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1 Introduction

We report on a programme to understand unitary conformal ficld theory (CFT)
from the point of view of operator algebras. The carlier stages of this research
were carried out with Joncs, following his suggestion that therc might be a deeper
“subfactor” explanation of the coincidence between certain braid group represen-
tations that had turned up in subfactors, statistical mechanics, and conformal
field theory. (Most of our joint work appears in Section 10.) The classical addi-
tive theory of operator algebras, duc to Murray and von Neumann, provides a
framework for studying unitary Lie group representations, although in specific ex-
amples almost all the hard work involves a quite separate analysis of intertwining
opcrators and differential equations. Analogously, the more recent multiplicative
theory provides a powerful tool for studying the unitary representations of cer-
tain infinite-dimensional groups, such as loop groups or Diff S1. It must again be
complemented by a detailed analysis of certain intertwining operators, the pri-
mary fields, and their associated differential equations. The multiplicative theory
of von Neumann algebras has appeared in three separate but related guises: first
in the algebraic approach to quantum field theory (QFT) of Doplicher, Haag and
Roberts; then in Connes’ theory of bimodules or correspondences and their tensor
products; and last (but not least) in Jones’ theory of subfactors. Our results so far
include:

(1) Several new constructions of subfactors.

(2) Nontrivial algebraic QFT’s in 1 4+ 1 dimensions with finitely many sectors
and noninteger statistical (or quantum) dimension (“algebraic CFT”).

(3) A definition of quantum invariant theory without using quantum groups at
roots of unity.

(4) A computable and manifestly unitary definition of fusion for positive energy
representations (“Connes fusion”) making them into a tensor category.

(5) Analytic propertics of primary fields (“constructive CFT”).
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2 Classical Invariant Theory

The irreducible unitary (finite-dimensional) representations of G = SU(N) can be
studied in two distinct approaches. These provide a simple but important proto-
type for developing the theory of positive energy loop group representations and
primary fields.
Borel-Weil Approach. This constructs all irreducible representations uniformly in
a Lie algebraic way via highest weight theory. The representations are described
as quotients of Verma modules, that is in terms of lowering and raising operators.
This approach gives an important uniqueness result — such a representation is
uniquely determined by its highest weight — but has the disadvantage that it is
not manifestly unitary.
Hermann Weyl Approach. This starts from a special representation, V = CV or
AV, and realizes all others in the tensor powers V®¢ or (AV)®¢. The key to under-
standing the decomposition of V®¢ is Schur-Weyl duality: EndgV®¢ is the image
of CS,, where the symmetric group S; acts by permuting the tensor factors in V®¢.
This sets up a one-one correspondence between the irreducible representations of
G and the symmetric groups and gives a manifestly unitary construction of the
irreducible representations of G' (on multiplicity spaces of Sy). The irreducible uni-
tary representation Vy with character xs and signature f: f; > .-+ > fy(=0) is
generated by the vector e = e2U17) @ (e A €)®2=f) @ .. in (AV)®L. The
signature can be written in the usual way as a Young diagram and we then have
the tensor product rule Vy @ Vg = @V, where g runs over all diagrams that can
be obtained by adding one box to f.

Thus, the Borel-Weil Lie algebraic approach leads to uniqueness results,
whereas the Hermann Weyl approach leads to ezistence results and an explicit
construction, giving analytic unitary propertics.

3 Fermions and Quantization

Let H be a complex Hilbert space. Bounded operators a(f) for f € H are
said to satisfy the canonical anticommutation relations (CAR) if [a(f),a{g)]+ =
0, [a(f),ag)"]ls = (f,9) - I, where f — a(f) is C-linear and [z, 4]+ = zy + ya.
The complex wave representation © of the CAR on fermionic Fock space F = AH
is given by a{f)w = f Aw. It is irreducible. Now the equations c(f) = a(f) +a(f)*,
a(f) = 3 (c(f) —ic(if)) give a correspondence with real linear maps f — ¢(f) such
that c(f) = c(f)* and [e(f),e(g)]+ = 2Re(f,g) - I. Any projection P in H de-
fines a new complex structurec on H, by taking multiplication by 7 as ¢ on PH
and —i on PYH. So through c, this gives a new irreducible representation 7p of
the CAR on Fock space Fp. By considering approximations by finite-dimensional
systems, Segal showed that mp = wg iff P — @ is Hilbert-Schmidt. This leads
to the following quantization criterion. Any u € U(H) gives a Bogoliubov auto-
morphism of the CAR, «, : a(f) — a(uf). The automorphism o,, is said to be
implemented in Fp if a(uf) = Ua(f)U* for some unitary U € U(Fp), unique
up to a phase. The quantization criterion states that «, is implemented in Fp
iff [u, P] is Hilbert-Schmidt. Thus, we get a homomorphism from the subgroup of
implementable unitaries into PU(Fp), the basic projective representation. As a
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special case, there arc canonical quantizations: any unitary v with vPu* = P is
canonically implemented in Fock space; and if uPu* = I — P, then w is canonically
implemented by a conjugate-linear isometry in Fock space.

