The preprojective algebra of a quiver

Claus Michael Ringel

Abstract. The preprojective algebra $P_k(Q)$ of a quiver Q plays an important role in mathematics. We are going to present some descriptions of these algebras and their module categories which seem to be well-accepted by some experts, but for which we were unable to find complete proofs in the literature. In particular, we determine the fibre of the forgetful functor from the category of $P_k(Q)$-modules to the category of kQ-modules in terms of the orbit algebra of a kQ-module with respect to the Auslander-Reiten translation.

1. Introduction

Let k be a field. The algebras which we consider will be k-algebras, modules are usually left modules. If A is a k-algebra, we denote by $\text{Mod} A$ the category of all A-modules, by $\text{mod} A$ the full subcategory of all finite dimensional A-modules.

Quivers. Let $Q = (Q_0, Q_1, s, t)$ be a finite quiver; here, Q_0, Q_1 are finite sets, and $s, t: Q_1 \to Q_0$ are maps; the elements of Q_0 are called vertices, those of Q_1 are called arrows; given an arrow $\alpha \in Q_1$, one writes $\alpha: x \to y$ (or also $x \xrightarrow{\alpha} y$) and calls x its starting vertex and y its terminal vertex. A path of length $l \geq 1$ is a sequence $(\alpha_1, \ldots, \alpha_l)$ with $s\alpha_i = t\alpha_{i+1}$, for $1 \leq i < l$; the vertex $s\alpha_l$ is called its starting vertex and $t\alpha_l$ is called its terminal vertex; in addition, one also considers paths of length 0, they correspond bijectively to the vertices of Q. We denote by kQ the path algebra of the quiver Q with coefficient field k; here, the product of two paths is given by concatenation, whenever this is possible, and by zero otherwise. Note that the path algebra kQ has global dimension at most 1. Of course, kQ is finite dimensional if and only if there are no cyclic paths in Q (a cyclic path is a path of length at least 1 with same starting and terminal vertex). Let kQ^+ be the subspace of kQ with basis the set of all paths of length at least 1; it is the ideal of kQ generated by the arrows.

The preprojective algebra of the quiver Q. Let \overline{Q} be obtained from Q by adding for every arrow $\alpha: x \to y$ a formal inverse $\alpha^*: y \to x$, the set of new arrows will be denoted by Q^*.

arrow in each i-orbit of Q. Here, $\iota(\alpha) = \alpha^*$ and $\iota(\alpha^*) = \alpha$, for any arrow $\alpha \in Q_i$.

We consider the following element

$$\rho = \sum_{\alpha \in Q_i} [\alpha^*, \alpha]$$

in kQ and the ideal (ρ) generated by ρ (here, the summands of ρ are just the usual commutators $[\alpha^*, \alpha] = \alpha^*\alpha - \alpha\alpha^*$). The algebra $\mathcal{P}_k(Q) = kQ/(\rho)$ will be called the preprojective algebra of the quiver Q.

Tensor algebras of bimodules. If Λ is a ring and Ω a Λ-bimodule, let $\Lambda(\Omega)$ denote the corresponding tensor algebra; it is the direct sum

$$\Lambda(\Omega) = \bigoplus_{t \geq 0} \Omega^\otimes t,$$

where $\Omega^\otimes t$ is the t-fold tensor power of Ω, with $\Omega^\otimes 0 = \Lambda$, and $\Omega^\otimes (t+1) = \Omega^\otimes t \otimes \Omega$; the product of $a \in \Omega^\otimes s$ and $b \in \Omega^\otimes t$ in the tensor algebra is just $a \otimes b \in \Omega^\otimes (s+t) = \Omega^\otimes s \otimes \Omega^\otimes t$, provided $s, t \geq 1$, and the tensor product ab otherwise. Note that Λ is a subring of $\Lambda(\Omega)$, thus there is a forgetful functor from the category of all $\Lambda(\Omega)$-modules to the category of Λ-modules. The ideal of $\Lambda(\Omega)$ generated by Ω is called the augmentation ideal.

We denote by $D = \text{Hom}_k(-, k)$ the usual k-duality: for example, starting with the right module kQ_kQ, we obtain the dual module $D(kQ_kQ)$, and we may consider

$$\Theta = \text{Ext}_k^1(D(kQ_kQ), kQkQ);$$

since the endomorphism ring of both kQ-modules $D(kQ_kQ)$, $kQkQ$ is just kQ, we see that Θ is a kQ-bimodule (the left module structure of Θ comes from the canonical action of kQ on the right of $D(kQ_kQ)$, whereas the right module structure of Θ comes from the canonical action of kQ_kQ on the right of $kQkQ$).

Theorem A. Let Q be a quiver without cyclic paths. Let

$$\Theta = \text{Ext}_k^1(D(kQ_kQ), kQkQ).$$

The algebras $\mathcal{P}_k(Q)$ and $kQ(\Theta)$ are isomorphic.

There exists an isomorphism whose restriction to kQ is the identity and which maps the ideal of $\mathcal{P}_k(Q)$ generated by the arrows of Q^* onto the augmentation ideal of $kQ(\Theta)$.

Both algebras $\mathcal{P}_k(Q)$ and $kQ(\Theta)$ have been studied by many mathematicians. The aim of Gabriel and Ponomarev [R] was to construct an algebra A with the following property $(*)$: it contains kQ as a subalgebra and when considered as a left kQ-module, A decomposes as a direct sum of the indecomposable ‘preprojective’ kQ-modules, one from each isomorphism class (the definition of preprojective modules will be recalled in section 5 of the paper). Our joint paper [DR] with Diagonal had the same aim in mind, but dealt with the more general case of a given species instead of a quiver. Since the algebra $\mathcal{P}_k(Q)$ has the property $(*)$, it became customary to call it the preprojective algebra of the quiver Q. But let us stress that for a fixed quiver Q, there may be several isomorphism classes of algebras A with property $(*)$, see the remark at the end of the paper. Algebras of the form $\mathcal{P}_k(Q)$ appear quite naturally in very diverse situations: Special cases of such algebras were considered by Kronheimer [K] when dealing with problems in differential geometry, and all of them play an important role in Lusztig’s perverse sheaf approach to quantum groups [L1,L2,L3].

On the other hand, it seems to be such, our first to the Ausland Ponomearev, algebras about the and obtained differences in this bimodule isomorphism.

Crawley-Boege

If kQ is and $\tau^* = \tau$ defined; since:

Given G the following and d: $F(C)$ morphism $(C, G(f)) \circ d$. In are endofunc

Theorem B. The categories M_0 and $G = \text{Hom}(\Theta, \text{mod } \mathcal{P}_k(Q))$.

This folk is All these come

The restriction and τ, respective of the reader at first, we are!!

Theorem A

Represe

quiver, possible as the category is given by a $x_0 : V_{x_0} \rightarrow \sum \sum$ the sum \sum consider the $V_j = 0$ for j.

