CONJUGACY CLASSES IN A_n ($n \leq 5$) AND APPLICATIONS

As proved in HW#6, conjugacy classes in S_n are very simple to describe, in fact we proved the following Theorem:

Theorem 1 Two permutations are conjugate in S_n if and only if they have the same cycle structure.

Proof. See Hw#6 Extra credit. You can use this Theorem without further proof if you need it. ■

We wish things were this clear for the alternating groups, but they aren’t. (Take a moment to understand why conjugacy classes in A_n can be different from those in S_n). The goal of this project is to understand the conjugacy classes in A_n ($n \leq 5$) and obtain some applications.

Part I

Preliminary Results

Let G be a group. Define on G the conjugation relation by $a \sim b$ iff there exists $g \in G$ such that $b = gag^{-1}$.

1. Show that \sim is an equivalence relation. We will denote the class of $a \in G$ by $[a]_G$ and call it the conjugacy class of a in G.

2. What are the conjugacy classes of an Abelian group?

3. If H is a subgroup of G and $a \in H$.
 (i) Show that $[a]_H \subseteq [a]_G$.
 (ii) Give an example of a group G, a subgroup H and $a \in H$ so that $[a]_H \nsubseteq [a]_G$.

4. Show that a subgroup H of G is normal in G if and only if $H = \bigcup_{a \in H} [a]_G$.

5. For $a \in G$, $C_G(a)$ denotes the centralizer of a in G. (see HW#7 for definition and properties).
 (i) Suppose $|G| < \infty$. Show that for every $a \in G$,
 \[|[a]_G| = |G : C_G(a)| \]
 (ii) Show that if H is a subgroup of G and $a \in H$, then $C_H(a) = C_G(a) \cap H$.

Part II

Conjugacy classes in A_n ($n \leq 5$).

1. Write down explicitly the conjugacy classes in A_1, A_2, A_3.

2. List the conjugacy classes in S_4.
3. List the sizes of conjugacy classes in S_5. (note that you don’t have to list the permutations)

I want to illustrate through the following example the technique that you will use to describe conjugacy classes in A_4 and A_5.

I wish to understand the conjugacy class of 3-cycles in A_5 that is $[\alpha]_{A_5}$ with α a 3-cycle. If α is a 3-cycle, we know from Theorem 1 and a counting argument that $|[\alpha]|_{S_5} = 20$. As observed in Part 1.3.2i, it may happen that $[\alpha]_{A_5} \subseteq [\alpha]_{S_5}$, which will imply that 3-cycles splits into more than one conjugacy class in A_5.

Now let’s see what actually happens. If α is a 3-cycle, we know by equation (*) that $|C_{S_5}(\alpha)|$ = $\frac{|S_5|}{|\alpha|_{S_5}}$ = $\frac{120}{5}$ = 6. Let t be the unique transposition whose support is disjoint from α. Observe that $\alpha \in C_{S_5}(\alpha)$, and $t \in C_{S_5}(\alpha)$, hence since $C_{S_5}(\alpha)$ is a subgroup, we get $\varepsilon, \alpha, \alpha^{-1}, t, \alpha t, \alpha^{-1} t$ are all distinct in $C_{S_5}(\alpha)$. But we know that $|C_{S_5}(\alpha)| = 6$, thus $C_{S_5}(\alpha) = \{\varepsilon, \alpha, \alpha^{-1}, t, \alpha t, \alpha^{-1} t\}$. Hence by Part 1.5.2i, $C_{A_5}(\alpha) = \{\varepsilon, \alpha, \alpha^{-1}, t, \alpha t, \alpha^{-1} t\} \cap A_5 = \{\varepsilon, \alpha, \alpha^{-1}\}$. Thus $|C_{A_5}(\alpha)| = 3$.

Using equation (*), we obtain $|[\alpha]|_{A_5}$ = $\frac{|A_5|}{|C_{A_5}(\alpha)|}$ = $\frac{60}{3}$ = 20. Since $[\alpha]_{A_5} \subseteq [\alpha]_{S_5}$ and $|[\alpha]|_{A_5}$ = $|[\alpha]|_{S_5}$ = 20, then $[\alpha]_{A_5} = [\alpha]_{S_5}$. Thus in A_5 the 3-cycle are still all in the same conjugacy class. This is nice, but it is not only this way. Put it like this, if you finish the project without realizing this, you must have missed something.

4. List the conjugacy classes in A_4.
5. List the sizes of conjugacy classes in A_5.

Part III

Applications to Normal subgroups

For this part, you will rely heavily of Part 1.4 and the Lagrange Theorem.

1. Show that $V_4 \supseteq S_4$. Does this imply that $V_4 \supseteq A_4$?
2. Show that $\{\varepsilon\}, V_4, A_4, S_4$ are the only normal subgroups of S_4.
3. Show that $\{\varepsilon\}, A_5, S_5$ are the only normal subgroups of S_5.
4. Show that A_5 have no proper non trivial normal subgroups. (such a group is called a simple group)

Remark 2 One can prove that A_n is simple for every $n \geq 5$.
Part IV
Applications to Normal series

A subnormal series of a group G is a finite sequence of subgroups $\{H_i\}$ satisfying:
$\{e\} = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G$ such that $H_i \unlhd H_{i+1}$ for all i. A group G is called solvable if it has a subnormal series $\{H_i\}$ with H_{i+1}/H_i Abelian.

1. Write down all the normal series of S_4.
2. Write down all the normal series of S_5.
3. Is S_4 solvable? what about S_5?