4 Positive Energy Representations

Let G = SU(N) and define the loop group LG = C*(S',G), the smooth maps
of the circle into G. The diffeomorphism group of the circle Diff S is naturally
a subgroup of Aut LG with the action given by reparametrization. In particular
the group of rotations Rot S* = U(1) acts on LG. We look for projective repre-
sentations 7 : LG — PU(H) that are both irreducible and have positive energy.
This means that 7 should extend to LG x Rot S! so that H = @,>0H (n), where
the H(n)’s are eigenspaces for the action of Rot S, i.c. rg¢ = e™™¢ for ¢ € H(n),
and dim H(n) < oo with H(0) # 0. Because the constant loops G commute with
Rot S!, the H(n)’s are automatically G-modules.

Uniqueness. An irreducible positive cnergy representation # on H is uniquely
determined by its level £ > 1, a positive integer specifying the central extension or
2-cocycle of LG, and its lowest energy space H(0), an irreducible representation
of G. Only finitely many irreducible representations of G occur at level £: their
signatures must satisfy the quantization condition f; — fy < £ and form a set Y.

Existence/Analytic Properties. Let H = L2(S!) ® V and let P be the projection
onto the Hardy space H?(S') @ V of functions with vanishing negative Fourier
coefficients (or equivalently boundary values of functions holomorphic in the unit
disc). The semidirect product LG x Diff © S! acts unitarily on H and satisfies the
quantization criterion for P, so gives a projective representation of LG x Diff  §1
in Fp. The irreducible summands of ]-"g'e give all the level £ representations of
LG and this construction shows that any positive cnergy representation extends
to LG x Difft $1 (“invariance under reparametrization”).

If H is a positive energy representation of level £, the C*° vectors H* for
Rot S! arc acted on continuously by LG x RotS! (or more generally LG x
Diff S!) and its Lie algebra. This can be seen in a variety of ways, using repre-
sentations of the Heiscnberg group or the infinitesimal version of the fermionic
construction. If g = Lie(G), then Lic(LG) = Lg = C*®(S%,g). Its complexi-
fication is spanned by the functions e’z with 2 € g. Let z(n) be the corre-
sponding unbounded operators on H* (or HY, the subspace of finite cnergy vee-
tors) and let d be the self-adjoint gencrator for Rot S (so that ry = €*9¢). Then
[2(n), y(m)] = [2,4)(n + m) + 6, 4mo tr(zy) - I and [d,z(n)] = —nz(n).

5 Formal Conformal Field Theory

Purely as motivation, we sketch the standard approach to CFT based on formal
quantum fields.

State-Field Correspondence. For fixed level £, there should be a one-one cor-
respondence between states v € H = @feylH}) and field operators ¢(v,z) =
>, #v,n)z "M, where ¢ij(v,n) : H) — HY and z is a formal parameter. The
field “creates the state from the vacuum”. i.e. ¢(v,0)Q2 = v. Fields arc first defined
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for vectors z € Ho(1) & g by z(2) = Y_ n(z(n))z~""L. For a € Hy, fields ¢(a, z) arc
uniquely determined by ¢(a,0)Q = a, rotation invariance [d, ¢(v,n)] = —ng(v,n)
and the gauge condition z(z)¢(a,w) ~ ¢(a,w)z(z). (This notation means that,
on taking matrix coefficients, one side is the analytic continuation of the other,
with the domains of definition given by decreasing moduli of arguments.) The
ficlds ¢(a,z) for a € HY form a vertezx algebra, Borcherds’ analoguc of a com-
mutative ring. Commutativity and associativity arc replaced by ¢(a, z)¢(b, w) ~
&b, w)d(a,z) and ¢(a, 2)d(b,w) ~ ¢(éd(a,z — w)b,w). The operator product ex-
pansion (OPE) is obtained by expanding the right-hand side of this last equation
as a power scries in (z — w): the resulting cocfficients arc the fields arising from
the fusion of ¢(a,z) and ¢(b,w). In this sense the z(z)’s gencrate the vertex al-
gebra. The H;’s become modules over the vertex algebra and the gauge condition
defines general fields as intertwiners. The ficlds corresponding to vectors in H;(0)
are called primary fields. Other secondary ficlds are obtained by successive fusion
with z(2)’s.

Braiding-Fusion Duality. If neither @ nor b lies in Hy, the commutativity and
associativity relations must be replaced by braiding and fusion relations:

5i(a, 2)8d, (b, w) ~ 33, andly (b,w)¢h, (a,2) (where a € Hy,b € Hy).
¢?j(a? z) ;k(b,w) - 2oh ﬁhqxl/,( ﬁq(a: z — w)b,w).

