
MATH 618 (SPRING 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 5

This assignment is due on Canvas on Wednesday 8 May 2024 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.
Solutions are written to be read independently. Arguments used in more than

one solution are therefore repeated in each one.

Problem 1 (Problem 12 in Chapter 10 of Rudin’s book). For t ∈ R, use the
Residue Theorem to compute∫ ∞

−∞

(
sin(x)

x

)2

eitx dx.

No full solution yet written, but here is an outline. (Also, compare with Rudin
Chapter 9 Problem 2.)

Solution (sketch). For a ∈ (1,∞), define paths by σa(t) = aeit for t ∈ [0, π], τa(t) =
aeit for t ∈ [π, 2π], ρ(t) = eit for t ∈ [π, 2π], αa(t) = t for t ∈ [1, a], and βa(t) = t
for t ∈ [−a, −1]. Let γa be the chain αa + βa + ρ. Set

ft(z) =

(
sin(z)

z

)2

eitz

for z ∈ C \ {0}, which we can rewrite as

ft(z) =
−e(t+2)iz + 2eitz − e(t−2)iz

4z2
.

Define

ϕa(s) =

∫
γa

eisz

z2
dz.

Then ∫ a

−a
ft(x)dx = − 1

4ϕa(t+ 2) + 1
2ϕa(t)− 1

4ϕa(t− 2).

The residue of eisz/z2 at 0 is is. It should follow (most easily using direct estimation
of the integrals of eisz/z2 over σa and τa; the Dominated Convergence Theorem
should not be needed) that lima→∞ ϕa(s) = −2πs when s ≥ 0 and lima→∞ ϕa(s) =
0 when s < 0. �

The next problem counts as two ordinary problems.

Date: 8 May 2024.
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Problem 2 (Problem 8 in Chapter 10 of Rudin’s book). Let P and Q be poly-
nomials such that deg(Q) ≥ deg(P ) + 2. Let R be the rational function R(z) =
P (z)/Q(z) for z ∈ C such that Q(z) 6= 0.

(1) Prove that
∫∞
−∞R(x) dx is equal to 2πi times the sum of the residues of R

in the upper half plane. (Replace the integral over [−A, A] by the integral
over a suitable semicircle, and apply the Residue Theorem.)

(2) What is the analogous statement for the lower half plane?
(3) Use this method to compute∫ ∞

−∞

x2

1 + x4
dx.

It is convenient to begin the solution with a lemma.

Lemma 1. Let p be a polynomial of degree n. Then there exist constantsmp,Mp, rp >
0 such that for all z ∈ C with |z| ≥ rp, we have mp|z|n ≤ |p(z)| ≤Mp|z|n.

We give a direct proof below. But one can also derive this lemma by showing,
using algebraic properties of limits, that if p(z) =

∑n
k=0 akz

k for z ∈ C, then

lim
|z|→∞

p(z)

zn
= lim
|z|→∞

n∑
k=0

akz
k−n = an.

Proof of Lemma 1. There are a0, a1, . . . , an ∈ C, with an 6= 0, such that p(z) =∑n
k=0 akz

k for all z ∈ C. Define

mp =
|an|

2
, Mp =

n∑
k=0

|ak|, and rp = max

(
1,

2

|an|

n−1∑
k=0

|ak|

)
.

Let z ∈ C satisfy |z| ≥ rp. Then, using |z| ≥ 1 at the second step and rp ≥
2
|an|

∑n−1
k=0 |ak| at the fourth step,

|p(z)| ≥ |an| · |z|n −
n−1∑
k=0

|ak| · |z|k ≥ |an| · |z|n − |z|n−1
n−1∑
k=0

|ak|

≥ |an| · |z|n − r−1p |z|n
n−1∑
k=0

|ak| ≥ |an| · |z|n −
(
|an|

2

)
|z|n = mp|z|n.

Also, using |z| ≥ 1 at the second step,

|p(z)| ≤
n∑
k=0

|ak| · |z|k ≤ |z|n
n∑
k=0

|ak| = Mp|z|n.