On the other hand, Baer, Geiße and Lenzing [BGL] have considered the algebras $kQ(\Theta)$ under the name of preprojective algebras (see [BGL, Proposition 3.1]); implicitly (and rightly) they assume that these are the algebras of interest. The assertion of Theorem A is well-accepted by the experts, but no complete proof seems to be available in the literature. Since this result will be needed in the sequel, our first aim is to provide a proof. We are going to derive it as a consequence of the Brenner-Butler-Gabriel theorem which describes the relationship between the Auslander-Reiten translation and the Coxeter functors of Bernstein-Gelfand-Ponomarev. This strategy of proof will not be surprising, but we were astonished about the amount of additional calculations which seem to be necessary. In order to obtain a different (and perhaps shorter) proof, one may consider the kQ-bimodule generated in $\mathcal{P}_k(Q)$ by the arrows of Q^* and one should try to show directly that this bimodule is isomorphic to Θ; but we found it difficult to establish such an isomorphism directly. A short conceptual proof has recently been presented by W. Crawley-Boevey [CB].

If kQ is finite dimensional, then the Auslander-Reiten translations $\tau = D \text{Tr}$ and $\tau = \text{Tr} D$ on the category mod kQ of all finite dimensional kQ-modules are defined; since kQ has global dimension at most 1, these are endofunctors of mod kQ:

$$\tau = D \text{Ext}^1_{kQ}(\frac{_}{kQ}, kQ) \quad \text{and} \quad \tau = \text{Ext}^1_{kQ}(kQ, \frac{_}{kQ}).$$

Given categories \mathcal{C}, \mathcal{D} and two functors $F, G : \mathcal{C} \to \mathcal{D}$ we denote by $\mathcal{C}(F, G)$ the following category: its objects are the pairs (C, d) where C is an object in \mathcal{C} and $d : F(C) \to G(C)$ is a morphism in \mathcal{D}; given two objects (C, d) and (C', d'), a morphism $(C, d) \to (C', d')$ is a morphism $f : C \to C'$ in \mathcal{C} such that $d' \circ F(f) = G(f) \circ d$. In the following, we always will deal with the case $\mathcal{C} = \mathcal{D}$, thus F and G are endofunctors.

Theorem B. Let Q be a finite quiver without cyclic paths. The categories $\text{mod} \mathcal{P}_k(Q)$, $(\text{mod} kQ)(\tau^{-1}, 1)$ and $(\text{mod} kQ)(1, \tau)$ are isomorphic. Similarly, the categories $\text{Mod} \mathcal{P}_k(Q)$, $(\text{Mod} kQ)(F, 1)$ and $(\text{Mod} kQ)(1, F)$, where $F = \Theta \otimes -$ and $G = \text{Hom}(\Theta, -)$, are isomorphic.

This follows directly from Theorem A using Lemma 1 and Lemma 2 of section 3. All these considerations are quite obvious. First of all, there are natural equivalences

$$\text{mod} kQ(\Theta) \simeq (\text{Mod} kQ)(F, 1) \simeq (\text{Mod} kQ)(1, G).$$

The restrictions of F, G to mod kQ are just the Auslander-Reiten translations τ^{-1} and τ, respectively. This shows in which way Theorem A implies Theorem B. But the reader should be aware that actually our method of proof is the reverse one: first, we are going to establish the assertion of Theorem B. In section 3, we derive Theorem A from Theorem B.

Representations of quivers. Let us consider for a moment an arbitrary finite quiver, possibly with cyclic paths. The category of kQ-modules may be described as the category of representations of Q. Recall that a representation (V, x) of Q is given by a Q_0-graded vector space V and a family $x = (x_\alpha)_\alpha$ of k-linear maps $x_\alpha : V_{\alpha} \to V_{\beta}$. The family $(\dim V_i)_{i \in Q_0}$ is called the dimension vector of (V, x), the sum $\sum \dim V_i$ is called the dimension of (V, x). For every vertex $i \in Q_0$, we may consider the one-dimensional representation $E(i)$ with $E(i) = (V, x)$ where $V_i = k$, $V_j = 0$ for $j \neq i$ and $x_\alpha = 0$ for all arrows α. A finite dimensional representation
(V, x) is said to be nilpotent provided it has a filtration whose factors are of the form $E(t_i)$ with $t_i \in Q_0$. The usual identification of the category of representations of Q with the category $\text{Mod} kQ$ of kQ-modules attaches to the representation (V, x) of Q a corresponding kQ-module with underlying vector space $\bigoplus_{i \in Q_0} V_i$ so that the action of kQ is given by x. The (finite dimensional) representation (V, x) is nilpotent if and only if some power of the ideal kQ^+ annihilates the corresponding kQ-module. It is easy to see that all the finite dimensional representations of Q are nilpotent if and only if there are no cyclic paths in Q.

The affine space of representations with fixed dimension vector. If we fix a finite dimensional Q_0-graded vector space V, the set of all representations of Q of the form (V, x) forms the set

$$\mathcal{R}(Q; V) = \bigoplus_{\alpha \in Q_1} \text{Hom}_k(V_{\alpha}, V_{\alpha});$$

of course, this is an affine space. The group

$$G(V) = \prod_{i \in Q_0} \text{GL}(V_i)$$

operates on $\mathcal{R}(Q; V)$ via

$$(g \ast x)_a = g_{\alpha} x_{\alpha} g^{-1}_{\alpha},$$

for $g = (g_i) \in G(V)$ and $x = (x_\alpha) \in \mathcal{R}(Q; V)$, and two elements $x, y \in \mathcal{R}(Q; V)$ belong to the same $G(V)$-orbit if and only if the representations (V, x) and (V, y) are isomorphic. If I is an ideal of the path algebra kQ, we denote by $\mathcal{R}(Q, I; V)$ the subset of $\mathcal{R}(Q; V)$ of all elements x such that the kQ-module given by (V, x) is annihilated by I.

We denote by $\mathcal{R}_0(Q; V)$ the subset of $\mathcal{R}(Q; V)$ of all elements x such that (V, x) is a nilpotent representation. An element x belongs to $\mathcal{R}_0(Q; V)$ if and only if the zero element belongs to the closure of the orbit of x. Also, let $\mathcal{R}_0(Q, I; V)$ be the intersection of $\mathcal{R}(Q, I; V)$ and $\mathcal{R}_0(Q; V)$.

The projection π. Given a quiver Q with preprojective algebra $P_k(Q)$, the path algebra kQ can be considered as a subalgebra of $P_k(Q)$, thus the restriction of a functor from the category of $P_k(Q)$-modules to the category of kQ-modules. We write any representation of \overline{Q} in the form $(V, x, \xi) = (V, x_\alpha, \xi_\alpha)_{\alpha \in Q_1}$, here, (V, x) is a representation of Q and (V, ξ) is a representation of Q^*. The restriction functor $\text{Mod} P_k(Q) \to \text{Mod} kQ$ sends the representation (V, x, ξ) of \overline{Q} to the representation (V, x) of Q. Our interest lies in the corresponding map

$$\pi: \mathcal{R}_0(\overline{Q}, (\rho); V) \to \mathcal{R}_0(Q; V),$$

we want to determine the fibers of this map. The varieties $\mathcal{R}_0(\overline{Q}, (\rho); V)$ play an important role in Lusztig’s approach to quantum groups [L1, L2, L3].