These are first proved as identities between lowest energy matrix coefficients of
primary ficlds and follow in general by fusion. The matrix cocfficients give a
veetor-valued function f(¢) of one variable ¢ = z/w. It satisfiecs the Knizhnik-
Zamolodchikov ODE f/(2) = 27'Pf(z) + (1 — 2)7'Qf(z), with P,@ constant
matrices. oy and By, are entries in the matrices connecting the solutions at 0 with
the solutions at oo and 1 respectively. The evident algebraic relations between
these two matrices constitute “braiding-fusion duality”. '

6 Construction of Primary Fields

Let H;, H; be positive encrgy representations of level £ and let W be an irre-
ducible representation of G. A primary field of charge W is a continuous lincar
map ¢ : H® @ C>(S*, W) — H$® that commutes with the action of LG » Rot ™.
This makes sensc because H; and H; arc projective representations with the same
cocycle, whereas C*(S', W) is an ordinary representation, with LG acting by
pointwise multiplication and Rot S* by rotation. Any f € C*(S*, W) determines
a “smeared field” ¢(f) : H® — H:°, which must satisfy the covariance relation
¢(g- f) = m;(9)¢(f)mi(g)* for g € LG x Rot S*.

Uniqueness. A primary field ¢ is uniquely determined by its initial term H;(0) @
W — H,;(0), which commutes with G. The charge W must have signature f satis-
fying f1 — fny < €. Moreover the initial term must satisfy an algebraic quantization
condition with respect to SU(2) C SU(N): () when cut down to irreducible sum-
mands of SU(2), the resulting intertwiners V, ® V; — V;. can only be non-zcro if
p+ g+ r < £ where the spins p, ¢,r arc half integers < £/2.

Existence/Construction. Primary fields for the vector representation of G come
from compressing fermions Pj(a(f) ® I ® --- ® I)F;, where P, P; are projections
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onto H;, H; summands of F®¢ More generally, primary fields arise from (an-
tisymmetric) external tensor products of fermions, parallelling the explicit con-
struction of highest weight vectors in (AV)®¢. For v € V, define v, (6) = ™0
in C*°(S',V) and a(v,m) = a(vy,). Introduce the formal Laurent series a(v, z) =
S, a(v,m)z~™. At level one, the primary field for A*V corresponds to compres-
sions of the formal Laurent series ¢{ey A --- A eg,2) = aler, z)a(es, 2) - - - alek, 2)
(essentially an external tensor product as the e;’s are orthogonal). At level ¢,
the primary fields of signature f arise as formal Laurent series ¢(w, z), uniquely
specified by ¢(ef, z) = Pj(d(er, 2)81772) @ p(e1 A e2,2)®2~f2) @ ...) P, and G-
covariance. All possible primary fields arise in this way because an intertwiner
satisfies (*) iff it appears as a component of the map A A — A, a@ f— aApB,
where A is the exterior algebra (AV)®¥.

This fermionic construction of the primary fields makes manifest their con-
tinuity properties on H°. In particular the primary fields for the vector rep-
resentation or its dual must satisfy the same kind of L? bounds as fermions,
lo(HOIF < A|lfll2, underlining Haag’s philosophy that QFT can and should be
understood in terms of (algebras of) bounded operators. Here there is no choice.

7 The K-Z ODE and Braiding of Primary Fields

When f,g € C*®(S?) @ V have disjoint support, the corresponding smeared fermi
fields satisfy the anticommutative exchange rule a(f)a(g)* = —a(g)*a(f). Simi-
larly, if @ and b are test functions supported in the upper and lower semicircle of
S1, there are braiding relations

1 (@Bh0) =S A ¢, (4 - b)gfg (e - a), (1)

where the constants Ay, i1, 7, are to be determined and e”(6) = €®. The A,’s
arisc as the entries of the matrix connecting the solutions at 0 and co of a matrix-
valued ODE as follows. Fusion of the z(z)’s shows that, up to an additive con-
stant, d is given by Lo = (N + £) " 1[3; 32:(0)*z;(0) + Ym0 Zi(n)*zi(n)] (the
Segal-Sugawara formula), where (z;) is an orthonormal basis of g. Let f(z) =
> {p(va, n)d(vs, —n)vyg, v7)2™, the reduced 4-point function with values in (Vy ®
Viewo® VE*,)G. The two expressions, when d and Lg are inserted, between the
two field operators can be simplified using the commutation relations with pri-
mary fields. After the change of variable z — (1—2)71, they lead to the Knizhnik-
Zamolodchikov ODE f/(2) = 271 Pf(2)+(1—2)"1(P-Q) f(2), where P and Q are
self-adjoint (N x N)-matrices with P having distinct cigenvalues, ¢ proportional
to a rank one projection, and P, ) in general position. There is then an essentially
unique choice of (non-orthogonal) basis so that

0 1 0 0 0 0
0 0 1 0
P= . Q=

ay an b by
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This is the matrix-valued ODE for the generalized hypergeometric equation. En-
tries of the transport matrices relating solutions at 0 and 1 are calculated by
an extension of the classical method of Gauss and two tricks: the unitary of the
transport matrix when the constant N + £ is made imaginary; and Karamata’s
Tauberian theorem.

The inner product of both sides of (1) with lowest energy vectors can be
expressed through integrals involving a, b, and the branches of f(z) at 0 and oo
(viewed as vector-valued distributions on S!). The transport matrix between the
branches therefore gives the braiding coefficients (and phase corrections) for the
inner products with lowest energy vectors. Using lowering and raising operators,
they also work for inner products with arbitrary finite encrgy vectors and hence,
by continuity, with all smooth vectors.

8 Von Neumann Algebras

It is perhaps most natural to define von Neumann algebras as “the symmetry
algebras of unitary groups”. Thus, if H is a complex Hilbert space, von Neumann
algebras M C B(H) are of the form M = G’, where G is a subgroup of the
unitary group U(H) and the commutant or symmetry algebra of S C B(H) is
S ={T : Tx = 2T forallz e S}. If §* = S, then §” coincides with the
von Neumann algebra generated by S (i.e. the smallest von Neumann algebra
containing S). It is also the strong or weak operator closure of the unital *-algebra
generated by S.

If M is a von Neumann algebra, its center Z(M) = M N M’ is an Abelian
von Neumann algebra, so of the form L (X, i) for some measure space (X, ). If
X is atomic, then M is canonically a direct sum of factors, von Neumann algebras
with trivial center, with one factor for each point of X. In general M has an
essentially unique direct integral decomposition M = [ ; M, du(z), where each
M, is a factor, so the study of von Neumann algebras reduces to that of factors.

Any von Neumann algebra is generated by its projections. Because M =
M" = (M'), these projections correspond to invariant subspaces or submodules
for the von Neumann algebra M’. Unitary equivalence of M’-modules translates
into a notion of equivalence of projections ( “Murray-von Neumann equivalence”).
If in addition M is a factor, then simple set-theoretic type arguments show that M
falls into one of three types: (I) M has minimal projections; (II) M has projections
not equivalent to any proper subprojection; (III) every nonzero projection in M is
equivalent to a proper subprojection (so that they are all equivalent).

The type I factors have the form B(K) for some Hilbert space K. In the
type II case, Murray and von Neumann defined a countably additive dimension
function on projections with range [0,1] or [0,00], with two projections equiva-
lent iff they have the same dimension. This leads to the notion of “continuous
dimension” for any M-module. The two possibilities for the range give a further
subdivision into type II; and type Il factors. Any type Il factor is the von
Neumann algebra of infinite matrices with values in some type II; factor. For type
II; factors, Murray and von Neumann proved that the dimension function can be
linearized to give a trace tr on M, i.e. a state with tr(eb) = tr(ba). Conversely, any
factor admitting such a tracial state must be a type II; factor.
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9 Modular Theory

Modular theory has its roots implicitly in QFT (Haag-Araki duality for bosons)
and explicitly in statistical physics (the lattice models of Haag-Hugenholtz-Win-
ninck). Independently Tomita proposed a general theory for any von Neumann
algebra, developed in detail by Takesaki. For hyperfinite von Neumann algebras
(those approximable by an increasing sequence of finite-dimensional algebras),
Hugenholtz and Wierenga gave a more elementary approach based on the lattice
model proof.

Tomita-Takesaki Theory. Let M C B(H) be a von Neumann algebra and let @ € H
(the “vacuum vector”) be a unit vector such that MQ and M’ are dense in H.
It is then possible to define an operator S = Sy : MQ — MQ, aQ — a*Q. S is
conjugate-linear, densely defined, and closeable with closure S = S},,. Let S =
JAY? be the polar decomposition of S, so that J is a conjugate-linear isometry
with J2 = I and A is a positive unbounded operator not having 0 as an eigenvalue.
Then JMJ = M’ and A¥MA~™% = M. Thus, z — Jz*J gives an isomorphism
between M©°P (M with multiplication reversed) and M’ and o4(z) = AtzA~H
gives a one-parameter group of automorphisms of M and M’.

Connes’ (2 x 2)-Matrix Trick. Connes’ fundamental observation was that the image
of o; in the outer automorphism group of M is independent of the choice of the
state §2, and thus can be used to provide further intrinsic invariants of M.
“Trivial” Example (von Neumann). Let A be a unital *-algebra and tr a tra-
cial state on A. Let L2(A4,tr) be the Hilbert space completion of A for the inner
product tr(b*a). If A and p denote the actions of A on L?(A, tr) by right and left
multiplication, then A(A)” = p(A)’ and A = I. In particular, if A = C[I'] where
I is a discrete countable group and tr is the Plancherel trace tr(y) = 6,1, then
L?(A,tr) = ¢2(T) and X and p become the usual left and right regular representa-
tions. If T" has infinite (non-identity) conjugacy classes, e.g. if I' = S, then A(T")”
is a factor with a trace, so a type II; factor.

Easy Consequences. Connes’ (2 X 2)-matrix trick shows that if M is a type I or II
factor, then the modular group o; must be inner. Hence, if the fixed point algebra
MP? equals C, i.e. 0y is ergodic, then M is a type III factor (in fact, III;).
Classification of Type III Factors. Connes’ “essential spectrum” is defined as
S(M) = (Sp(Agq), where Q ranges over vectors cyclic for M and M’. Then
I' = S(M)NR% is a closed subgroup of R, so the type III factors can be subdi-
vided further into: type 111y when I' = {1}; type III, when I’ = A% with A € (0, 1);
and ITI; when I' = R%. In the type Illg case, a further invariant is the “flow of
weights”, an crgodic flow on a Lebesgue space (the action &, = id @ Adm(e*™) of
R on the center of (M ® B(L?(R)))°®49*), Thanks to the work of von Neumann,
Connes, and Haagerup (completed in 1985), any hyperfinite factor is uniquely de-
termined by its type (and flow of weights). In particular, the hyperfinite type II;
and ITI; factors are unique.

Takesaki Devissage. If N C M is a von Neumann subalgebra, normalized by A%,
then A and J restrict to the corresponding operators for N on the closure of NQ.
This result allows one to pass from the modular operators for a theory to those
of a subtheory. Thus, if M is a hyperfinite type III; factor with o; ergodic, so too
is N.
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10 Haag Duality and Local Loop Groups

Geometric Modular Theory for Fermions on S!. Let I be an open interval of S* and
let I¢ be the complementary open interval. Let Clff(I) be the *-algebra generated
by a(f) with f € L2(I) ® V. Then Haag-Araki duality holds: Cliff (I)" = Cliff (1¢)’
(graded commutant). This follows directly from the more important fact that the
modular operators are geometric. Taking I and I¢ to be the upper and lower
semicircles, this means that J is the canonical quantization of the flip z — Z,
sending f(2) to Zf(Z). A® is the canonical quantization of the Mobius flow fixing
the endpoints of I. This is proved directly by “reduction to one-particle states”:
S is the canonical quantization of an operator s. The polar decomposition of
s gives that of S and was computed directly with Jones by two methods: by
an analytic continuation argument & la Bisognano-Wichmann; or by considering
representations of the algebra generated by two projections. The local algebra
Cliff(I)” is manifestly hyperfinite. Moreover Cliff(I)” is a type III; factor by the
ergodicity of o;, because A® is the direct sum of the trivial representation and
copies of the regular representation of R.

Loop Group Subfactors (Jones-Wassermann). Let L;G be the local loop group
consisting of loops concentrated in I, i.e. loops equal to 1 off I, and let m; be an
irreducible positive energy representation of level £. Haag-Araki duality and the
fermionic construction of m; imply that operators in w(L;G) and 7(L;<G), defined
up to a phase, actually commute (“locality”). Thus, we get the canonical inclusion:

ﬂ'i(L[G)" g ’ﬂ'i(LIcG)I. (2)

Consequences of Takesaki Devissage. Because the modular operators for the fer-
mionic free ficld theory are geometric and the loop group representations are con-
structed as subtheories, Takesaki devissage can be applied to the geometric in-
clusion of local algebras on F8¢, 7®¢(L;G)" C (CLff(I)®%)". It has the following
consequences:

Haag Duality in the Vacuum Sector. If 7y is the vacuum representation at level
¢ (so that the lowest energy subspace, generated by the vacuum vector, gives the
trivial representation of G), then mo(L;G)’ = mo(L;eG)’. Morcover an argument
of Reeh-Schlieder shows that the vacuum vector is cyclic for mo(L;G)”, and hence
7o(L;G)'. The corresponding modular operators are geometric. So in general the
inclusion (2) measures the failure of Haag duality.

Local Equivalence. 7|y, ¢ & 7|1, 6, so that all positive energy representations at
level £ become unitarily equivalent when restricted to the local loop groups. (Note
that smeared vector primary fields give explicit bounded intertwiners.)

Type of Local Algebras. 7;(L;G)" is isomorphic to the hyperfinite type III; factor.
Hyperfiniteness can also be deduced more directly, independently of the Connes-
Haagerup classification, by the factorization property. This property, inherited
from fermions, means that the representations mg and 7wy @ mg of L;ysG = LG %
L ;G are umitarily equivalent if T and J are nontouching disjoint intervals. So if
I, 1 I, there is a type I factor B, lying between mo(L;,G)” and w(Ly, ., G)".
B, T mo(L;G)" forces hyperfiniteness (the “Dick trick”).
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Generalized Haag Duality. Let # = @ m; on H = € H;, the direct sum of all the
level £ representations and let ¢ be the primary field for the vector representation.
Then 7(L;G)" = (¢(f), 6(f)* : f € C(I) @ V)' N (D B(Hs)).