This completes the proof. �

Solution to part (1). For A > 0, we define curves γA, ρA, and σA in C by γA(t) = t
for t ∈ [−A, A], ρA(t) = Aeit for t ∈ [0, π], and σA(t) = Aeit for t ∈ [π, 2π]. Then
γA + ρA, γA − σA, and ρA + σA are cycles.

We further let Z+ be the set of z in the upper half plane such that Q(z) = 0,
and we let Z− be the set of z in the lower half plane such that Q(z) = 0. Thus Z+

and Z− are finite sets. Let mP ,MP , rP ,mQ,MQ, rQ be the constants of Lemma 1
for the polynomials P and Q. Also set L = supz∈Z+∪Z−

|z|.
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We first claim that if z ∈ Z− and A > L, then IndγA+ρA(z) = 0. Indeed, the
path t 7→ z − it, for t ∈ [0,∞), does not intersect Ran(γA + ρA), so z is in the
unbounded component of Ran(γA + ρA).

We next claim that if z ∈ Z+ and A > L, then IndγA+ρA(z) = 1. Indeed, by
Theorem 10.11 of Rudin, we know that IndρA+σA

(z) = 1, since ρA+σA is essentially
the circle of radius A and center 0, and |z| < A. Moreover, consideration of the
path t 7→ z + it, for t ∈ [0,∞), which does not intersect Ran(γA − σA), shows that
z is in the unbounded component of Ran(γA − σA). Thus IndγA−σA

(z) = 0. Since
integration of a fixed function is additive in the chains over which one is integrating,
it follows that

IndγA+ρA(z) = IndγA−σA
(z) + IndγA+ρA(z) = 1.

The claim is proved.
The Residue Theorem now implies that if A > L then

(1)

∫ A

−A
R(x) dx = 2πi

∑
z∈Z+

Res(R; z)−
∫
ρA

R(z) dz.

We now claim that limA→∞
∫
ρA
R(z) dz = 0. For A ≥ max(rP , rQ), we have,

using the choices of mQ and MP and the estimates from Lemma 1,∣∣∣∣∫
ρA

R(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

P (Ae−it)iAe−it

Q(Ae−it)
dt

∣∣∣∣ ≤ ∫ π

0

|P (Ae−it)|A|e−it|
|Q(Ae−it)|

dt(2)

≤
∫ π

0

MPA
deg(P )+1

mQAdeg(Q)
dt ≤

(
πMP

mQ

)
Adeg(P )−deg(Q)+1.

Since deg(P )− deg(Q) + 1 < 0, the claim follows.

Substituting the claim into (1), we deduce that limA→∞
∫ A
−AR(x) dx exists and

is equal to 2πi
∑
z∈Z+

Res(R; z). �

It isn’t sufficient to prove that limz→∞R(z) = 0. Knowing this sets one up to
use the Dominated Convergence Theorem, but one must still produce a dominating
function.

It is easy to use Lemma 1 to prove directly that the function R is Lebesgue
integrable on (−∞, ∞).

It is not hard to compute the relevant winding numbers using Theorem 10.37 of
Rudin. But some justification does need to be given.

Solution to part (2) (sketch). Let the notation be the same as in the solution to
part (1). Methods similar to those used there show that ifA > L then IndγA−σA

(z) =
0 for z ∈ Z+, while IndγA−σA

(z) = −1 for z ∈ Z−. So the Residue Theorem gives∫ A

−A
R(x) dx = −2πi

∑
z∈Z−

Res(R; z) +

∫
σA

R(z) dz.

Using the same methods as used to get (2), one shows that limA→∞
∫
σA
R(z) dz = 0.

Therefore
∫∞
−∞R(x) dx = −2πi

∑
z∈Z−

Res(R; z). �

Instead of repeating all the work, one can reduce part (2) to part (1).
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Second solution to part (2). Let the notation be the same as in the solution to
part (1).

We claim that limA→∞
∫
ρA+σA

R(z) dz = 0. For A ≥ max(rP , rQ), we have,

using the choices of mQ and MP and the estimates from Lemma 1,∣∣∣∣∫
ρA+σA

R(z) dz

∣∣∣∣ =

∣∣∣∣∫ 2π

0

P (Ae−it)iAe−it

Q(Ae−it)
dt

∣∣∣∣ ≤ ∫ 2π

0

|P (Ae−it)|A|e−it|
|Q(Ae−it)|

dt

≤
∫ 2π

0

MPA
deg(P )+1

mQAdeg(Q)
dt ≤

(
2πMP

mQ

)
Adeg(P )−deg(Q)+1.