The orbit ring of an object in an additive category with respect to an endofunctor. Let \mathcal{A} be an additive category. Let F be an (additive) endofunctor of \mathcal{A} and let X be an object of \mathcal{A}. The orbit ring $O^F(X)$ is given by the graded abelian group

$$O^F(X) = \bigoplus_{n \geq 0} \text{Hom}(F^n(X), X)$$

with the mu
THE PREPROJECTIVE ALGEBRA OF A QUIVER

471

with the multiplication

\[f \ast g = f \circ F^\ast(g) \]

for \(f \in \text{Hom}(F^\ast(X), X) \) and \(g \in \text{Hom}(F^\ast(X), X) \). It is a graded associative algebra with 1 (this construction is similar to that considered in [BGL]). The situation we are interested in, will be the following: \(A \) will be the category of representations of the quiver \(Q \) and \(F = \tau^\ast = \) will be the inverse of the Auslander-Reiten translation. We will consider homogeneous elements of degree 1 which are nilpotent; thus it will be convenient to introduce the following notation:

\[N^F(X) = \{ f \in \text{Hom}(F(X), X) \mid f \text{ is nilpotent in } \mathcal{O}^F(X) \} \]

Theorem C. Let \(Q \) be a quiver without cyclic paths. Let \(V \) be a finite dimensional \(Q_0 \)-graded vector space and let \(x \) be an element of \(\mathcal{R}(V; Q) \). Then \(\pi^{-1}(x) \) may be identified with \(N^\tau(V, x) \).

It will be shown in [R4] that Theorem C may be used very effectively in order to construct the irreducible components of the varieties \(\mathcal{R}_0(Q, (\rho); V) \), at least in the case of a tame quiver \(Q \). Theorem C and its consequences have been presented first at ICRA VI, Ottawa 1992 and in lectures at Braeides university in the same year. We are indebted to comments and suggestions by M. Auslander, Th. Brüstle and G. Lusztig.

2. Proof of Theorem B

In the following, we fix a quiver \(Q \) without cyclic paths, and \(C \) will denote the category of all (not necessarily finitely generated) \(kQ \)-modules. We denote by \(\Phi^-, \Phi^+ \) the Coxeter functors (as introduced by Bernstein, Gelfand and Ponomarev); note that these functors are defined for all \(kQ \)-modules, not just the finitely generated ones (the definition of \(\Phi^+ \) will be recalled in the next proof). We denote by \(T \) the endofunctor of \(C \) which sends \((V, x) \) to \((V, -x) \).

In case categories \(C', C'' \) with 'canonical' functors \(\Gamma': C' \to C \) and \(\Gamma'': C'' \to C \) are given, an isomorphism of categories \(\Psi: \Gamma' \to \Gamma'' \) will be said to be a \(C \)-isomorphism provided we have \(\Gamma' = \Gamma'' \Psi \). For example if \(F, G \) are endofunctors of \(C \), the forgetful functor which sends \((C, c) \) to \(C \) will be considered as the canonical functor \(C(F, G) \to C \). Similarly, for the category \(\text{Mod} \mathcal{P}_k(Q) \), the canonical functor \(\text{Mod} \mathcal{P}_k(Q) \to C \) is the one induced by the canonical algebra homomorphism \(kQ \to \mathcal{P}_k(Q) \).

Theorem B'. There is a \(C \)-isomorphism \(\Psi \) from the category of all \(\mathcal{P}_k(Q) \)-modules to the category \(\mathcal{C}(1, T\Phi^+) \).

Proof. We will have to consider various summations where the index sets are sets of arrows. Usually, we will distinguish the arrows from \(Q \) and from \(Q^\ast \). It will be convenient to consider as index sets only sets of arrows from \(Q \), for example, the element \(\rho \) will be used in the form

\[\rho = \sum_{\alpha \in Q_1} \alpha^\ast \alpha = \sum_{\beta \in Q_1} \beta \beta^\ast \]

This convention allows us to delete the reference to \(Q_1 \).
We assume that the quiver Q has n vertices. Then ρ can be written as the sum of n elements, namely of the elements

$$\rho_i = \sum_{s \beta = i} \beta^* \beta - \sum_{t \alpha = i} \alpha \alpha^*$$

with $i \in Q_0$.

A $\mathcal{P}_k(Q)$-module may be considered as a representation of the quiver Q satisfying the relation ρ. We write any representation of Q in the form $(V, x, \xi) = (V, x_\alpha, \xi_\alpha)_{\alpha \in Q_1}$; here, (V, x) is a representation of Q and (V, ξ) is a representation of Q^*.

Recall that Φ^+ denotes one of the Coxeter functors for the quiver Q as introduced by Bernstein, Gelfand and Ponomarev. Given a representation (V, x) of Q, the representation $\Phi^+(V, x)$ is constructed as follows: Since we assume that Q has no oriented cycles, we may assume that we use as vertex set the set $Q_0 = \{1, 2, \ldots, n\}$ such that for any arrow β we have $s \beta > t \beta$. Inductively, we define vector spaces W_i, for any vertex i, and linear maps $y_\beta: W_{t \beta} \to V_{s \beta}$ and $x_\beta: W_{s \beta} \to V_{t \beta}$ such that the sequences

$$0 \to W_i \to \bigoplus_{t \alpha = i} V_{t \alpha} \oplus \bigoplus_{s \beta = i} W_{s \beta} \to \Phi^+(V, x) \to 0 \tag{*}$$

are exact. Let us fix some vertex i. By induction, we may assume that the vector spaces W_j with $j < i$, the maps $y_\beta: W_{t \beta} \to V_{s \beta}$ for all arrows β with $s \beta \leq i$ and the maps $x_\beta: W_{s \alpha} \to V_{t \alpha}$ for all arrows α with $t \alpha < i$ are already defined. In particular, the right map of $(*)$ is defined; we denote this map by ϵ_i. We define W_i as the kernel of ϵ_i. In this way, we obtain corresponding maps $y_\beta: W_{t \beta} \to V_{s \beta}$ for every arrow α with $t \alpha = i$ and $x_\beta: W_{s \beta} \to V_{t \beta}$ for every arrow β with $s \beta = i$. Then, by definition, $\Phi^+(V, x) = (W_i, x)$, and therefore $T \Phi^+(V, x) = (W_i, -z)$.

Consider now an object of $\mathcal{C}(1, T \Phi^+)$. It is of the form (V, x, ψ) where (V, x) belongs to \mathcal{C} and ψ is a map $\psi: (V, x) \to (W_i, -z)$. We define $\psi_{\beta} = y_\beta \psi_{t \beta}$, this is a linear map $V_{t \beta} \to V_{s \beta}$. In order to show that the representation (V, x, ξ) of Q satisfies the relation ρ, we calculate:

$$\sum_{t \alpha = i} x_\alpha \xi_\alpha - \sum_{s \beta = i} \xi_\beta x_\beta = \sum_{t \alpha = i} x_\alpha y_\alpha \psi_{t \alpha} - \sum_{s \beta = i} y_\beta (-z_\beta) \psi_{s \beta}$$

$$= \left(\sum_{t \alpha = i} x_\alpha y_\alpha + \sum_{s \beta = i} y_\beta z_\beta \right) \psi_i = 0.$$

Here, we have used that $\psi_{t \beta} x_\beta = -z_\beta \psi_{s \beta}$, since $\psi = (\psi_i)$, is a homomorphism between representations of Q, and the exactness of $(*)$.

Conversely, assume that the representation (V, x, ξ) of Q satisfies the relation ρ. Inductively, we are going to define linear maps $\psi_i: V_i \to W_i$ such that the conditions $\psi_{t \beta} x_\beta = -z_\beta \psi_{s \beta}$ and $\xi_\beta = y_\beta \psi_{t \beta}$ are satisfied for all arrows β. Assume that the maps ψ_i with $j < i$ have been constructed satisfying $\psi_{t \beta} x_\beta = -z_\beta \psi_{s \beta}$ for all arrows β with $s \beta < i$ and $\xi_\beta = y_\alpha \psi_{t \alpha}$ for all arrows α with $t \alpha < i$. Consider the map

$$(\xi_\alpha, -\psi_{t \beta} x_\beta)_{\alpha \beta}: V_i \to \bigoplus_{t \alpha = i} V_{t \alpha} \oplus \bigoplus_{s \beta = i} W_{s \beta}$$

Its composi...
Its composition with \(\varepsilon_i \) is zero, as the following calculation shows:

\[
\sum_{\alpha = 1} x_{\alpha} \xi_{\alpha} - \sum_{\beta \neq i} y_{\beta} \psi_{\beta} x_{\beta} = \sum_{\alpha = 1} x_{\alpha} \xi_{\alpha} - s_{\beta} \sum_{\beta \neq i} \xi_{\beta} x_{\beta} = 0.
\]

As a consequence, we can factor it through the kernel \(\overline{W}_i \) of \(\varepsilon_i \). We obtain a map \(\psi_i : V_i \rightarrow \overline{W}_i \) such that, on the one hand, we have \(\xi_{\alpha} = y_{\alpha} \psi_{\alpha} \) for all arrows \(\alpha \) with \(t\alpha = i \), and, on the other hand, we have \(\psi_{\beta} x_{\beta} = -z_{\beta} \psi_{\beta} \) for all arrows \(\beta \) with \(s\beta = i \). This shows that \(\psi = (\psi_i)_i \) is a \(kQ \)-module homomorphism \((V, x) \rightarrow (W, z) \). If we want to stress that \(\psi \) has been derived from \(\xi \), we write \(\psi = \psi_\xi \).

Starting with \(\mathcal{P}_k(Q) \)-module \((V, x, \xi) \), let \(\Psi(V, x, \xi) = ((V, x), \psi_\xi) \).

Altogether, we see that \(\Psi \) furnishes, for every representation \((V, x) \) of \(Q \), a bijection between the \(\mathcal{P}_k(Q) \)-modules \((V, x, \xi) \) and the maps \(\psi : (V, x) \rightarrow (W, z) \).

Consider now two \(\mathcal{P}_k(Q) \)-modules \((V, x, \xi) \) and \((V', x', \xi') \) with corresponding maps \(\psi = \psi_\xi : (V, x) \rightarrow (W, z) \) and \(\psi' = \psi_{\xi'} : (V', x') \rightarrow (W', z') \). Since these are \(kQ \)-module homomorphisms, the equations

\[
\begin{align*}
\psi_{t\alpha} x_{\alpha} &= -z_{\alpha} \psi_{s\alpha} \\
\psi'_{t\alpha} x'_{\alpha} &= -z'_{\alpha} \psi'_{s\alpha}
\end{align*}
\]

are satisfied for all arrows \(\alpha \) of \(Q \). According to the definition of \(\Psi \), we have

\[
\begin{align*}
\xi_{\beta} &= y_{\beta} \psi_{t\beta} \\
\xi'_\beta &= y_{\beta} \psi'_{t\beta}
\end{align*}
\]

for any arrow \(\beta \).

Let us start with an arbitrary \(kQ \)-homomorphism \(f : (V, x) \rightarrow (V', x') \), thus \(f = (f_i)_i \), where \(f_i : V_i \rightarrow V'_i \) are \(k \)-linear maps such that

\[
f_{t\alpha} x_{\alpha} = x'_{\alpha} f_{s\alpha}
\]

for any arrow \(\alpha \in Q \). Inductively, we construct maps \(g_i : W_i \rightarrow W'_i \) such that the following diagram commutes:

\[
\begin{array}{cccccc}
0 & \rightarrow & W_i & \rightarrow & V_i & \\
& & \downarrow g_i & & \downarrow f_i & \\
0 & \rightarrow & W'_i & \rightarrow & V'_i & \\
\end{array}
\]

The maps \(g_i \), which we obtain in this way satisfy the following conditions:

\[
\begin{align*}
f_{t\alpha} y_{\alpha} &= y_{\alpha} g_{t\alpha} \\
g_{t\alpha} x_{\alpha} &= z_{\alpha} g_{s\alpha}
\end{align*}
\]

Of course, the last equality just expresses the fact that \(g = (g_i) \) is a \(kQ \)-module homomorphism \((W, z) \rightarrow (W', z') \). But then \(g \) is also a \(kQ \)-module homomorphism \((W, z) \rightarrow (W', z') \). Note that by construction \(g = \Phi^{-1}(f) \).

First, let us assume that \(f \) is a \(\mathcal{P}_k(Q) \)-module homomorphism, thus

\[
f_{t\alpha} \xi_{\alpha} = \xi'_{\alpha} f_{t\alpha}
\]
for all arrows \(\alpha \). By induction on \(i \), we want to show that \(g_i \psi_i = \psi'_i f_i \). In order to show this equality, it is sufficient to see that both
\[
\psi'_i f_i = f_i g_i \psi_i,
\]
for all arrows \(\alpha \) with \(t\alpha = i \) and all arrows \(\beta \) with \(s\beta = i \) are satisfied (since \((y_\alpha, z_\beta)_{\alpha, \beta}\) is a monomorphism). Fix some \(i \), and let us assume that
\[
g_j \psi_j = \psi'_j f_j \text{ for } j < i
\]
holds. Now, using (4), (a), (3), (6) we have
\[
y_{\alpha} \psi'_i f_{\alpha} = f_{\alpha} y_{\alpha} \psi_i = f_{\alpha} y_{\alpha} \psi_{\alpha a} = y_{\alpha} g_{\alpha a} \psi_{\alpha a}.
\]
Next, consider an arrow \(\beta \) with \(s\beta = i \). Since \(t\beta < i \), we can use (b) for \(j = t\beta \).
Altogether, we use (2), (5), (b), (1) and (7):
\[
\psi'_i f_{\beta} g_{\beta} = -\psi'_i f_{\beta} g_{\beta} = -\psi'_i f_{\beta} g_{\beta} = -\psi'_{t\beta} f_{t\beta} g_{t\beta}.
\]
This shows that \(g_i \psi_i = \psi'_i f_i \) holds for all \(i \), thus \(f : (V, x, \psi) \to (V', x', \psi') \) is a morphism in the category \(C(1, T\Phi^+) \).

Conversely, assume that \(f \) is a morphism \((V, x, \psi) \to (V', x', \psi')\) in the category \(C(1, T\Phi^+) \). This means that
\[
g_i \psi_i = \psi'_i f_i
\]
for all vertices \(i \) of \(Q \). Using (3), (6), (c), (4), we see that
\[
f_{\beta} \psi_{\beta} = f_{\beta} g_{\beta} \psi_{\beta} = y_{\beta} g_{\beta} \psi_{\beta} = y_{\beta} \psi_{\beta} f_{\beta} = \xi_{\beta} f_{\beta},
\]
thus \(f : (V, x, \xi) \to (V', x', \xi') \) is a homomorphism of \(kQ \)-modules.

Theorem B follows immediately from Theorem B', using the Brenner-Butler-Gabriel theorem: the restriction of the functor \(T\Phi^+ \) to the finitely generated \(kQ \)-modules is just the Auslander-Reiten translation \(\tau \), see [G], Proposition 5.3.

3. Proof of Theorem A

We are going to use some additional \(C \)-isomorphisms of categories. Let us formulate the corresponding results as Lemma 1 and Lemma 2. These assertions are obvious.

Lemma 1. Let \(F, C \) be a pair of adjoint endofunctors of the category \(C \). Then there is a \(C \)-isomorphism from \(C(F, 1) \) to \(C(1, G) \).

Lemma 2. Let \(\Lambda \) be a ring and \(\Omega \) a \(\Lambda \)-bimodule. Let \(C \) be the category of all \(\Lambda \)-modules and \(F \) the tensor functor \(\Omega \otimes - \). Then there is a \(C \)-isomorphism from \(C(F, 1) \) to the category of all \(\Lambda(\Omega) \)-modules.

For later reference, let us write down such a \(C \)-isomorphism in detail. An object of \(C(F, 1) \) is of the form \((C, c)\), where \(C \) is a \(\Lambda \)-module and \(c : \Omega \otimes \Lambda C \to C \) is a \(\Lambda \)-module homomorphism. In order to consider \(C \) as a \(\Lambda(\Omega) \)-module, we have to define a bilinear map \(\mu : \Lambda(\Omega) \otimes C \to C \). Since \(\Lambda(\Omega) \) is the direct sum of the \(\Lambda \)-bimodules \(\Omega^{\otimes i} \), it is sufficient to define maps \(\mu_i : \Omega^{\otimes i} \otimes C \to C \). We do this inductively. The map \(\mu_0 : \Lambda \otimes C \to C \) is by definition the scalar multiplication of the \(\Lambda \)-module \(C \); if \(\mu_i \) is already defined, let \(\mu_{i+1} = \mu_i \circ (1_{\Omega^i} \otimes c) \). In this way, we define a functor

\(\mu \) from \(C(F, 1) \) to \(C(1, G) \) as the identity on objects and on morphisms. The natural transformation \(\lambda \) that is induced by this is also a natural transformation. Therefore, \(\mu \) is a \(C \)-isomorphism.

Proof. Let \(u \in \mathcal{C} = \text{Mod} \mathcal{P}_k(\xi) \), a left \(kQ \)-endomorphism of \(kQ \), via \(t \). Thus, \(\Theta \) and \(\Theta' \) are isomorphisms.

Recall that \(\text{Ext}^{1}_{kQ}(D, \mathcal{C}) \) is the functio translatio of the adjoint product \(f \).

But according to the lemma, let us denote the algebra is \(\text{Mod} \mathcal{P}_k(\xi) \) and apply the

Lemma.

be the for \(\text{Mod} \mathcal{P}_k(\xi) \) induce the \(\text{Alg} \) by \(\text{Ext}^{1}_{kQ}(D, \mathcal{C}) \) in \(\text{Ext}^{1}_{kQ}(D, \mathcal{C}) \) ways; in \(\rho_r \) with \(r \) to the opp the endorm
In order to find (since

for\(j = t\beta \).

The preprojective algebra of a quiver

\(C(F, 1) \) to the category \(\Mod \Lambda(\Omega) \). Conversely, given a \(\Lambda(\Omega) \)-module \(M \), then we take the restriction of the scalar multiplication to \(\Omega \otimes M \).

Let us consider now again the case where \(Q \) is a quiver without cyclic paths and \(C = \Mod kQ \). We consider the image \(\Theta' = T\Phi^- (kQ kQ) \) of the 'regular representation' \(M = kQ kQ \) of \(kQ \) under the functor \(T\Phi^- \). Of course, \(\Theta' \), as an object in \(C \), is a left \(kQ \)-module; the endomorphism ring of \(M \) is mapped under the functor \(T\Phi^- \) to endomorphisms of \(\Theta' \). The endomorphism ring of \(M \) is just the opposite algebra of \(kQ \), via the right multiplication; in this way, \(\Theta' \) becomes also a right \(kQ \)-module. Thus, \(\Theta' \) is a \(kQ \)-bimodule. We have noted already in the introduction that also \(\Ext^1_{kQ}(D(kQ_kQ), kQkQ) \) is a \(kQ \)-bimodule.

Lemma 3 (Brenner-Butler-Gabriel). The \(kQ \)-bimodules

\[
T\Phi^- (kQkQ) \quad \text{and} \quad \Ext^1_{kQ}(D(kQkQ), kQkQ)
\]

are isomorphic.

Proof. According to the Brenner-Butler-Gabriel theorem, the restriction of the functor \(T\Phi^- \) to the finitely generated \(kQ \)-modules is just the Auslander-Reiten translation \(\tau^- \). But the endofunctor \(\tau^- \) may be identified with \(\Ext^1_{kQ}(D(kQ_kQ), -) \).

Recall that the functor \(\Phi^- \) is left adjoint to the functor \(\Phi^+ \), thus \(T\Phi^- \) is left adjoint to \(T\Phi^+ \). Also, since the functor \(T\Phi^- \) has an adjoint functor, it is a tensor product functor, namely \(\Theta \otimes - \), where \(\Theta \) is the \(kQ \)-bimodule \(\Theta = T\Phi^- (kQkQ) \).

But according to lemma 3, this bimodule is just \(\Ext^1_{kQ}(D(kQ_kQ), kQkQ) \).

Altogether, we see that there are \(C \)-isomorphisms

\[
\Mod \mathcal{P}_k(Q) \to C(1, T\Phi^+, 1) \to \Mod kQ(\Theta);
\]

let us denote the composition by \(\Psi' \). We want to see that \(\Psi' \) is induced by some algebra isomorphism \(\eta: kQ(\Theta) \to \mathcal{P}_k(Q) \). We may compose the canonical functors \(\Mod \mathcal{P}_k(Q) \to C \) and \(\Mod kQ(\Theta) \to C \) with the forgetful functor \(C \to \Mod k \) and apply the following Lemma.

Lemma 4. Let \(R, R' \) be \(k \)-algebras and let

\[\Gamma: \Mod R \to \Mod k \quad \text{and} \quad \Gamma': \Mod R' \to \Mod k \]

be the forgetful functors. Assume that there exists an equivalence \(\Psi: \Mod R \to \Mod R' \) such that \(\Gamma = \Gamma' \Psi \). Then there is an algebra isomorphism \(R' \to R \) which induces \(\Psi \).

Proof. The image \(\Psi(_R) \) is a pregenerator of the category \(\Mod R' \), in particular a faithful and balanced module (this means that the canonical map from \(R' \) into the 'double centralizer' is bijective). On the other hand, the underlying vector space \(\Gamma' \Psi(_R) \) of the module \(\Psi(_R) \) is the same as the underlying vector space \(\Gamma(_R) \) of \(R \), since we assume that \(\Gamma = \Gamma' \Psi \). Given \(r \in R \), let \(\rho_r: \Gamma(_R) \to \Gamma(_R) \) be the right multiplication by \(r \). The endomorphism ring of \(_R \) is just the set of elements \(\rho_r \) with \(r \in R \). The set of elements of \(R \) has to be considered here in various ways; in order to avoid confusion, we denote by \(E \) the set of right multiplications \(\rho_r \) with \(r \in R \) (of course, \(E = \End(_R) \), and this endomorphism ring is isomorphic to the opposite ring \(R^\text{op} \) of \(R \)). Since \(\Gamma' \Psi(\rho_r) = \Gamma(\rho_r) \), we see that the image of the endomorphism ring of \(_R \) under the functor \(\Psi \) is again the set \(E \). Since \(\Psi \) is a
full functor, E is the set of all endomorphisms of $\Psi(R)$. The double centralizer of $\Psi(R)$ is the endomorphism ring of the E-module $\Gamma(R)$. But the endomorphism ring of the E-module $\Gamma(R)$ is just the given ring R operating on $\Gamma(R)$ via left multiplication. This shows that the double centralizer of $\Psi(R)$ is the ring R. On the other hand, since $\Psi(R)$ is a balanced R'-module, its double centralizer is also isomorphic to R'. Therefore the rings R and R' are isomorphic. (Actually, our proof gives an identification of R with the double centralizer of $\Psi(R)$ and thus a fixed isomorphism $R' \to R$.)

Let $\eta: kQ(\Theta) \to \mathcal{P}_k(Q)$ be the algebra isomorphism which induces the C-isomorphism

$$\Psi': \text{Mod} \mathcal{P}_k(Q) \to \text{Mod} kQ(\Theta).$$

Let us consider first the isomorphism $\Psi: \text{Mod} \mathcal{P}_k(Q) \to C(1, T\Phi^+)$ with $\Psi(V, z, \xi) = ((V, z), \psi_t)$. We have $\xi = 0$ if and only if $\psi_t = 0$. There are corresponding assertions for the isomorphisms $C(1, T\Phi^+) \to C(T\Phi^-, 1)$ and $C(T\Phi^-, 1) \to \text{Mod} kQ(\Theta)$. Altogether, we see: if (V, z, ξ) is a $\mathcal{P}_k(Q)$-module, then $\xi = 0$ if and only if the $kQ(\Theta)$-module $\Psi'(V, z, \xi)$ is annihilated by the augmentation ideal. As a consequence, the augmentation ideal of $kQ(\Theta)$ is mapped under η onto the ideal of $\mathcal{P}_k(Q)$ generated by the arrows of Q^*. Also, since Ψ' is a C-isomorphism, it follows that the restriction of η to kQ is the identity.

This completes the proof of Theorem A.

4. Proof of Theorem C

Let I be the ideal of $\mathcal{P}_k(Q)$ generated by the arrows of Q^*. A finite dimensional $\mathcal{P}_k(Q)$-module M is nilpotent if and only if M is annihilated by some power I^s of I. Namely, the simple modules $E(i)$ with $i \in Q_0$ are annihilated by I, thus any module having a filtration of length i with factors of the form $E(i)$ is annihilated by I^*. On the other hand, if M is annihilated by I^s, then any composition factor of M is annihilated by I and therefore a simple kQ-module. But since kQ is finite dimensional, the only simple kQ-modules are those of the form $E(i)_{i \in I}$.

Consider now the general case of a ring Λ and a Λ-bimodule Ω. The $\Lambda(\Omega)$-modules are just of the form (M, f) where M is a Λ-module and $f: \Omega \otimes \Lambda M \to M$ is a Λ-homomorphism. Of course, such a map f may also be considered as an element of the orbit ring $O^F(M)$ for the functor $F = \Omega \otimes -$. There is the following relationship.

PROPOSITION 1. Let M be a Λ-module and let $f: \Omega \otimes \Lambda M \to M$ be a Λ-homomorphism. The map f is nilpotent as an element of the orbit ring $O^F(M)$ if and only if the $\Lambda(\Omega)$-module (M, f) is annihilated by some power of the augmentation ideal.

PROOF. The s-fold power of f in the orbit ring $O^F(M)$ is the composition of the following maps

$$\begin{array}{cccc}
\Omega^{s} \otimes M & \xrightarrow{1_{\Omega} \otimes f^{s-1}} & \Omega^{s-1} \otimes M & \xrightarrow{\cdots} & \Omega \otimes M & \xrightarrow{f} & M.
\end{array}$$

But this is also the restriction μ_s of the scalar multiplication of the $\Lambda(\Omega)$-module (M, f) to $\Omega^{s} \otimes M$. Thus, we see that the s-fold power f^{s} of f in the orbit ring $O^F(M)$ is zero if and only if the map μ_s is the zero map. The inductive definition of the maps μ_s shows that $\mu_s = 0$ implies $\mu_t = 0$ for all $t \geq s$. This shows that $f^{s} = 0$ in ideal annihilator.

We now consider the orbit ring $O^F(M)$ in the case where M is a Λ-module.

First, we can write $M = \bigoplus_{i \in I} E(i)$ as a direct sum of simple Λ-modules. Then M is a $\Lambda(\Omega)$-module if and only if $\Omega \otimes \Lambda M \to M$ is nilpotent as an element of the orbit ring $O^F(M)$.

Let N be a finite dimensional $\Lambda(\Omega)$-module and M a Λ-module with $N \cong M^{\oplus n}$ as $\Lambda(\Omega)$-modules. Then M is a $\Lambda(\Omega)$-module if and only if N is a Λ-module.

PROOF. The s-fold power of f in the orbit ring $O^F(M)$ is the composition of the following maps

$$\begin{array}{cccc}
\Omega^{s} \otimes M & \xrightarrow{1_{\Omega} \otimes f^{s-1}} & \Omega^{s-1} \otimes M & \xrightarrow{\cdots} & \Omega \otimes M & \xrightarrow{f} & M.
\end{array}$$

But this is also the restriction μ_s of the scalar multiplication of the $\Lambda(\Omega)$-module (M, f) to $\Omega^{s} \otimes M$. Thus, we see that the s-fold power f^{s} of f in the orbit ring $O^F(M)$ is zero if and only if the map μ_s is the zero map. The inductive definition of the maps μ_s shows that $\mu_s = 0$ implies $\mu_t = 0$ for all $t \geq s$. This shows that
centralizer of the $\gamma(R)$ via left ring R. On the other hand, it is also a module over $\gamma(R)$, and thus a module over $\gamma(R)$.

We have $\Psi(V, x, \xi) = \psi(x) \in \text{Mod} kQ(\Theta)$. Indeed, if V is such a module, then $\Psi(V, x, \xi)$ is a module over $\gamma(R)$, and $\Psi(V, x, \xi) \otimes \gamma(R)$ is isomorphic to V as a module over $\gamma(R)$.

As a consequence of the ideal isomorphism, it follows that $f^{*s} = 0$ in the orbit ring $\mathcal{O}_G(M)$ if and only if the s-fold power of the augmentation ideal annihilates the $\Gamma(\Theta)$-module (M, f).

5. Application

We want to give some indications in which way Theorem C can be used. Let Q be a connected quiver without cyclic paths and let us consider only finite dimensional kQ-modules. Given such a module M, let $\mathcal{O}(M) = \mathcal{O}(M)$ denote the orbit ring with respect to the Auslander-Reiten translation τ^-. Recall that $\mathcal{O}(M)$ is a graded ring and we are mainly interested in the set $\mathcal{O}(M)_1 = \text{Hom}(\tau^- M, M)$ of elements of degree 1. Also, we denote the subset $\mathcal{N}(M)$ just by $\mathcal{N}(M)$. We are going to derive some recipes for calculating $\mathcal{N}(M)$.

First, of all, observe the following: if we consider two kQ-modules M, N, then we can write $\mathcal{O}(M \oplus N)_1$ in matrix form as follows:

$$
\mathcal{O}(M \oplus N)_1 = \begin{bmatrix}
\text{Hom}(\tau^- M, M) & \text{Hom}(\tau^- N, M) \\
\text{Hom}(\tau^- M, N) & \text{Hom}(\tau^- N, N)
\end{bmatrix}
$$

Let M be a kQ-module. Recall that M is said to be preprojective provided there exists some $n \geq 0$ such that $\tau^n(M) = 0$. Similarly, M is said to be preinjective provided there exists some $n \geq 0$ such that $\tau^{-n}(M) = 0$. Finally, M is said to be regular provided M is both preprojective and preinjective. In case kQ is representation finite, all the modules are both preprojective and preinjective, otherwise the only module which is both preprojective and preinjective is the zero module. Any module M is isomorphic to a module of the form $P \oplus R \oplus I$, where P is preprojective, R is regular and I is preinjective, and in case kQ is representation infinite, such a decomposition is unique up to isomorphism.

PROPOSITION 2. Let P be preprojective, R regular and I preinjective. If kQ is representation finite, we assume in addition that $I = 0$. Then

$$
\mathcal{O}(P \oplus R \oplus I)_1 = \begin{bmatrix}
\text{Hom}(\tau^- P, P) & 0 & 0 \\
\text{Hom}(\tau^- P, R) & \text{Hom}(\tau^- R, R) & 0 \\
\text{Hom}(\tau^- P, I) & \text{Hom}(\tau^- R, I) & \text{Hom}(\tau^- I, I)
\end{bmatrix}
$$

and

$$
\mathcal{N}(P \oplus R \oplus I)_1 = \begin{bmatrix}
\text{Hom}(\tau^- P, P) & 0 & 0 \\
\text{Hom}(\tau^- P, R) & \mathcal{N}(R) & 0 \\
\text{Hom}(\tau^- P, I) & \text{Hom}(\tau^- R, I) & \text{Hom}(\tau^- I, I)
\end{bmatrix}
$$

PROOF. The first assertion follows directly from the well-known structure of the module category of a finite dimensional hereditary algebra. The triangular form of these matrices implies that the nilpotency of elements has to be checked only for P, R and I separately. Now assume that $\tau^{-n} I = 0$ for some $n \geq 0$. Then, for any $f \in \text{Hom}(\tau^- I, I)$, the n-fold power f^{*n} in the orbit ring $\mathcal{O}(I)$ is zero. Similarly, let us assume that $\tau^n P = 0$ for some $n \geq 0$. Since τ^{-n} is left adjoint to τ^n, it follows that $\text{Hom}(\tau^{-n} P, P) \cong \text{Hom}(P, \tau^n P) = 0$. Thus for any element in $f \in \text{Hom}(\tau^- P, P)$, we also have $f^{*n} = 0$ in $\mathcal{O}(P)$.

This shows that it remains to consider the case of a regular module R. In general, the problem of determining $\mathcal{N}(R)$ inside $\mathcal{O}(R)_1$ seems to be difficult. The
case a tame quiver will be treated in [R4]. For a representation finite quiver there is the following consequence:

Corollary. Let Q be a representation finite quiver. Then $\mathcal{N}(M) = \mathcal{O}(M)$ for all kQ-modules M.

6. Final remark

As we have mentioned in the introduction, the early investigations of Gelfand and Ponomarev, and of Diab and myself, were aiming at algebras A which contain a quiver algebra kQ as a subalgebra and such that A when considered as a left kQ-module, decomposes as a direct sum of the indecomposable preprojective kQ-modules, each occurring with multiplicity one. The problem whether there are several possible choices was not discussed explicitly. The construction presented in [DR] starts with what is called a 'modulated graph', but any non-trivial quiver Q gives rise to a wealth of modulated graphs (the bilinear forms needed may be chosen quite arbitrarily). A suitable choice will always produce the preprojective algebra $\mathcal{P}_k(Q)$ as considered in the present paper, but other choices may yield algebras which are not isomorphic to $\mathcal{P}_k(Q)$. We are going to exhibit a corresponding example.

The problem considered here may be phrased differently, as follows: in the definition of $\mathcal{P}_k(Q)$, we have used the ordinary commutators $[\alpha^*, \alpha]$. Instead of working with commutators, one may also deal with the general concept of the $q(\alpha)$-commutator $[\alpha^*, \alpha]_{q(\alpha)} = \alpha^* \alpha - q(\alpha) \cdot \alpha \alpha^*$, where $q(\alpha)$ is an element of k. Thus, given an arbitrary function $q: Q_1 \to k$ one may consider

$$\mathcal{P}_{k,q}(Q) = k\overline{Q}/(\rho_q) \quad \text{where} \quad \rho_q = \sum_{\alpha \in Q_1} [\alpha^*, \alpha]_{q(\alpha)}.$$

Here, we want to look at the special case where q is the constant function with value -1, thus we deal with the (-1)-comutators $\alpha^* \alpha + \alpha \alpha^*$, and we write $q = -1$ in this case.

The same calculations as above show that the category of all $\mathcal{P}_{k,-1}(Q)$-modules is equivalent to the category $\mathcal{C}(1, \Phi^+)$ and therefore to the category $\mathcal{C}(\Phi^+, 1)$, where, as before, $\mathcal{C} = \text{Mod } kQ$. As a consequence, $\mathcal{P}_{k,-1}(Q)$ is isomorphic to the tensor algebra of the kQ-bimodule $\Phi^- (kQkQ)$ (where the right kQ-module structure comes from the canonical action of kQ on the right of $kQkQ$). The algebra $\mathcal{P}_{k,-1}(Q)$ is one of those which have kQ embedded as a subalgebra and which decompose as left kQ-module into a direct sum of all the indecomposable preprojective kQ-modules.

It is easy to see that for Q a tree, the algebras $\mathcal{P}_k(Q) = \mathcal{P}_{k,1}(Q)$ and $\mathcal{P}_{k,-1}(Q)$ will be isomorphic. However, in general this is no longer true, as we are going to show.

The example to be considered is the case of the affine quiver Q of type \tilde{A}_{12}.

```
\begin{diagram}
  \node{\alpha} \arrow{e} \node{\beta} \node{\gamma} \arrow{w}
\end{diagram}
```

As Gabriel [G] has pointed out, this is the typical (and smallest) example of a quiver where the endofunctors Φ^- and τ^- are not equivalent, provided the characteristic of k is different from 2: then there exists a 3-dimensional kQ-module S such that the images $\Phi^-(S)$ and $\tau^-(S)$ are not isomorphic. We will use such a module S in order to prove that the algebras $\mathcal{P} = \mathcal{P}_k(Q)$ and $\mathcal{P}' = \mathcal{P}_{k,-1}(Q)$ are not isomorphic.

For $\lambda \in \overline{\mathbb{C}}$, S_{λ} is the \mathfrak{sl}_3-module $\mathcal{O}(M)$ with kQ-module $S = (S, 0)$.

On the one hand, we consider S_{λ}. This is a \mathfrak{sl}_3-module $\mathcal{O}(M)$ and kQ-module $S = (S, 0)$.

Consequently, we consider λ.

Since $0 \rightarrow C$ is either the zero map and there is a \mathfrak{sl}_3-module $\mathcal{O}(M)$ and kQ-module $S = (S, 0)$.

On the other hand, \mathfrak{sl}_3 is a module of \mathfrak{sl}_3-modules and $\mathcal{O}(M)$ and kQ-module $S = (S, 0)$.

Similarly, a subquiver of Q's oper assume th

In particular, the module $\mathcal{O}(M)$ has a \mathfrak{sl}_3-module $\mathcal{O}(M)$ and kQ-module $S = (S, 0)$.

Since $M'' \rightarrow M'$ and λ.

and there

Since $M'' \rightarrow M'$ and λ.

For $\lambda \in k$, let S_{λ} be the following representation of kQ

$$
\begin{array}{ccc}
1 & \rightarrow & k \\
\downarrow & \downarrow & \downarrow \\
\lambda & \rightarrow & k
\end{array}
$$

On the one hand, a direct (and easy) calculation shows that $\Phi^{-}(S_{\lambda}) = S_{-\lambda}$. On the other hand, S_{λ} is clearly simple regular. Since its dimension vector is $h = (1, 1, 1)$, we conclude that S_{λ} is homogeneous. As a consequence, $\tau^{-}(S_{\lambda})$ is isomorphic to S_{λ}. This shows that for $\lambda \neq 0$ (and characteristic different from 2), the kQ-modules $\Phi^{-}(S_{\lambda})$ and $\tau^{-}(S_{\lambda})$ are not isomorphic. We fix some $\lambda \neq 0$ and let $S = S_{\lambda}$.

Recall that the \mathcal{P}-modules can be considered as pairs (C, c), where C is a kQ-module and $c: \Phi^{-}(M) \to C$ is a kQ-module homomorphism. We consider $S = (S, 0)$ as a \mathcal{P}'-module and claim that $\text{Ext}_{\mathcal{P}'}^{1}(S, S) = k$. In order to see this, consider an exact sequence

$$
0 \to (S, 0) \to (C, c) \to (S, 0) \to 0.
$$

Since $0 \to S \to C \to S \to 0$ is an exact sequence of kQ-modules, we see that C is either isomorphic to $S[2]$ or to $S \oplus S$. But then $c: \Phi^{-}(C) \to C$ has to be the zero map. Namely, it follows from $\Phi^{-}(S[2]) = S_{-\lambda}$ that $\Phi^{-}(S[2]) = S_{-\lambda}[2]$, and therefore we have both $\text{Hom}(\Phi^{-}(S), S) = 0$ and $\text{Hom}(\Phi^{-}(S[2]), S[2]) = 0$. Consequently, we can identify $\text{Ext}_{\mathcal{P}'}^{1}(S, S)$ with $\text{Ext}_{\mathcal{P}'}^{1}(S, S) = k$. Note that the module S is indecomposable, has length 3 and dimension 3.

On the other hand, we are going to show that for every indecomposable \mathcal{P}-module M of dimension 3 and length 3, the vector space $\text{Ext}_{\mathcal{P}}^{1}(M, M)$ is at least 2-dimensional. First, we have to analyse the possibilities for M. Its dimension vector has to be h, since otherwise we would deal with a module for the preprojective algebra of a quiver of type A_2, however such an algebra has no indecomposable modules of dimension 3. Also, for any arrow α of Q, at most one of the elements α, α^* acts non-trivially on M, since otherwise the length of M is at most 2. For the same reason, it is impossible that all the elements α, β, γ act non-trivially; and similarly, not all the elements $\alpha^*, \beta^*, \gamma^*$ act non-trivially. It follows that there is a subquiver Q' of \overline{Q} which again is of the form A_{12} such that all the arrows outside of Q' operate trivially on M. This shows that without loss of generality, we may assume that M is a kQ-module with dimension vector $(1, 1, 1)$.

In particular, we see that M as a kQ-module is an indecomposable regular module with dimension vector h. We want to show that $\text{Ext}_{\mathcal{P}}^{1}(M, M)$ has dimension at least 2. First of all, since $\text{Ext}_{\mathcal{P}}^{1}(M, M) \neq 0$, there is a non-split exact sequence

$$
0 \to M \to M' \to M \to 0
$$

of kQ-modules. Second, there is a non-zero homomorphism $\phi: \tau^{-}(M) \to M$, thus we may construct the following object in the category $C(\tau^{-}, 1)$

$$
M'' = \left(M \oplus M, \begin{bmatrix} 0 & \phi \\ 0 & 0 \end{bmatrix} \right)
$$

and there is an obvious exact sequence

$$
0 \to M \to M'' \to M \to 0.
$$

Since M'' is indecomposable, this sequence also does not split. Clearly, the objects M' and M'' are not isomorphic. This completes the proof.
References

Fakultät für Mathematik, Universität Bielefeld, POBox 100 131, D-33500 Bielefeld

E-mail address: ringel@mathematik.uni-bielefeld.de