Von Neumann Density. Let Iy and Ir be touching intervals obtained by removing
a point from the interval I. Then w(L;, G)” V7 (L, G)" = n(L;G)" (“irrelevance
of points”). Jones and I first deduced this from a stronger result: the pullback
of the quotient strong operator topology on LG under the map LG — PU(Fp)
makes L1, G x L1,G dense in LyG. Von Neumann density also follows by taking
commutants in generalized Haag duality and noting that, because of its L2 bounds,
¢ “does not see points”.

Irreducibility. If L*!G = L;G x L;-G is the subgroup of LG consisting of loops
trivial to all orders at +1, then irreducible positive ecnergy representations of LG
stay irreducible and inequivalent when restricted to L*'G.

11 Connes Fusion and Braiding

Connes defined an associative tensor operation (“Connes fusion”) on bimodules
over (type III) von Neumann algebras. Let X = 4Xp be an (A, B)-bimodule
and Y = gYo a (B,C)-bimodule. Let (Hp,Q) be a “trivial” (B, B)-bimodule
defined by modular theory. Let X = Hompep(Hp, X), Y = Homp(Hp,Y) and
define X ® Y as the Hilbert space completion of X ® ) with inner product
(z1 @ y1,ZT2 @ yo) = (521951192, Q). It is naturally an (4, C)-bimodule. If 4 Xp
and Y4 arc irreducible, Y is called conjugate to X iff X Y and Y &K X both
contain the trivial bimodule at least once. Y is then unique up to isomorphism and
the trivial bimodule appears exactly once. Any homomorphism p : A — B defincs
an (A, B)-bimodule, because p makes Hy an A-module. Connes fusion corresponds
to composition of homomorphisms. Because all modules over a type III factor arc
equivalent, every bimodule arises this way. Many propertics of Connes fusion can
be proved in the homomorphism picture.

Definition of Fusion (State-Field Correspondence). For representations of LG, the
bimodule point of view comes through restricting to L;G X LjcG and Connecs
fusion can be defined without explicit reference to von Neumann algebras. Let X,
Y be positive energy representations of LG at level £. Replace states § € X,n €Y
by intertwiners z € X = Homp,,.¢(Ho, X), y € Y = Homyp,¢(Hop,Y). The “ficlds”
x,y create the states £ = zQ, n = yQ from the vacuum. The inner product on
X ®) is given by the four-point formula {(x1 @ y1,22 @ y2) = (x3x1y5y1) (vacuum
expectation). The Hilbert space completion X & Y naturally supports a projective
representation of L;G x Lj-G.

Braiding Properties of Bounded Intertwiners. By hermiticity, the braiding rela-
tions (1) for smeared primary fields can be written symbolically as

afobao = Z)\gb;fagg, angDO = €gbgfafo, (3)

where |e4] = 1 in the second Abelian relation. We call @ = azy and b = bgg
the principal parts. Letting A1 = agy, Ay = P|A|Y2a,q, B1 = boo, Bz =
DeylAg|1/?by;, the braiding relations (3) take the form A1B} = BjAj, AsBy =
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By Ay: these equations arc unchanged if the A;’s or B;’s are replaced by their
phascs. The a;;’s become bounded after such a “phase correction”. Each sct of
intertwiners (c;;) can be modified in three steps so that (3) still holds but with a
and b unitary:(i) replace ¢;; by > 27" m;(gy )cij7; (un), with (gn,) a densc subgroup
of L;G and u, partial isometries in 7o(L;G)"” with uu} = 61, S utu; = I; (ii)
make a phasc correction on (¢;;) so that the principal part c satisfies cc* = I; (iii)
replace ¢;; by ¢;;m;(u) where w is a partial isometry in 7o(L;G)” with u*u = I,
uu* = c*c. lf now x : Hy — Hy and y : Hy — Hp arc arbitrary intertwiners, their
nonprincipal parts arc defined by z;; = ai;m;(a}oz) and ypq = bpeme(b,y). They
satisfy the analogues of (3).

Computation (Braiding-Fusion Duality). To prove the fusion rules Hy X Hpg =
@H,, where now g € Yy, it suffices to define an explicit isometry U of Hy X Hp
into @H, which is an intertwiner for L* G = L;G x L;<G; for by Schur’s lemma,
and irreducibility for L*'G, U must be unitary making H ¢ X Hg a positive energy
representation. By the braiding relation for intertwiners,

llz ® ?J”2 T (x‘}oxfoyaoyl]@ . Z Ag <x}0y;fwgDyD0> = Z IAgl <yEO$;D$gDyD0>-

The coefficients have to be positive, as the equation can be interpreted as writing
a vector state as a linear combination of inequivalent pure states. Thus, only the
non-vanishing of the A,’s is important. Now define U(z & y) = ®|A\y|*/2z,0y000-
Braiding. The braiding map b : X Y - Y X is the unitary given by
bz ® y) = e ko . (eirloye~irlo g gitloge=imLo) Under the “concrete” iso-
morphism U on Hg K Hp, UbU*(EB|/\g|1/2:chyDOQ) = r]?;lx\g|1-”2yg|_|z|30§2 =
EBI)\gP/Q;LgngyDOQ, so that UbU* = p,f on Hy. In general H; B --- K H,
can also be defined and computed using a 2n-point function, after having divided
S! into n intervals. The b’s have a very simple concrete form, especially on H"
where only vector primary fields are invoked. This realization makes manifest their
braiding and cabling propertics.

Closure under Fusion and Conjugation. By associativity and induction: each ir-
reducible positive energy representation H; appears in some Hg"; the H;’s are
closed under Connes fusion; cach H; has a (unique) conjugate H;.

General Fusion Rules (Faltings’ Trick). The fusion coefficients Ni’; are given by
H, X H; = a‘-ENi’;Hk. Braiding shows that H; X H; = H; ® H;. Let R be the
representation ring of formal sums Y . m; H;. R is commutative with an identity and
an involution. Thus, the complexification R is a finite-dimensional *-algebra with
a nondegenerate positive trace tr(d° ¢;H;) = cg. So Re & CM, where M = |Y,|.
The fusion rules for Hyry arc deduced by combining the method used for Hp
with propertics of R. From these fusion rules, the characters of R¢ are given
by [Hf] — ch(Hy,h) = xs(D(h)) where h € Y, and D(h) € SU(N) is the
diagonal matrix with D(h)g, = exp(2wi(hy + N —k — H)/(N + £)) where H =
(3" hi+N —k)/N. Thus, the Nj’s can be computed using the multiplication rules
for the basis ch(Hy,-) of C(Ye). They agree with the Verlinde formulas in Kac’s
book.

Summary. The positive energy representations Hy, ..., Hys at a fixed level £ be-
come a braided ribbon C* tensor category.
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12 Subfactors

Let N C M be an inclusion of type II; factors in B(H), so that H becomes an
(M, N°P)-bimodule. They act on L?(M,tr). Let e = e; be the projection onto
L?(N) and M, = (M, e;)", the Jones basic construction.

Definition. N is of finite index in M iff M, is a type II; factor. Its (Jones) index
is given by [M : N| = tr(e;)™! = dimyL?(M). So M is finite dimensional as an
N-module. There is an equivalent probabilistic definition due to Pimsner-Popa.
The projection e : L2(M) — L?(N) restricts to a “conditional expectation” E :
M — N satisfying E(z) > Az for z > 0 where A = [M : N]~!. The index yields
the best possible value of A > 0.

Higher Relative Commutants (Subfactor Invariants). It turns out that [M; : M] =
[M : NJ, so the basic construction can be iterated to get a tower:

NCcMc My C®® My C® -

The higher relative commutants are A, = M’ N M,, B, = M| N M,. They are
finite-dimensional von Neumann algebras, so dircct sums of matrix algebras. The
inclusions B,, C A, increase to an inclusion of type II; factors B C A. The
inclusion N C M is said to have finite depth if the centers of A, and B, have
uniformly bounded dimension. The inclusion is irreducible iff N'N M = C.

Bimodule Picture. L2(M) is a bimodule over (M, M), (M, N), (N, M), and (N, N).
The algebras A,, and B, encode the decomposition and branching rules for the
bimodules L?(M)®™, fused over N.

Popa’s Finite Depth Classification Theorem. If the inclusion of hyperfinite type II;
factors N C M has finitc depth and is irreducible, then N C M = B°P C A°P. A
version of the same theorem also holds in the hyperfinite type III; case, provided
that the Pimsner-Popa incquality is taken as the definition of finite index and the
inclusion B°P C A°P is replaced by its tensor product with the hyperfinite type
I11; factor.

13 Quantum Invariant Theory Subfactors

Classical Invariant Theory Subfactors. If V' is a representation of G, we get an in-
clusion of type II; factors (Up,C ® EndgV®™)” C (U, EndgV®™+1)” with Jones
index dim(V)2. When G = SU(N) and V = C, the right-hand side is generated
by Soe = US, and the left-hand side is obtained by applying the shift endomor-
phism p(s;) = s;4+1 where s; = (¢,7+1). The higher relative commutants are given
by:
4 A,: EndgV C EndgV®V C EndgV®VQ®V C
U U U (4)
B, : C C EnddV Cc EndgVeavVv ¢

Braid Group Subfactors (Jones-Wenzl). Let tr be a positive definite trace on
the infinite braid group B., = UB,, generated by gi,g2,93,... with relations
9iGi+19; = Gi+19i9i+1 and gig; = g;g; if |i — j| < 2. Suppose that tr has the
Jones-Markov property tr(ag=!) = utr(a) for a € B, = {(g1,.--,gn—1). Form
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L?(CBeo, tr) and let 7 be the left unitary action of Be,. Assume in addition that
the algebras 7(CB,,) are finite-dimensional and that the dimensions of their cen-
ters are uniformly bounded (“finite depth”). The braid group subfactor is given
by the inclusion 7(g2,9s,...)” C m(g1,92,...)"” and as for the symmetric group
arises from a shift p(g;) = gi+1. It has index |u|=2. More generally, Wenzl consid-
ered the irreducible parts of the inclusions 7(gm+1,gm+2,--.)" C 7(g1,92,--.)",
obtained by reducing by minimal projections in the relative commutant. The first
examples arose by taking g; = ae; + b with the e;’s Jones projections and a,b
constants. Most other examples arose from the solutions of the quantum Yang-
Baxter equations associated with quantum groups at roots of unity and restricted
solid-on-solid models in statistical mechanics. Unfortunately, the positivity of the
trace here only followed after a very detailed analysis of 7(CB,,) using g-algcbraic
combinatorics.

Quantum Invariant Theory Subfactors. There is a more direct construction of the
braid group subfactors. It is more conceptual, manifestly unitary, and allows a di-
rect computation of the higher relative commutants. The data (G, V, ®) is replaced
by (LG, H,®): (U, CREnd,c H¥™)" C (UpEnde H®™+1)" If H corresponds to
the vector representation, the right-hand side is generated by By, and the left-hand
side is obtained from the shift p(g;) = gi+1. The Jones index equals the square
of the quantum dimension of H. This is given by d(H;) = ch(Hy,0) and is the
unique positive character of R. Thanks to “Wenz!’s lemma”, the higher relative
commutants are obtained by replacing (G,V,®) by (LG, H,X) in (4).

14 Doplicher-Haag-Roberts Formalism

Algebraic QFT gives a translation from the bimodule to the homomorphism point
of view. For fixed H;, let I ¢C J and I CC K and take unitary intertwiners
U : Ho — Hz for LJG and V : HO — Hi for LKG Set M = 71'0(L1G)//. Then
pi{z) = V*UxU*V defines a DHR endomorphism of M and the loop group in-
clusion 7;(L;G)" C m;(L;<G)" is isomorphic to the inclusion p;(M) C M. The
endomorphism p; is localized in I} = S'\K CC I, in the sense that it fixes loop
group elements supported in I\I;. Let T be a diffeomorphism, supported in I,
with T(I;) disjoint from I; in a clockwise sense. Define the statistics operator
by g = u*pi(u), where u = T*p;(T). Then gpi(9)g = pi(9)gpi(9) and g lies in
p2(M) N M. Hence g = pf_l(g) gives a unitary representation of Be,. Under
the bimodule-endomorphism correspondence, the results on Connes fusion imply:
PEU(M) N M = Endpg HR**1, with g1, ..., g identified with the Connes braid-
ing; the Jones index of the loop group subfactor is d(H;)?; and the higher relative
commutants for the loop group subfactor agree with those of the corresponding
quantum invariant theory subfactor.

15 The Main Result on Subfactors
Because the higher relative commutants agree, Popa’s finite depth classification
theorem implics:

Theorem (Jones-Wassermann Conjecture). The loop group inclusion of hyperfinite
type 11T} factors m;(L1G)' C mi(L1<G)' is isomorphic to the tensor product of the
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hyperfinite type Il factor with the quantum invariant theory inclusion of type Il
factors No = (UC ® End,c H®™)" C (UEnd o HE™)" = Mj.

This result may be sharpened using the inclusion M — My(M), z — z ® p(z).

THEOREM. There is an automorphism « of M and a unitary u € M such that
ap = Adupa and, if p1 = ap and My = (Up (M) N M)", then M = M1®@M*,
N = pi(M1) @ MPr. MP is isomorphic to the hyperfinite type III; factor and
the inclusion N1 C M, is 1somorphic to Nog C My by an isomorphism preserving
endomorphisms and braid group operators.

16 Future Directions

WZW Models. Other constructions of subfactors can be obtained by taking other
compact simple groups G, not necessarily simply connected. The theory for the B,
C, D series seems to follow from the (3 x 3)-matrix ODE of Fateev-Dotsenko.

Minimal Models. The theory has been developed along similar lines by Loke for
discrete series representations of Diff S! for central charge ¢ < 1.

Conformal Inclusions. A subgroup H of G gives a conformal inclusion if the level
one representations of LG remain finitely reducible when restricted to H. The
basic construction M; for the inclusion N = mo(LH)" C 7o(L1G)”’ = M can be
identified with mo(L;-H)’, so N C M; is a loop group inclusion. So N C M has
finite index and depth. For example the conformal inclusion SU(2) C SO(5) gives
the Jones subfactor of index 3 + /3.

Disjoint Intervals. If the circle is divided up into 2n disjoint intervals and I is the
union of n alternate intervals, the inclusion m;(L;G)” C 7;(L1-G)’ has finite index
and probably finite depth. It is related to higher genus CFT.

Fusion. Connes fusion can be viewed as glucing together two circles along a com-
mon semicircle. This picture scems to be a unitary boundary value of Gracme
Segal’s holomorphic proposal for fusion, based on a disc with two smaller discs re-
moved. When the discs shrink to points on the Riemann sphere, Segal’s definition
should degencrate to the algebraic geometric fusion of Kazhdan-Lusztig et al.
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