Since deg(P )− deg(Q) + 1 < 0, the claim follows.
For A > L, by Theorem 10.11 of Rudin we have IndρA+σA

(z) = 1 for all z ∈
Z+ ∪ Z−. Therefore ∫

ρA+σA

R(z) dz = 2πi
∑

z∈Z+∪Z−

Res(R; z).

Combining this fact with the claim, we get

2πi
∑

z∈Z+∪Z−

Res(R; z) = 0.

Therefore

lim
A→∞

∫ A

−A
R(x) dx = 2πi

∑
z∈Z+

Res(R; z) = −2πi
∑
z∈Z−

Res(R; z).

This completes the proof. �

The following lemma is convenient for the computation of the residues needed
in part (3).

Lemma 2. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).

Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a

for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �

Solution to part (3). Set ω = exp(πi/4). Then

1 + z4 = (z − ω)(z − ω3)(z − ω5)(z − ω7).

So the function R(z) = z2

1+z4 has two poles in the upper half plane, namely simple

poles at ω and at ω3. By part (1) and Lemma 5, we therefore have, factoring out
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powers of ω and repeatedly using ω2 = i at the fourth step,∫ ∞
−∞

x2

1 + x4
dx = 2πi(Res(R;ω) + Res(R;ω3))

= 2πi

(
lim
z→ω

(z − ω)R(z) + lim
z→ω3

(z − ω)R(z)

)
= 2πi

(
ω2

(ω − ω3)(ω − ω5)(ω − ω7)
+

ω6

(ω3 − ω)(ω3 − ω5)(ω3 − ω7)

)
= 2πi

(
ω−1

(1− i)(1− (−1))(1− (−i))
+

ω−3

(1− (−i))(1− i)(1− (−1))

)
=

(
πi

2

)
(ω−1 + ω−3) =

(
πi

2

)(
− i
√

2
)

=
π√
2
.

This completes the solution. �

Problem 3 (Problem 11 in Chapter 10 of Rudin’s book). Let α ∈ C satisfy |α| 6= 1.
Calculate ∫ 2π

0

1

1− 2α cos(θ) + α2
dθ

by integrating (z − α)−1(z − 1/α)−1 around the unit circle.

We will use the following lemma to compute residues. (This has also been used
previously. It isn’t in Chapter 10 of Rudin’s book, but it was proved in class.) For
the residues needed in this problem, a different calculation is given in Remark 4.

Lemma 3. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).

Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a
for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �

Solution. Define a closed curve γ in C by γ(θ) = eiθ for θ ∈ [0, 2π]. Define a
meromorphic function fα on C by

fα(z) =
1

(z − α)
(
z − 1

α

) .
Then fα has simple poles at α and at α−1.

We have∫
γ

f(z) dz =

∫ 2π

0

1

(eiθ − α)
(
eiθ − 1

α

) ieiθ dθ
=

∫ 2π

0

−iα
(eiθ − α)(e−iθ − α)

dθ =

∫ 2π

0

−iα
1− 2α cos(θ) + α2

dθ.

We now compute this integral by the residue theorem.
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Suppose |α| < 1. Then Indγ(α) = 1 and Indγ(1/α) = 0 by Theorem 10.11 of
Rudin. Lemma 3 gives

Res(fα, α) =
1

α− 1
α

=
α

α2 − 1
.

Therefore∫ 2π

0

1

1− 2α cos(θ) + α2
dθ =

(
1

−iα

)∫
γ

fα(z) dz

=

(
1

−iα

)
2πiRes(fα, α) = − 2π

α2 − 1
.

Suppose now |α| > 1. Then, using the result for 1/α at the second step, we have∫ 2π

0

1

1− 2α cos(θ) + α2
dθ =

∫ 2π

0

α−2

1− 2α−1 cos(θ) + α−2
dθ

= − 2πα−2

α−2 − 1
=

2π

α2 − 1
.

