment
MATERIALS
SUSTAINABLE DESIGN GOALS REVISITED

• Reuse most of materials from the demolished building in the new student union
• Recycle 90-95% 75-80% of construction debris
• Prioritize sourcing products locally
• Minimize use of toxic products
• Local, Salvaged, then FSC certified wood
• Filter all materials decisions through a lens of Cost & Student Health
• Use to provide Identity & Inspiration
• Prioritize Durability, then Local / Reuse
CONSTRUCTION WASTE
DIVERSION FROM LANDFILL

TARGET: 75% 90% ON SITE CONSTRUCTION WASTE DIVERSION

STRATEGIES:

• Streamline material palette to reduce complexity within the waste stream

• Reuse/repurpose/recycle waste created on site to the greatest extent possible
EMBODIED ENERGY
MATERIAL REUSE

TARGET: REUSE/REPURPOSE 1-2% 5% OF EXISTING BUILDING’S MATERIALS

STRATEGIES:
• Consider the material lifecycle loop from Cradle to Cradle
• Design for efficiency of material use to reduce on-site construction waste
• Design for future disassembly and reconstruction / reuse
• Design for reduced maintenance / replacement costs over the life of the building
• Stretch goal of 10% reuse
EQUITY
SUSTAINABLE DESIGN GOALS

- Maintain access for daylighting for surrounding buildings
- Create a universally accessible design
- Incorporate and embrace diversity
EQUITY RELATED STRATEGIES

STRATEGIES:

• Provide daylighting for most student offices

• Minimize the building’s negative impacts on neighboring buildings
EQUITY
RELATED STRATEGIES

STRATEGIES:

• Use building form to create positive impacts on surrounding spaces to create sunny, wind protected outdoor spaces for students
• Create a fully accessible building
• Use shared spaces to promote cross pollination of ideas / shared identity
• Reduce societal impact of materials source
WATER
SUSTAINABLE DESIGN GOALS

why should we care about water use in the pacific northwest?

• Meet Oregon Model for Stormwater mgmt (Treating Stormwater on University)
• 35-40% reduction in water use from fixtures and fittings (with automatic faucets)
• 50-60% reduction in water use
WATER
STORMWATER TREATMENT

TARGET: MEET OREGON MODEL FOR STORMWATER MANAGEMENT

STRATEGIES:

• Treat 13th Street stormwater
• Treat loading dock stormwater
• Treat parking lot stormwater
LEED SCORECARD
LEED CREDITS
CURRENTLY PURSUED

SUSTAINABLE SITES
22 of 26 pts

WATER EFFICIENCY
6 of 10 pts (+2)

ENERGY & ATMOSPHERE
28 of 35 pts (+15)

MATERIALS & RESOURCES
6 of 14 pts

INDOOR ENVIRONMENTAL QUALITY
11 of 15 pts (+1)

INNOVATION IN DESIGN
6 of 6 pts

REGIONAL PRIORITY
0 of 4 pts

TOTAL 79 pts
CURRENTLY TRACKING LEED GOLD
SITE DESIGN
CRAFT CENTER OUTDOOR OPTIONS

OPTION 1

OPTION 2
APPROACH FROM STUDENT REC CENTER - ALTERNATE
APPROACH FROM EAST
OUTDOOR CRAFT CENTER
STORMWATER TREATMENT

- Swales
- Filtration Planters
- Rain Garden
VISCO STANDARD LIGHT - CAMPUS STANDARD

BENCH - CAMPUS STANDARD

CAMPUS STANDARD
TREE GRATE - NON CAMPUS STANDARD

TREE GRATE - NON CAMPUS STANDARD

TREE GRATES & TRENCH DRAIN
BENCH - NON CAMPUS STANDARD

CUSTOM BENCH AND GREEN WALL
Quaking Aspen

Big Leaf Maple

Valley Forge Elm

Bowhall Red Maple

TREE TYPES
THANK YOU!