This completes the solution. �

Remark 4. The residues

Res(fα, α) =
α

α2 − 1
and Res(fα, α

−1) = − α

α2 − 1

can be read directly off the partial fraction decomposition

fα(z) =

(
α

α2 − 1

)(
1

z − α
− 1

z − α−1

)
,

without the need for Lemma 3.

Problem 4 (Problem 13 in Chapter 10 of Rudin’s book). Prove that∫ ∞
0

1

1 + xn
dx =

π/n

sin(π/n)

for n ∈ Z>0 with n ≥ 2.

The following lemma is convenient for the computation of the residues needed
here. It isn’t in Chapter 10 of Rudin’s book, but it was proved in class.

Lemma 5. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).

Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a
for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �
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Solution. Set ω = exp(πi/n). For r ∈ (1,∞), define paths ρr, σr : [0, r] → C
by ρr(t) = t and σr(t) = tω2 for t ∈ [0, r]. Also define γr : [0, 2π/n] → C and
βr : [2π/n, 2π] → C by γr(t) = reit for t ∈ [0, 2π/n] and βr(t) = reit for t ∈
[2π/n, 2π]. Then γr + βr, ρr + γr − σr, and σr + βr − ρr are cycles.

The formula

f(z) =
1

1 + zn

defines a meromorphic function on C, with poles at ω, ω3, . . . , ω2n−1.
Using r > 1, we get Indγr+βr (ω) = 1 by Theorem 10.11 of Rudin. Also, the path

t 7→ tω, for t ∈ [1,∞), is continuous, goes to ∞ as t → ∞, and has range disjoint
from Ran(σr + βr − ρr), so Indσr+βr−ρr (ω) = 0. Therefore

Indρr+γr−σr (ω) = Indγr+βr (ω)− Indσr+βr−ρr (ω) = 1.

On the other hand, for k = 2, 3, . . . , n, the path t 7→ tωk, for t ∈ [1,∞), is con-
tinuous, goes to ∞ as t → ∞, and has range disjoint from Ran(ρr + γr − σr). So
Indρr+γr−σr (ωk) = 0. We can now apply the Residue Theorem using the cycle
ρr + γr − σr. The condition Indρr+γr−σr (z) = 0 for z 6∈ C is vacuous, so we get∫

ρr+γr−σr

f(z) dz = 2πiRes(f ;ω).

Since n ≥ 2,

lim
r→∞

∫
ρr

f(z) dz = lim
r→∞

∫ r

0

1

1 + tn
dt =

∫ ∞
0

1

1 + tn
dt

exists and is finite. Similarly

lim
r→∞

∫
σr

f(z) dz = lim
r→∞

∫ r

0

1

1 + (ω2t)n
ω2 dt = ω2

∫ ∞
0

1

1 + tn
dt.

We claim that

lim
r→∞

∫
γr

f(z) dz = 0.

For |z| > 2, we have ∣∣∣∣ 1

1 + zn

∣∣∣∣ ≤ 1

|z|n − 1
≤ 2

|z|n
,

so for r > 2 we have, since the length of γr is 2πr/n,∣∣∣∣∫
γr

f(z) dz

∣∣∣∣ ≤ (2πr

n

)(
2

rn

)
=

4π

nrn−1
.

Since n ≥ 2, the claim follows. So

(1− ω2)

∫ ∞
0

1

1 + tn
dt = 2πiRes(f ;ω).

We next calculate Res(f ;ω). We use Lemma 5. We have, using ωn = −1 at the
second step,

Res(f ;ω) = lim
z→ω

z − ω
zn + 1

= lim
z→1

ωz − ω
(ωz)n + 1

= −ω lim
z→1

z − 1

zn − 1

= −ω lim
z→1

1

zn−1 + zn−2 + · · ·+ 1
= −ω

n
.
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We conclude∫ ∞
0

1

1 + tn
dt =

2πiRes(f ;ω)

1− ω2
= − 2πiω

n(1− ω2)

=
2πi

n(ω − ω−1)
=

π/n

(ω − ω−1)/(2i)
=

π/n

sin(π/n)
.

This completes the proof. �


