A SEMI-SMALL DECOMPOSITION OF THE CHOW RING OF A MATROID
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ABSTRACT. We give a semi-small orthogonal decomposition of the Chow ring of a matroid M. The
decomposition is used to give simple proofs of Poincaré duality, the hard Lefschetz theorem, and the
Hodge—Riemann relations for the Chow ring, recovering the main result of [AHK18]. We also intro-
duce the augmented Chow ring of M and show that a similar semi-small orthogonal decomposition
holds for the augmented Chow ring.

1. INTRODUCTION

A matroid M on a finite set I is a nonempty collection of subsets of E, called flats of M, that
satisfies the following properties:

(1) The intersection of any two flats is a flat.

(2) For any flat F', any element in E\F' is contained in exactly one flat that is minimal among the
flats strictly containing F.

Throughout, we suppose in addition that M is a loopless matroid:
(3) The empty subset of E is a flat.

We write £(M) for the lattice of all flats of M. Every maximal flag of proper flats of M has the
same cardinality d, called the rank of M. A matroid can be equivalently defined in terms of its
independent sets or the rank function. For background in matroid theory, we refer to [OxI11] and
[Wel76].

The first aim of the present paper is to decompose the Chow ring of M as a module over the
Chow ring of the deletion M\i (Theorem 1.2). The decomposition resembles the decomposition of
the cohomology ring of a projective variety induced by a semi-small map. In Section 4, we use the
decomposition to give a simple proof of the Kédhler package for the Chow ring: Poincaré duality,
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the hard Lefschetz theorem, and the Hodge-Riemann relations. This recovers the main result of
[AHK18].

The second aim of the present paper is to introduce the augmented Chow ring of M, which
contains the graded Mobius algebra of M as a subalgebra. We give an analogous semi-small
decomposition of the augmented Chow ring of M as a module over the augmented Chow ring
of the deletion M\i (Theorem 1.5), and use this to prove the Kihler package for the augmented
Chow ring. These results play a major role in the follow-up paper [BHM '], where we prove the
Top-Heavy conjecture along with the nonnegativity of the coefficients of the Kazhdan-Lusztig
polynomial of a matroid.

Remark 1.1. The main objects of study in [BHM '] are combinatorial abstractions of intersection co-
homology groups of singular algebraic varieties. In contrast, the objects of study in this paper are
combinatorial abstractions of cohomology groups (or Chow rings) of smooth projective varieties.
1.1. Let Sy be the ring of polynomials with variables labeled by the nonempty proper flats of M:
Sy = Q[zp|F is a nonempty proper flat of M].
The Chow ring of M, introduced by Feichtner and Yuzvinsky in [FY04], is the quotient algebra'
CH(M) = Sn/(Ly + )
where I is the ideal generated by the linear forms

Z Tp— Z xp, for every pair of distinct elements ¢; and i3 of E,
1n€eF i2€F

and J; is the ideal generated by the quadratic monomials
xp xp,, forevery pair of incomparable nonempty proper flats ; and F» of M.
When FE is nonempty, the Chow ring of M admits a degree map

degy, : CH!(M) — Q, a5 = foF — 1,
Fe

where 7 is any complete flag of nonempty proper flats of M (Definition 2.15). For any integer £,
the degree map defines the Poincaré pairing

CH*(M) x CH™* "' (M) — Q, (1, m2) — deg,, (mn2).
A slightly different presentation for the Chow ring of M was used in [FY04] in a more general context. The present

description was used in [AHK18], where the Chow ring of M was denoted A(M). For a comparison of the two presen-
tations, see [BES].
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If M is realizable over a field,” then the Chow ring of M is isomorphic to the Chow ring of a smooth
projective variety over the field (Remark 2.16).

Let i be an element of E, and let M\i be the deletion of i from M. By definition, M\ is the matroid
on E\i whose flats are the sets of the form F'\i for a flat F' of M. The Chow rings of M and M\ are
related by the graded algebra homomorphism

8; = 6} : CH(M\i) — CH(M),  ap — p +zpos,

where a variable in the target is set to zero if its label is not a flat of M. As we will see in Section 3,
this homomorphism is induced by a projection from the Bergman fan of M to the Bergman fan of
M\i. Let Cj(i) be the image of the homomorphism 6,, and let §; be the collection

8; = 8;(M) = {F|F is a nonempty proper subset of E\i such that F' € £(M) and F Ui € L(M)}.

The element i is said to be a coloop of M if the ranks of M and M\i are not equal. Thus, §; is the
collection of all nonempty proper subsets F' of E\i such that F' U i is a flat of M and i is a coloop
in ME'V,

Theorem 1.2. If 7 is not a coloop of M, there is a direct sum decomposition of CH(M) into inde-

composable graded CH(M\i)-modules
CiH(M) = Cj(i) S @ xFuiCj(i)- (D1)

Fes;
All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M). If i is a coloop of
M, there is a direct sum decomposition of CH(M) into indecomposable graded CH(M\i)-modules’
CH(M) = CH(;) ® zp;CH;) ® @ zpuiCH. (Dy)
Fes;

All pairs of distinct summands except for the first two are orthogonal for the Poincaré pairing of
CH(M).

We write rkyy : 27 — N for the rank function of M. For any proper flat ' of M, we set”

M¥ := the localization of M at F, a loopless matroid on F of rank equal to rky;(F'),

Mp = the contraction of M by F, a loopless matroid on E\ F' of rank equal to d — rky(F').

2We say that M is realizable over a field T if there exists a linear subspace V' < F¥ such that S € E is independent if
and only if the projection from V to F¥ is surjective. Almost all matroids are not realizable over any field [Nel18].

3When E = {1}, we treat the symbol z¢ as zero in the right-hand side of (D,).

4The symbols M* and M appear inconsistently in the literature, sometimes this way and sometimes interchanged.
The localization is frequently called the restriction. On the other hand, the contraction is also sometimes called the re-
striction, especially in the context of hyperplane arrangements, so we avoid the word restriction to minimize ambiguity.
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The lattice of flats of MY can be identified with the lattice of flats of M that are contained in F,
and the lattice of flats of Mg can be identified with the lattice of flats of M that contain F. The
CH(M\¢)-module summands in the decompositions (D) and (D,) admit isomorphisms

CH;, = CH(M\i) and zp;CH; =~ CH(Mp,;) @ CHM")[-1],°
(Propositions 3.4 and 3.5). In addition, if ¢ is a coloop of M, then
zpCH ;) = CH(M\i)[—1].

Remark 1.3. When M is the Boolean matroid on E, the graded dimension of CH(M) is given by the
Eulerian numbers <Z>, and the decomposition (D,) specializes to the known quadratic recurrence
relation
d=2 /0 4
sa(t) = sq-1(t) +1 ) ( i >3k(t)3d—k—1(t)a so(t) =1,
k=0

where s;,(t) is the k-th Eulerian polynomial [Pet15, Theorem 1.5].
1.2.  We also give similar decompositions for the augmented Chow ring of M, which we now
introduce. Let Sy be the ring of polynomials in two sets of variables
Sm = Q[y; |7 is an element of E] ® Q[zp|F is a proper flat of M].
The augmented Chow ring of M is the quotient algebra
CH(M) = Sm/(Im + Jm),
where Iy is the ideal generated by the linear forms

Yi — Z xp, for every elementiof £,
it F
and Jy is the ideal generated by the quadratic monomials

T, R, for every pair of incomparable proper flats F; and F; of M, and

yixr, for every element i of E and every proper flat /' of M not containing ¢.

The augmented Chow ring of M admits a degree map

degy : CH'M) — Q,  wg=[[2r—1,
FeF

where J is any complete flag of proper flats of M (Definition 2.15). For any integer %, the degree
map defines the Poincaré pairing

CHF(M) x CH* *(M) — Q, (11, m2) — degp(mm2).

SFor a graded vector space V, we write V[m] for the graded vector space whose degree k piece is equal to V<™.
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If M is realizable over a field, then the augmented Chow ring of M is isomorphic to the Chow ring
of a smooth projective variety over the field (Remark 2.16).

Remark 1.4. The subring of the augmented Chow ring generated by the elements y; is isomorphic
to the graded Mobius algebra H(M) (Proposition 2.18), and we have isomorphisms

The H(M)-module structure of CH(M) will be studied in detail in the forthcoming paper [BHM*].
In this paper, the graded Mobius algebra will not appear outside of Proposition 2.18.

As before, we write M\ for the matroid obtained from M by deleting the element i. The aug-
mented Chow rings of M and M\ are related by the graded algebra homomorphism
0; =0iv[ CH(M\Z) —>CH(M), T H— Tp + TFUs,

where a variable in the target is set to zero if its label is not a flat of M. As we will see in Section
3, this homomorphism is induced by a projection from the augmented Bergman fan of M to the
augmented Bergman fan of M\i. Let CH(Z») be the image of the homomorphism 6;, and let §; be the
collection

8; = 8;(M) :== {F|F is a proper subset of E\i such that F' € £(M) and F Ui € L(M)}.
Equivalently, 8; can be defined as the collection of all proper subsets F' of E\i such that F' U i is a

flat of M and i is a coloop in M™%,

Theorem 1.5. If i is not a coloop of M, there is a direct sum decomposition of CH(M) into inde-
composable graded CH(M\¢)-modules

CH(M) = CH(; @ @ zruiCHy). (D1)

FGSZ'
All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M). If i is a coloop of
M, there is a direct sum decomposition of CH(M) into indecomposable graded CH(M\i)-modules

CH(M) = CH;y ® 25 ;CH(;) @ @ zruiCHyy). (D2)
FESZ'

All pairs of distinct summands except for the first two are orthogonal for the Poincaré pairing of
CH(M).
The CH(M\i)-module summands in the decompositions (D) and (D) admit isomorphisms
CH(Z) >~ CH(M\Z) and xFuiCH(i) >~ CiH(MFuz) ® CH(MF>[—1],
(Propositions 3.4 and 3.5). In addition, if 7 is a coloop of M,
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1.3. Let B be the Boolean matroid on E. By definition, every subset of F is a flat of B. The Chow
rings of B and M are related by the surjective graded algebra homomorphism

CiH(B) - Ciﬂ(M)a rg—> g,

where a variable in the target is set to zero if its label is not a flat of M. Similarly, we have a
surjective graded algebra homomorphism

CH(B) — CH(M), rg — Tg,

where a variable in the target is set to zero if its label is not a flat of M. As in [AHK18, Section 4], we
may identify the Chow ring CH(B) with the ring of piecewise polynomial functions modulo linear
functions on the normal fan II; of the standard permutohedron in R”. Similarly, the augmented
Chow ring CH(B) can be identified with the ring of piecewise polynomial functions modulo linear
functions of the normal fan Il of the stellahedron in R¥ (Definition 2.4). A convex piecewise
linear function on a complete fan is said to be strictly convex if there is a bijection between the
cones in the fan and the faces of the graph of the function.

In Section 4, we use Theorems 1.2 and 1.5 to give simple proofs of Poincaré duality, the hard
Lefschetz theorem, and the Hodge—Riemann relations for CH(M) and CH(M).

Theorem 1.6. Let / be a strictly convex piecewise linear function on Ilg, viewed as an element of
CH! (M),

(1) (Poincaré duality theorem) For every nonnegative integer k < £, the bilinear pairing
CHF(M) x CH*™* (M) — Q,  (m1,12) —> deg, , (mm2)
is nondegenerate.
(2) (Hard Lefschetz theorem) For every nonnegative integer k < ¢, the multiplication map
CH* (M) — CHT (M), n— £ 1n
is an isomorphism.
(3) (Hodge-Riemann relations) For every nonnegative integer k < £, the bilinear form
CHN(M) x CHF(M) — @, (11, 7) — (~1)*deg (42 L)
is positive definite on the kernel of multiplication by (4=2k,
Let £ be a strictly convex piecewise linear function on IIg, viewed as an element of CH! (M).
(4) (Poincaré duality theorem) For every nonnegative integer k < 4, the bilinear pairing
CH*(M) x CH*™* (M) — Q,  (m,72) — degy(mm2)

is nondegenerate.
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(5) (Hard Lefschetz theorem) For every nonnegative integer k < %, the multiplication map
CH"(M) — CH* (M), n+— 7
is an isomorphism.

(6) (Hodge-Riemann relations) For every nonnegative integer k < 4, the bilinear form
CHE(M) x CHE(M) — Q, (11, 712) — (=1)" degyy (£ 1772)

is positive definite on the kernel of multiplication by ¢¢~2F+1,

Theorem 1.6 holds non-vacuously, as there are strictly convex piecewise linear functions on Il
and Iy (Proposition 2.6). The first part of Theorem 1.6 on CH(M) recovers the main result of
[AHK18].° The second part of Theorem 1.6 on CH(M) is new.

Remark 1.7. By Remark 2.10 and Proposition 2.12, we can reformulate Theorem 1.6 as follows:
Both the Bergman fan and the augmented Bergman fan satisfy Poincaré duality, and they satisfy
the hard Lefschetz theorem and the Hodge-Riemann relations with respect to any strictly convex
piecewise linear function.

1.4. In Section 5, we use Theorems 1.2 and 1.5 to obtain decompositions of CH(M) and CH(M)
related to those appearing in [AHK18, Theorem 6.18]. Let H, (M) be the subalgebra of CH(M)
generated by the element N
QN = Z TG € CJI(M)v
ieG
where the sum is over all nonempty proper flats G of M containing a given element  in E, and let
H, (M) be the subalgebra of CH(M) generated by the element

an = ZZL‘G € CHl(M),
G

where the sum is over all proper flats G of M. We define graded subspaces J, (M) and J, (M) by
HE(M) ifk#d—1, - HE(M) ifk #d,
- 0 ifk=d—-1, 0 if k =d.

A degree computation shows that the elements of; ! and of, are nonzero (Proposition 2.32). We
will construct an injective CH(M)-module homomorphism (Propositions 2.25 and 2.27)

%5/[ Cj(MF) ®C7H(MF) —_— CiH(M), H$F/\F®HZL'F// — anxF/ H:BF//’
' F F’ jal

6Indepenclent proofs of Poincaré duality for CH(M) were given in [BES] and [BDF]. The authors of [BES] also prove
the degree 1 Hodge-Riemann relations for CH(M).
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and an injective CH(M)-module homomorphism (Propositions 2.21 and 2.23)
w CH(MF)®CH(MF)—>CH pr/\F®H$F//'—>xFH$FIH$FN
F// I Fl/

Theorem 1.8. Let Q = Q(M) be the set of all nonempty proper flats of M, and let Q = Q(M) be the
set of all proper flats of M with rank at least two.

(1) We have a decomposition of H,, (M)-modules
CHM) =H,M) @ P ¥f CHMp)® I, (M"). (D3)
FeQ
All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M).

(2) We have a decomposition of H, (M)-modules
CH(M) = Ha(M) @ D v3; CH(MF) ® Jo (M) (Ds)
FeQ

All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M).

Remark 1.9. The decomposition (D;) and the decomposition induced by [AHK18, Theorem 6.18]
are isomorphic as decompositions of graded vector spaces, but the latter one is not an orthogonal
decomposition. In each case, applying the decomposition to M for all F', we get a basis of CH(M)
that is permuted by any automorphism of M. For example, when M is a matroid of rank 5, the
decomposition (D3) in degree 3 gives
e (M) = Qad@( D Qufi(ad,en)o( @ Qufa,Gayr))o( @ Quh(1®dy)),
rk F=2 rk F=3 rk F=4
while the decomposition [AHK18, Theorem 6.18] reads
cH' (M) = Qad@( @ Qulied,en)e( @ Qurvl(gay))e( @ Qubul(el).
rk F'=2 rk F'=3 rk F'=4
Only the former is orthogonal to the common decomposition in the complimentary degree
CH'(M) = Qay @ ( @ QﬂUF) ) ( @D @33F> ® ( &) QLUF)-
rk F'=2 rk F'=3 rk F'=4

In general, the basis of CH(M) given by the decomposition (D) is different from the ones in [FY04,
Corollary 1] and [BES, Corollary 3.3.3].

Remark 1.10. When M is the Boolean matroid on E, the decomposition (D;) specializes to a linear
recurrence relation for the Eulerian polynomials

0_1+2 ( )t_td o) solt) = L

1—-t¢
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1.5. For realizable matroids, the Chow ring, the augmented Chow ring, and the Mdbius algebra
are indeed Chow rings (or cohomology rings when realized over C) of certain algebraic varieties.
We explain the geometric motivations of the paper in the remaining part of the introduction.

First, we recall the definition and some relevant properties of semi-small maps. Let f : X — Y
be a map between smooth complex projective varieties. For every integer k, we say that the map
f is semi-small if there is no irreducible subvariety 7' € X such that 2dim 7 — dim f(7") > dim X.
For example, if f is the blowup along a smooth center Z, then f is semi-small if and only if
Z < Y is of codimension at most two. Semi-small maps play an essential role in the proof of
the decomposition theorem by de Cataldo and Migliorini [dCM02, dCM09]. Using the language
of the decomposition theorem, a map f : X — Y of smooth projective varieties is semi-small
if and only if the derived pushforward Rf.(Qx[dim X]) is a perverse sheaf on Y. If f is semi-
small, then for any ample class A in H?(Y;Q), its pullback f*(A) behaves like an ample class on
X [dCMO02, Propositions 2.2.7 and 2.3.1]. More precisely, the cohomology ring H*(X;Q) satisfies
the hard Lefschetz theorem and the Hodge-Riemann relations with respect to f*(A).

When M is realized by a hyperplane arrangement A = {H,};cg in the projectivization of a
d-dimensional vector space V' over a field F, there are smooth projective varieties X 4 and X 4
over I whose Chow rings are isomorphic to CH(M) and CH(M) respectively, and we call them
the wonderful model and the augmented wonderful model of .A. The wonderful model X 4 was
used in [HK12] to prove the log-concavity of the coefficients of the characteristic polynomial of
realizable matroids.

Let us recall the construction of X 4. For any nonempty proper subset S < E, we set
Hg=()H: and Hg=Hs\ | J Hr.
€S ST
Then Hg is nonempty if and only if S is a nonempty proper flat of M, and in this case, the dimen-
sion of H} is equal to crk(S) — 1. The divisor | J,. H; admits a stratification | J,., Hi = | | Hp,
where the disjoint union is over all nonempty proper flats £ of M. To construct the wonderful
model X 4, we first blow up the points H in P(V) for all corank one flats F', then we blow up the
strict transforms of Hr for corank two flats F', and so on. The resulting smooth projective variety
is X 4. See Remark 2.16 for an alternative description of the wonderful model.

Denote by A\i the hyperplane arrangement obtained from A by deleting the hyperplane H;.
Then there is regular map X , — X Air which models the decompositions (D;) and (D,). When
i is not a coloop of M, the map is semi-small because it can be written as a sequence of blowups
of smooth subvarieties of codimension two parametrized by §;. In fact, for any F' in 8, when
the strict transform of H is blown up in the construction of X Air the preimage of Hy, ; is of
codimension two. The wonderful model X 4 can be obtained from X 4 ; by blowing up the closure
of the preimage of Hy, ; for all F'in 8;. When i is a coloop, the map X 4 — X 4; is generically a P!
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bundle, which corresponds to the first two summands CH; and zp\; CHg; in the decomposition
(Dy).

The decomposition (D5) is modeled by the composition of all the blowup maps X 4 — P(V)
in the construction of X 4. Moreover, the class « in le(M A) is equal to the pullback of the
hyperplane class of P(V'), via the identification of CH(M 4) and the Chow ring of X ,. For each ¢
in E, choose a linear form f; that defines the hyperplane H;. Then the rational map

[;LE  P(V) --» P(FE)

extends to a regular map X 4, — P(FF). The pullback of the hyperplane class of P(F¥) is equal
to the class 3, which will be defined in Section 2.6. The image of X 4 in P(F¥) is the projective
reciprocal plane, which is singular in general, and its intersection cohomology groups are closely
related to the Kazhdan-Lusztig polynomial of M (see [EPW16]). The decomposition of CH(M) as a
module over the subalgebra Q[ 5] involves intersection cohomology groups of singular projective

varieties and will be studied in [BHM*].

To construct the augmented wonderful model X 4, we start with the projective space
P(VOF) =V uPV).

For any nonempty proper flat F', we consider the previously defined Hr as a linear subspace
of P(V). Similar to the construction of X 4, we first blow up all Hp in P(V) for all corank one
flats F', then we blow up the strict transforms of Hp for all corank two flats F. We continue
this process until we blow up Hp for all rank one flats . Since all the blowup centers are in
the hyperplane at infinity, the affine space V' remains an open subset of X 4. Moreover, the strict
transform of the hyperplane at infinity is exactly isomorphic to X 4, which explains the pullback
map ¢y : CH(M) — CH(M) and the pushforward map 5 : CH(M) — CH(M).

For any i in E, there is a regular map X 4 — X 4; which models the decompositions (D;) and
(D2). Moreover, when i is not a coloop, the map X4 — X 4; is semi-small. The decomposition
(D3) is modeled by the composition of all blowup maps X 4 — P(V @), and the class « is equal
to the pullback of the hyperplane class, via identifying CH(M) with the Chow ring of X 4.” There
is a natural map X4 — (P')¥, which induces the classes y; for i in E. In fact, the linear map

(fi)iep : V — FF

extends to a regular map X4 — (P!)F. The image of the map X4 — (P!)¥ is the variety Y, in
[HW17], now called the Schubert variety of A. The operational Chow ring of Y4 is isomorphic to
H(M). The decomposition of CH(M) as an H(M)-module involves the intersection cohomology
groups of singular varieties, and will be studied in [BHM"].

There is no natural map from X 4 to P(F¥) or to P(F¥ @ ), and hence the symbol By will not be defined.



A SEMI-SMALL DECOMPOSITION OF THE CHOW RING OF A MATROID 11

The decomposition theorem for proper toric maps was studied in [dCMM18], and the combi-
natorial generalization to fans was studied in [Kar19]. Since the Bergman fan and the augmented
Bergman fan are not complete, our results are of a different nature.

Acknowledgments. We thank Christopher Eur and Matthew Stevens for useful discussions. We
also thank the referees for carefully reading the paper and making many helpful suggestions.

2. THE CHOW RING AND THE AUGMENTED CHOW RING OF A MATROID

In this section, we collect the various properties of the algebras CH(M) and CH(M) that we
will need in order to prove Theorems 1.2-1.8. In Section 2.1, we review the definition and basic
properties of the Bergman fan and introduce the closely related augmented Bergman fan of a ma-
troid. Section 2.2 is devoted to understanding the stars of the various rays in these two fans,
while Section 2.3 is where we compute the space of balanced top-dimensional weights on each
fan. Feichtner and Yuzvinsky showed that the Chow ring of a matroid coincides with the Chow
ring of the toric variety associated with its Bergman fan [FY04, Theorem 3], and we establish the
analogous result for the augmented Chow ring in Section 2.4. Section 2.5 is where we show that
the augmented Chow ring contains the graded Mobius algebra. In Section 2.6, we use the results
of Section 2.2 to construct various homomorphisms that relate the Chow and augmented Chow
rings of different matroids.

Remark 2.1. It is worth noting why we need to interpret CH(M) and CH(M) as Chow rings of toric
varieties. First, the study of balanced weights on the Bergman fan and augmented Bergman fan
allow us to show that CHY~!(M) and CH?(M) are nonzero, which is not easy to prove directly
from the definitions. The definition of the pullback and pushforward maps in Section 2.6 is made
cleaner by thinking about fans, though it would also be possible to define these maps by taking
Propositions 2.20, 2.21, 2.24, 2.25, 2.28, and 2.29 as definitions. Finally, and most importantly, the
fan perspective will be essential for understanding the ample classes that appear in Theorem 1.6.

2.1. Fans. Let E be a finite set, and let M be a loopless matroid of rank d on the ground set E. We
write rkys for the rank function of M, and write cly for the closure operator of M, which for a set S
returns the smallest flat containing S. The independence complex I of M is the simplicial complex
of independent sets of M. A set I < E is independent if and only if the rank of cly(1) is ||. The
vertices of I are the elements of the ground set £, and a collection of vertices is a face of Iy; when
the corresponding set of elements is an independent set of M. The Bergman complex Ay; of M is the
order complex of the poset of nonempty proper flats of M. The vertices of A, are the nonempty
proper flats of M, and a collection of vertices is a face of Ay; when the corresponding set of flats
is a flag. The independence complex of M is pure of dimension d — 1, and the Bergman complex
of M is pure of dimension d — 2. For a detailed study of the simplicial complexes I and Ay, we
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refer to [Bj692]. We introduce the augmented Bergman complex Ay of M as a simplicial complex that
interpolates between the independence complex and the Bergman complex of M.

Definition 2.2. Let I be an independent set of M, and let F be a flag of proper flats of M. When I
is contained in every flat in J, we say that I is compatible with J and write I < J. The augmented
Bergman complex Ay of M is the simplicial complex of all compatible pairs I < JF, where I is an
independent set of M and ¥ is a flag of proper flats of M.

A vertex of the augmented Bergman complex Ay is either a singleton subset of £ or a proper
flat of M. More precisely, the vertices of Ay are the compatible pairs either of the form {i} < @
or of the form @ < {F'}, where i is an element of E and F' is a proper flat of M. The augmented
Bergman complex contains both the independence complex Iy and the Bergman complex Ay, as
subcomplexes. In fact, Ay contains the order complex of the poset of proper flats of M, which
is the cone over the Bergman complex with the cone point corresponding to the empty flat. It is
straightforward to check that Ay is pure of dimension d — 1.

Proposition 2.3. The Bergman complex and the augmented Bergman complex of M are both con-
nected in codimension 1.

Proof. The statement about the Bergman complex is a direct consequence of its shellability [Bj692].
We prove the statement about the augmented Bergman complex using the statement about the
Bergman complex.

The claim is that, given any two facets of Ay, one may travel from one facet to the other by
passing through faces of codimension at most 1. Since the Bergman complex of M is connected
in codimension 1, the subcomplex of Ay consisting of faces of the form @ < J is connected in
codimension 1. Thus it suffices to show that any facet of Ay; can be connected to a facet of the
form @ < J through codimension 1 faces.

Let I < J be a facet of Ayp. If I is nonempty, choose any element ¢ of I, and consider the flag
of flats G obtained by adjoining the closure of I\i to J. The independent set /\i is compatible with
the flag G, and the facet I < JF is adjacent to the facet I\i < §. Repeating the procedure, we can
connect the given facet to a facet of the desired form through codimension 1 faces. O

Let R¥ be the vector space spanned by the standard basis vectors e; corresponding to the ele-
ments i € E. For an arbitrary subset S € E, we set

eg = Z e;.
i€S
For an element i € F, we write p; for the ray generated by the vector e; in R”. For a subset S € E,
we write pg for the ray generated by the vector —ep\ g in R¥, and write p o for the image of this ray
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in RF /(eg), which is generated by the image of es.® Using these rays, we construct fan models of
the Bergman complex and the augmented Bergman complex as follows.

Definition 2.4. The Bergman fan II,; of M is a simplicial fan in the quotient space R” /(ep) with
rays p,. for nonempty proper flats F' of M. The cones of Il are of the form

g5 = cone{er}pey = cone{—ep\ r}rey,
where J is a flag of nonempty proper flats of M.

The augmented Bergman fan Iy of M is a simplicial fan in R with rays p; for elements i in E
and pr for proper flats F' of M. The cones of the augmented Bergman fan are of the form

0r<g = cone{e;}icr + cone{—ep\ p} reg,

where J is a flag of proper flats of M and I is an independent set of M compatible with . We
write o7 for the cone o;<5 when J is the empty flag of flats of M.

Remark 2.5. If E is nonempty, then the Bergman fan II,; is the star of the ray pz in the augmented
Bergman fan Ily;. If E is empty, then II,; and Iy both consist of a single 0-dimensional cone.

{2} <o
{2} < {{2}} {1,2} <o
o < {{2}} o< {1}<o

o <{2,{2}} {1} < {{1}}

2 <{o,{1}}

2 < {2} 2 < {{1}}

FIGURE 1. The augmented Bergman fan of the rank 2 Boolean matroid on {1, 2}.

Let N be another loopless matroid on E. The matroid M is said to be a quotient of N if every flat
of M is a flat of N. The condition implies that every independent set of M is an independent set of
N [Kun86, Proposition 8.1.6]. Therefore, when M is a quotient of N, the augmented Bergman fan

8The reason why ps is the correct lift of p  for our purposes will become clear in Section 2.2.
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of M is a subfan of the augmented Bergman fan of N, and the Bergman fan of M is a subfan of the
Bergman fan of N. In particular, we have inclusions of fans IIy; < IIg and II; < Iz, where B is
the Boolean matroid on E defined by the condition that £ is an independent set of B.

Proposition 2.6. The Bergman fan and the augmented Bergman fan of B are each normal fans of
convex polytopes. In particular, there are strictly convex piecewise linear functions on Iz and IIg.

The above proposition can be used to show that the augmented Bergman fan and the Bergman
fan of M are, in fact, fans.

Proof. The statement for the Bergman fan is well-known: The Bergman fan of B is the normal fan
of the standard permutohedron in eﬁ C R%. See, for example, [AHK18, Section 2]. The statement
for the augmented Bergman fan IIg follows from the fact that it is an iterated stellar subdivision
of the normal fan of the simplex

conv{e;, egticr < RE.
More precisely, IIp is isomorphic to the fan Xy in [AHK18, Definition 2.3], where P is the order
filter of all subsets of £ U 0 containing the new element 0, via the linear isomorphism

RY — REY/(ep + ep), e — e;.

It is shown in [AHK18, Proposition 2.4] that >y is an iterated stellar subdivision of the normal fan
of the simplex.” O

A direct inspection shows that IIy is a unimodular fan; that is, the set of primitive ray generators
in any cone in ITy is a subset of a basis of the free abelian group Z”. It follows that II,; is also a
unimodular fan; that is, the set of primitive ray generators in any cone in ITy; is a subset of a basis
of the free abelian group Z¥ /(ep).

2.2. Stars. For any element ¢ of E, we write cl(i) for the closure of i in M, and write ¢; for the
injective linear map
v REVIO) S RE (e, ej — e;.
For any proper flat F' of M, we write ¢ for the linear isomorphism
vp  REV Jlep ) @ RY — RE lep ), ej — ej.
For any nonempty proper flat ' of M, we write ¢ for the linear isomorphism

p : REF [ep py @ RF lep) — RF[lep,epp), € — ;.

In fact, the augmented Bergman fan IIg is the normal fan of the stellahedron in RE, the graph associahedron of the
star graph with | E| endpoints. We refer to [CD06] and [Dev09] for detailed discussions of graph associahedra and their
realizations. An explicit description of their normal fans that motivated Definition 2.4 can be found in [FS05, Theorem
3.14] and [Pos09, Theorem 7.4].
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Let M be the localization of M at F, and let M be the contraction of M by F.

Proposition 2.7. The following are descriptions of the stars of the rays in Il and II; using the
three linear maps above.

(1) For any element i € E, the linear map ¢; identifies the augmented Bergman fan of M(;) with
the star of the ray p; in the augmented Bergman fan of M:

HMd(i) = star, IIy.

(2) For any proper flat F' of M, the linear map ¢ identifies the product of the Bergman fan of Mg
and the augmented Bergman fan of M with the star of the ray pp in the augmented Bergman
fan of M:

1Ly, x IIyr = star,, Iy
(3) For any nonempty proper flat I’ of M, the linear map . identifies the product of the Bergman
fan of M and the Bergman fan of M with the star of the ray p - in the Bergman fan of M:

Iy, x Iyr = starﬁFﬂM.

Repeated applications of the first statement show that, for any independent set I of M, the star
of the cone o in Il can be identified with the augmented Bergman fan of M), where cl(I) is
the closure of I in M.

Proof. The first statement follows from the following facts: A flat of M contains i if and only if it
contains cl(i), and an independent set of M containing i does not contain any other element in
cl(z). The second and third statements follow directly from the definitions. O

2.3. Weights. For any simplicial fan ¥, we write X, for the set of k-dimensional cones in X. If 7 is
a codimension 1 face of a cone o, we write
e,/ = the primitive generator of the unique ray in o that is not in 7.

A k-dimensional balanced weight on X is a Q-valued function w on ¥ that satisfies the balancing
condition: For every (k — 1)-dimensional cone 7 in ¥,

Z w(o)e,, is contained in the subspace spanned by 7,

TCO
where the sum is over all k-dimensional cones o containing 7. We write MW, (%) for the group of
k-dimensional balanced weights on .

Proposition 2.8. The Bergman fan and the augmented Bergman fan of M have the following
unique balancing property.

(1) A (d — 1)-dimensional weight on II,, is balanced if and only if it is constant.
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(2) A d-dimensional weight on Il is balanced if and only if it is constant.

Proof. The first statement is [AHK18, Proposition 5.2]. We prove the second statement.

Let o7<5 be a codimension 1 cone of IIy;, and let F' be the smallest flat in ¥ U {E'}. We analyze
the primitive generators of the rays in the star of the cone o< in IIy;. Let cl(1) be the closure of 1
in M. There are two cases.

When the closure of I is not F', the primitive ray generators in question are —ep\q ;) and e;, for
elements i in F' not in the closure of I. The primitive ray generators satisfy the relation

—ep\a(1) T Z €, = —epr,
ieF\cl(I)
which is zero modulo the span of o;<5. As the e;’s are independent modulo the span of o7<5, any
relation between the primitive generators must be a multiple of the displayed one.

When the closure of I is F', the fact that o;<5 has codimension 1 implies that there is a unique
integer k with rk ' < k < rk M such that F does not include a flat of rank k. Let F;, be the unique
flat in F of rank k£ — 1, and let F° be the unique flat in ¥ U {E£} of rank k£ + 1. The primitive ray
generators in question are —ep, ¢ for the flats G in G, where § is the set of flats of M covering F,
and covered by F°. By the flat partition property of matroids [OxI11, Section 1.4], the primitive
ray generators satisfy the relation

Y —ema = —(IS1 = Depr, — eppe,

Ge§g
which is zero modulo the span of o;<7. Since any proper subset of the primitive generators —ep\¢
for G in G is independent modulo the span of o;<5, any relation between the primitive generators
must be a multiple of the displayed one.

The local analysis above shows that any constant d-dimensional weight on IIy; is balanced.
Since IIy; is connected in codimension 1 by Proposition 2.3, it also shows that any d-dimensional
balanced weight on IIy; must be constant. ]

Remark 2.9. The definition of Bergman fan and augmented Bergman fan generalizes to any atomic
lattice. The above balancing condition is equivalent to the flat partition property: For any flat
F, any element in F\F is contained in exactly one flat that is minimal among the flats strictly
containing F'.

2.4. Chow rings. Any unimodular fan ¥ in R¥ defines a graded commutative algebra CH(X),
which is the Chow ring of the associated smooth toric variety Xx over C with rational coefficients.
Equivalently, CH(X) is the ring of continuous piecewise polynomial functions on ¥ with rational
coefficients modulo the ideal generated by globally linear functions [Bri9, Section 3.1]. We write
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CH*(X) for the Chow group of codimension k cycles in X, so that
- @or)
k
The group of k-dimensional balanced weights on ¥ is related to CH*(X) by the isomorphism
MW (2) — Homg(CH*(E),Q), wr— (2, — w(0)),

where z, is the class of the torus orbit closure in Xy, corresponding to a k-dimensional cone o in
Y. See [AHK1S, Section 5] for a detailed discussion. For general facts on toric varieties and Chow
rings, and for any undefined terms, we refer to [CLS11] and [Ful98].

Remark 2.10. For any simplicial fan ¥, we will say that 3 satisfies the hard Lefschetz theorem
or the Hodge-Riemann relations with respect to some piecewise linear function on ¥ if the ring
CH(X) satisfies the hard Lefschetz theorem or the Hodge-Riemann relations with respect to the
corresponding element of CH! ().

In Proposition 2.12 below, we show that the Chow ring of M coincides with CH(IIy;) and that
the augmented Chow ring of M coincides with CH(IIy).

Lemma 2.11. The following identities hold in the augmented Chow ring CH(M).
(1) For any element i of E, we have y? = 0.

(2) For any two bases I; and I, of a flat F' of M, we have ]_[ieh Y = Hielz Yi-

(3) For any dependent set .J of M, we have [ | jesYi = 0.

Proof. The first identity is a straightforward consequence of the relations in /y; and Jy:
yi = yz(ZIUF) =0.
i¢F

For the second identity, we may assume that /;\I> = {i;} and I3\I; = {i2}, by the basis exchange
property of matroids and an induction on the size of the symmetric difference between I; and I5.
Since a flat of M contains /; if and only if it contains /5, we have

(Z )Hyz—(z )Hyz—<2 )Hyz—<Z$G>Hyz
’i1€G ’LEIlﬁIQ ’LEIlﬁIQ ’LE[l ﬁ[g iQEG i€I1 ﬁ[z
This immediately implies that we also have
(Sw0) TT w=(S ) IT w
’L'1¢G iEIlﬁIQ i2¢G ’L'Ellﬁ[z

which tells us that

Hyi:yil H yi=<Z$G) H yi=<Z$G> H Yi = Yio H yz=nyz

iEIl iEIlﬁlz i1¢G iEIlﬁIQ i2¢G Z'Ellﬁlg iEIlﬁIQ ’iEIg
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For the third identity, we may suppose that J is a circuit, that is, a minimal dependent set.
Since M is a loopless matroid, we may choose distinct elements j; and j; from J. Note that the
independent sets J\j; and J\j2 have the same closure because J is a circuit. Therefore, by the

[Tw=11w

jel\jr je\ja
Combining the above with the first identity, we get

Hyj=yjlnyj=yjlﬂyj=y?1 H y; = 0. O

jedJ JjeJ\j1 JjeJ\j2 JjeI\{j1,32}

second identity, we have

By the second identity in Lemma 2.11, we may define

yr = | [vi in CH(M)

iel
for any flat F' of M and any basis I of F. The element yr will play the role of the fundamental
class for the augmented Chow ring of M.

Proposition 2.12. We have isomorphisms
CH(M) =~ CH(II;) and  CH(M) = CH(ILy).

Proof. The first isomorphism is proved in [FY04, Theorem 3]; see also [AHK18, Section 5.3].

Let Ky be the ideal of Sy generated by the monomials [ [, ; y; for every dependent set J of
M. The ring of continuous piecewise polynomial functions on IIy; is isomorphic to the Stanley—
Reisner ring of Ay, which is equal to

SM/(JM + KM)

The ring CH(IIy) is obtained from this ring by killing the linear forms that generate the ideal Iy;.
In other words, we have a surjective homomorphism

CH(M) = SM/(IM + JM) — SM/(IM + Jum + KM) et CH(HM).
The fact that this is an isomorphism follows from the third part of Lemma 2.11. O

Remark 2.13. By Proposition 2.12, the graded dimension of the Chow ring of the rank d Boolean
matroid CH(B) is given by the h-vector of the permutohedron in RE. In other words, we have

d
dim CH*(B) = the Eulerian number < k>

See [Pet15, Section 9.1] for more on permutohedra and Eulerian numbers.
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Remark 2.14. If E is nonempty, we have the balanced weight
1e MW, (ITy;) = Homg(CHY ' (M), Q),
which can be used to define a degree map on the Chow ring of M. Similarly, for any E,
1 € MW4(TIy;) = Homg(CH?Y(M), Q)
can be used to define a degree map on the augmented Chow ring of M.

Definition 2.15. Consider the following degree maps for the Chow ring and the augmented Chow
ring of M.
(1) If E is nonempty, the degree map for CH(M) is the linear map

deg,, CH™'(M) — Q, z5—1,

where z5 is any monomial corresponding to a maximal cone o4 of II;.

(2) For any E, the degree map for CH(M) is the linear map
degy; : CHYM) — Q, z7<g — 1,

where z7<5 is any monomial corresponding to a maximal cone o< of IIy;.

By Proposition 2.8, the degree maps are well-defined and are isomorphisms. It follows that, for
any two maximal cones o, and oy, of the Bergman fan of M,

Ty, = zg, in CHL(M).
Similarly, for any two maximal cones o, <5, and o7,<5, of the augmented Bergman fan of M,
YR Ts, = yn,rs, in CHYM),
where F is the closure of I; in M and F» is the closure of I, in M. Proposition 2.12 shows that

Cjk(M) =0 fork > d and CH’“(M) =0 fork > d.

Remark 2.16. Let F be a field, and let V be a d-dimensional linear subspace of F¥. We suppose that
the subspace V is not contained in F¥ < F¥ for any proper subset S of E. Let B be the Boolean
matroid on £, and let M be the loopless matroid on E defined by

S is an independent set of M <= the restriction to V of the projection F¥ — F* is surjective.

Let P(F¥) be the projective space of lines in F¥, and let T, be its open torus. For any proper flat
F of M, we write Hr for the projective subspace

Hp = {peP(V)|p; =0forallie F}.
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The wonderful variety X, is obtained from P(V') by first blowing up Hp for every corank 1 flat F,
then blowing up the strict transforms of Hr for every corank 2 flat F', and so on. Equivalently,
X, = the closure of P(V') n T, in the toric variety X; defined by II,,
= the closure of P(V') n T, in the toric variety Xy defined by Il.
When E is nonempty, the inclusion X, < X,; induces an isomorphism between their Chow
rimgs,10 and hence the Chow ring of Xy, is isomorphic to CH(M) [FY04, Corollary 2].

Let P(FE @ F) be the projective completion of FZ, and let T, be its open torus. The projective
completion P(V @F) contains a copy of P(V) as the hyperplane at infinity, and it therefore contains
a copy of Hp for every nonempty proper flat F'. The augmented wonderful variety Xy is obtained
from P(V @ F!) by first blowing up Hp for every corank 1 flat F', then blowing up the strict
transforms of Hr for every corank 2 flat F, and so on. Equivalently,

Xy = the closure of P(V @ F) n Tg in the toric variety Xy defined by Iy

= the closure of P(V @ F) n Tg in the toric variety Xp defined by IIg.

The inclusion Xy, € Xy induces an isomorphism between their Chow rings, and hence the Chow

ring of Xy is isomorphic to CH(M)."!

2.5. The graded Mobius algebra. For any nonnegative integer k, we define a vector space

H'M)= @ Qur,

Felk (M)

where the direct sum is over the set £*(M) of rank k flats of M.

Definition 2.17. The graded Mobius algebra of M is the graded vector space
H(M) = @ HF(M).

k=0

The multiplication in H(M) is defined by the rule

YFy v Fy if I‘kM(Fl) + I‘kM(Fg) = I‘kM(Fl \V4 FQ),

Ymyr = )
0 if I‘kM(F1> + rkM(F2> > I‘kM(Fl \Y Fg),

where v stands for the join operation in the lattice of flats £(M) of M.

Our double use of the symbol yr is justified by the following proposition, whose proof is essen-
tially identical to that of [HW17, Proposition 9].

10 general, the inclusion X, € X, does not induce an isomorphism between their singular cohomology rings.
HThis can be proved using the interpretation of CH(M) in the last sentence of Remark 4.1.
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Proposition 2.18. The graded linear map
HM) — CH(M),  yr — yr

is an injective homomorphism of graded algebras.

Proof. We first show that the linear map is injective. It is enough to check that the subset

{yr}recrany CH*(M)

is linearly independent for every nonnegative integer k& < d. Suppose that

2 cryp = 0 for some cp € Q.
FeLk(M)

For any given rank £ flat G, we choose a saturated flag of proper flats § whose smallest member
is G. By the defining relations of CH(M), we have yrzg = 0 for any rank k flat F' other than G,
therefore

CGYGrg = ( Z CF?JF)JL’Q = 0.
Felk(M)

Since the degree of ygxg is 1, this implies that ¢ must be zero.

We next check that the linear map is an algebra homomorphism using Lemma 2.11. Let I; be
a basis of a flat I}, and let I be a basis of a flat I5. If the rank of I} v F5 is the sum of the ranks
of 1 and F3, then I; and I are disjoint and their union is a basis of F; v F;. Therefore, in the
augmented Chow ring of M,

YR YR = Hyz Hyz = H Yi =YFrivE-
iE]l iGIQ iEIluIQ

If the rank of F; v Fj is less than the sum of the ranks of F; and F5, then either I; and I intersect

or the union of I; and I is dependent in M. Therefore, in the augmented Chow ring of M,

yryr = | Jui [ [vi=0 O
iel 1 iGIQ
Remark 2.19. Consider the torus Tg, the toric variety Xg, and the augmented wonderful variety
Xy in Remark 2.16. The identity of T uniquely extends to a toric map
PB XB — (IP1>E

Let py be the restriction of pp to the augmented wonderful variety Xy. If we identify the Chow
ring of Xy with CH(M) as in Remark 2.16, the image of the pullback py{, is the graded Mobius
algebra H(M) < CH(M).



22 TOM BRADEN, JUNE HUH, JACOB P. MATHERNE, NICHOLAS PROUDFOOT, AND BOTONG WANG

2.6. Pullback and pushforward maps. Let ¥ be a unimodular fan, and let o be a k-dimensional
cone in Y. The torus orbit closure in the smooth toric variety Xy corresponding to o can be iden-
tified with the toric variety of the fan star,X. Its class in the Chow ring of Xy, is the monomial
zs, which is the product of the divisor classes x, corresponding to the rays p in 0. The inclusion
¢ of the torus orbit closure in Xy, defines the pullback .* and the pushforward 1, between the Chow
rings, whose composition is multiplication by the monomial z,:

To

CH(star,)

CH(%)

CH(%)

The pullback .* is a surjective graded algebra homomorphism, while the pushforward ¢ is a
degree k homomorphism of CH(X)-modules.

We give an explicit description of the pullback :* and the pushforward ¢, when ¥ is the aug-
mented Bergman fan IIy; and o is the ray pr of a proper flat /' of M. Recall from Proposition 2.7
that the star of pr admits the decomposition

star,, Iy = Iy, % ITye.

Thus we may identify the Chow ring of the star of pr with CH(Mp) ® CH(M!). We denote the
pullback to the tensor product by ¢f; and the pushforward from the tensor product by ¢{;:

TR

% /l\lj{

CH(Mp) ® CH(MF)

CH(M)

To describe the pullback and the pushforward, we introduce Chow classes ang, oy, and QM. They
are defined as the sums

o = ZxG e CHY(M),
G
where the sum is over all proper flats G of M;
oy = Y wg € CH'(M),
1€G
where the sum is over all nonempty proper flats G of M containing a given element 7 in £; and
éM = Z rag € le(M),
i#G
where the sum is over all nonempty proper flats G of M not containing a given element i in £. The
linear relations defining CH(M) show that a); and 8 M do not depend on the choice of i.
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Proposition 2.20. The pullback ¢f] is the unique graded algebra homomorphism
CH(M) — CH(Mp) ® CH(M™)
that satisfies the following properties:

e If G is a proper flat of M incomparable to F, then f;(z¢) = 0.
If G is a proper flat of M properly contained in F, then ¢f}(z¢) = 1 ® z¢.

If G is a proper flat of M properly containing F, then ¢ (z¢) = z¢\r @ 1.

If 7 is an element of F', then gpl\F/[(yZ) =1Quy;.

If i is an element of E\F, then ¢ (y;) = 0.

Moreover, the above five properties imply the following additional properties of ¥;:
o The equality ¢y (zr) = —1® apr — B ® 1 holds.

e The equality ¢f;(an) = oy, ® 1 holds.

Proof. The first five properties follow immediately from the pullback formula for toric varieties.
To show the last two properties, we fix an element i € E\F. Recall that y; = } ;. . Thus, by the
tirst three and the fifth properties, we have

chiar) = o ($F+y¢—2xc> o (— Saee Y )
i¢G GSF PeNa=te,

=— Y 1®zc— ) 2er®l=-1®aywr-f§,; ®L
GCF i#G, FCG

which gives the second to last property. By the first and third properties, we have
Fonr) = o6 (2) =soﬂ( » ) © Y ner®l-ay, 0l
e 1€G,FSG 1€G,FCG

which gives the last property. O

The next proposition follows immediately from the pushforward formula for toric varieties.
The projection formula shows that the pushforward ¢{; is a CH(M)-module homomorphism.

Proposition 2.21. The pushforward v{; is the unique CH(M)-module homomorphism'?

Yir - CH(Mp) ® CH(M") — CH(M)

12We make iy into a CH(M)-module homomorphism via the pullback ok
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that satisfies, for any collection 8’ of proper flats of M strictly containing F' and any collection 8"
of proper flats of M strictly contained in F,

1/}{4( H .’EF/\F X H .’EF//> =TF H T H T .
Fres! Fresn F/e8'  Fre§’
The composition 1} o oI} is multiplication by the element z, and the composition f; o i is
multiplication by the element I} (z ).
Remark 2.22. Proposition 2.21 shows that the pushforward {; commutes with the degree maps:
deg,, ®degyr = degy o Uy

Proposition 2.23. If CH(Mf) and CH(M") satisfy the Poincaré duality part of Theorem 1.6, then
Y1 is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-module
CH(Mp) ® CH(MI)[—1] is isomorphic to the principal ideal of 2 in CH(M). In particular,

CH(M)[—1] =~ ideal(zgz) < CH(M).

Proof. We will use the symbol degy to denote the degree function %MF ® degyr. For contradic-
tion, suppose that ¢{;(n) = 0 for n # 0. By the two Poincaré duality statements in Theorem 1.6,
there is an element v such that degy(vn) = 1. By surjectivity of the pullback ¢}, there is an ele-

ment £ such that v = @I (). Since ¢{; is a CH(M)-module homomorphism that commutes with
the degree maps, we have

1 = degp(vn) = degy(¥n1(vn)) = degni (¥ (i ()n)) = degnr(upar(n)) = degyi(0) = 0,
which is a contradiction. O
We next give an explicit description of the pullback ¢* and the pushforward ¢, when X is the

Bergman fan II,; and o is the ray p . of a nonempty proper flat I’ of M. Recall from Proposition
2.7 that the star of p,, admits the decomposition

starBFﬂM > I, x Hyr.

Thus we may identify the Chow ring of the star of p P with CH(Mr) ® CH(MF"). We denote the
pullback to the tensor product by gl\F/I and the pushforward from the tensor product by %\FA

TF

» /
k QM

CH(Mp) ® CH(MF)

CH(M) CH(M)
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The following analogues of Propositions 2.20 and 2.21 can be proved by similar straightforward
computations.

Proposition 2.24. The pullback gf/[ is the unique graded algebra homomorphism
CH(M) — CH(Mp) ® CH(M")

that satisfies the following properties:

e If G is a nonempty proper flat of M incomparable to F, then ﬁ\F/I(xg) =0.

e If G is a nonempty proper flat of M properly contained in F', then gl\F/I(xg) =1®uzg.

e If G is a nonempty proper flat of M properly containing F, then gf/[(xg) =zar® 1.

The above three properties imply the following additional properties of ff/[:

e The equality gf/[(xp) =-1®@oyr — QMF ® 1 holds.

¢ The equality EAFA (ap) = app, ® 1 holds.

o The equality o7 (8,,) = 1® 3, holds.

Proposition 2.25. The pushforward %{?/I is the unique CH(M)-module homomorphism
CH(Mp) ® CH(M") — CH(M)

that satisfies, for any collection 8’ of proper flats of M strictly containing F' and any collection 8"
of nonempty proper flats of M strictly contained in F,

wf/[( H xF/\F® H xF”) =TF H X H Tpw.

FIES/ FNGS// FIES/ FIIES//

The composition gf/[ o fﬁ is multiplication by the element z, and the composition thd o gf/[ is
multiplication by the element of (zr).

Remark 2.26. Proposition 2.25 shows that the pushforward gf/[ commutes with the degree maps:
@MF ®@MF = %M © %f/[

Proposition 2.27. If CH(My) and CH(M") satisfy the Poincaré duality part of Theorem 1.6, then

yﬁ is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-module
CH(Mp) ® CH(M*)[~1] is isomorphic to the principal ideal of xx in CH(M).

Proof. The proof is essentially identical to that of Proposition 2.23. O
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Last, we give an explicit description of the pullback :* and the pushforward ¢, when ¥ is the
augmented Bergman fan IIy; and o is the cone o7 of an independent set I of M. By Proposition
2.7, we have

starg, v = v,
where F is the closure of I in M. Thus we may identify the Chow ring of the star of o; with
CH(Mp). We denote the corresponding pullback by ¢ and the pushforward by ¢¥:

CH(M) i CH(M)

R%%

CH(MF)

Note that the pullback and the pushforward only depend on F' and not on I.
The following analogues of Propositions 2.20 and 2.21 are straightforward.

Proposition 2.28. The pullback ¢} is the unique graded algebra homomorphism
CH(M) — CH(Mp)

that satisfies the following properties:

e If G is a proper flat of M that contains F, then o} (z¢) = ¢\ p-

e If G is a proper flat of M that does not contain F, then ¢} (zg) = 0.

The above two properties imply the following additional properties of ¢}

e If i is an element of F, then ¢} (y;) = 0.

e If i is an element of E\F, then o (y;) = ;.

e The equality ¥ (an) = an,. holds.

Proposition 2.29. The pushforward ¢¥ is the unique CH(M)-module homomorphism
CH(Mp) — CH(M)

that satisfies, for any collection 8’ of proper flats of M containing F,

1/1%[( 1 37F/\F> —yr || wr

Fe/ Fes/
The composition ¥} o ¢} is multiplication by the element yp, and the composition ¢ o ¥ is
zero.

Remark 2.30. Proposition 2.29 shows that the pushforward ¥} commutes with the degree maps:

degMF = degyr 0 w}/[.
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Proposition 2.31. If CH(MFp) satisfies the Poincaré duality part of Theorem 1.6, then 1} is injec-
tive.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-module
CH(Mp)[—rkn(F)] is isomorphic to the principal ideal of y in CH(M).

Proof. The proof is essentially identical to that of Proposition 2.23. O

The basic properties of the pullback and the pushforward maps can be used to describe the
fundamental classes of CH(M) and CH(M) in terms of oy and .

Proposition 2.32. The degree of gff/[_l is 1, and the degree of aﬁ/[ is 1.

Proof. We prove the first statement by induction on d > 1. Note that, for any nonempty proper flat
F of rank k, we have

rrafi® = 9f (o (af®) = vf (af F®1) =0,

since CHY % (Mp) = 0. Therefore, for any proper flat a of rank 1 and any element i in a, we have

d-1 _ d—2 _ . d-2
oy = <ZxF)QM =Talp -

el

By the induction hypothesis applied to the matroid M, of rank d — 1, we have deg, (gﬁ/[_f) =1,

or equivalently, gl‘f/ﬁ = xg for any maximal flag I’ of nonempty proper flats of M,. Thus, we have
afi !t = zaoyr? = 95 (3 (i %) = vy (e 2 © 1) = 2,

where F' is any maximal flag of nonempty proper flats of M that starts from a.

For the second statement, note that, for any proper flat F of rank %,
d—k F( F( d—k F( d—k
Trpoay T =y (SDM(@M )) =y (QMF ® 1) =0.
Using the first statement, we get the conclusion from the identity

o = (Sor)ad" = voali = v (sfilod ) = v (o) A
F

More generally, the degree of a4, * gllf/[ is the k-th coefficient of the reduced characteristic poly-
nomial of M [AHK18, Proposition 9.5].
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3. PROOFS OF THE SEMI-SMALL DECOMPOSITIONS AND THE POINCARE DUALITY THEOREMS

In this section, we prove Theorems 1.2 and 1.5 together with the two Poincaré duality statements
in Theorem 1.6. For an element ¢ of E, we write 7; and 7, for the coordinate projections

7 RE — RFV and =, : RF /(ep) — RE\i/<eE\i>'

Note that 7;(p;) = 0 and L'(B{i}) = 0. In addition, 7;(ps) = ps\; and m;(p) = Psyi for S < E. Here
we recall from Definition 2.4 that p; and ps denote the rays generated by the vectors e; and —ep\s
inRE, respectively, and p s denotes the image of pgs in RF /(eg).

Proposition 3.1. Let M be a loopless matroid on £, and let i be an element of £.
(1) The projection 7; maps any cone of ITy; onto a cone of IIyy;.

(2) The projection m; maps any cone of IIy; onto a cone of Il ;.

Recall that a linear map defines a morphism of fans ¥; — 3 if it maps any cone of ¥; into a
cone of 3y [CLS11, Chapter 3]. Thus the above proposition is stronger than the statement that 7;
and 7; induce morphisms of fans.

Proof of Proposition 3.1. The projection 7; maps o7<g onto o ;<5 ;, Where F\i is the flag of flats of
M\i obtained by removing i from the members of F. Similarly, 7; maps g5 onto g4;. 0

By Proposition 3.1, the projection 7; defines a map from the toric variety Xy of IIy; to the toric
variety Xyp; of Ilyp;, and hence the pullback homomorphism CH(M\i) — CH(M). Explicitly, the
pullback is the graded algebra homomorphism

0; 293/1 CH(M\’L)—>CH(M), TP T+ TFUg,

where a variable in the target is replaced with zero if its label is not a flat of M. Similarly, =,
defines a map from the toric variety Xy; of Iy to the toric variety Xyp; of IIy;;, and hence an
algebra homomorphism

6, = M : CH(M\i) — CH(M), T —> TF + TFui,
where a variable in the target is set to zero if its label is not a flat of M.

Remark 3.2. We use the notations introduced in Remark 2.16. Let V'\i be the image of V' under the
i-th projection F¥ — FF\/, We have the commutative diagrams of wonderful varieties and their
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Chow rings
Xp e Xy CH(B) —» CH(M)
{ k]
Xpy —— Xy CH(B\i) — CH(M\j).

The map Q@V is birational if and only if 7 is not a coloop of M. By Proposition 3.1, the fibers of B?
are at most one-dimensional, and hence the fibers of Q@V are at most one-dimensional. It follows
that ]32/ is semi-small in the sense of Goresky—-MacPherson when i is not a coloop of M.

Similarly, we have the diagrams of augmented wonderful varieties and their Chow rings

Xp —— Xy CH(B) —» CH(M)
Xpy —— Xy, CH(B\i) — CH(M\i).

The map p) is birational if and only if i is not a coloop of M. By Proposition 3.1, the fibers of p?
are at most one-dimensional, and hence p}” is semi-small when i is not a coloop of M.

Numerically, the semi-smallness of QZ‘./ is reflected in the identity
dimapoCHf; " = dimap,CHE 2,
Similarly, the semi-smallness of p} is reflected in the identity'
dim xpuiCHl(‘gl = dim xFuiCH%k_l.
For a detailed discussion of semi-small maps in the context of Hodge theory and the decomposi-
tion theorem, see [dCM02] and [dCMO09].

We show that the pullbacks 6; and 6, are compatible with the degree maps of M and M\:.
Lemma 3.3. Suppose that E\i is nonempty.
(1) If 7 is not a coloop of M, then 6; commutes with the degree maps:
degyp; = degyy o b;.
(2) If ¢ is not a coloop of M, then §; commutes with the degree maps:
deg,,; = degy  © ;.

13The displayed identities follow from Proposition 3.5 and the Poincaré duality parts of Theorem 1.6.
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(3) If 7 is a coloop of M, we have
degyp; = degyro zpy; 0 0 = degyo a0 b,
where the middle maps are multiplications by the elements z\; and ay.
(4) If i is a coloop of M, we have
degyy, = degy, 0 w0 0; = degy 0 ay o b,
where the middle maps are multiplications by the elements zp\; and ay;.
Proof. If i is not a coloop of M, we may choose a basis B of M\i that is also a basis of M. By

Proposition 2.8 and Remark 2.14, the top degree components CH?(M\i) and CH?(M) are both
one-dimensional, so we have

CHY(M\i) = span(yg) and CH?(M) = span(yg).
Since 6;(y;) = y; for all j, the first identity follows. Similarly, by Proposition 2.32,
CHI Y (M\i) = span(gf\lg\zl,) and CH* (M) = span(a{/ ).
Since ¢;(ann;) = an when i is not a coloop, the second identity follows.

Suppose now that i is a coloop of M. In this case, E\i is a flat and M\i = MZ\?, Hence
a0 6; = identity of CH(M\i) and ¢\ o 6, = identity of CH(M\j).

Using the compatibility of the pushforward wﬁ\i with the degree maps, we have
degyp; = degyp o %Z)ﬁ\i = degyr 0 U)ﬁ\i o @ﬁ\i o 0; = degyjozp; o b
Since Hi(aM\i) = am — Tp\;, Wwhen i is a coloop of M, the above implies

degyp; = degypo zpy; o 0; = degyro (o — fiann)) © 0; = degy o an o 6,

where the last equality follows from the fact that the images of §; have degree at most d — 1. The
identities for @M\i can be obtained in a similar way. O

Proposition 3.4. If CH(M\:) satisfies the Poincaré duality part of Theorem 1.6, then 6; is injective.
Also, if CH(M\) satisfies the Poincaré duality part of Theorem 1.6, then 0, is injective.

Proof. The proof is essentially identical to that of Proposition 2.23. O

For a flat F' in §;, we write 1"V for the pullback map between the augmented Chow rings
obtained from the deletion of i from the localization M

oVt cCH(MT) — CH(MYY).
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Similarly, for a flat ' in §;, we write QZF Vi for the pullback map between the Chow rings obtained
from the deletion of i from the localization M

Note that i is a coloop of MV in these cases.

Proposition 3.5. The summands appearing in Theorems 1.2 and 1.5 can be described as follows.
(1) If F € 8;, then zp_;CH(;) = ¢f”* (CH(Mpy;) ® 67 'CH(MF)).
(2) If F € 8, then 2 ;CH;y = ¢f“* (CH(Mpy;) ® 6 V" CH(MF)).
(3) If i is a coloop of M, then zf\; CH;) = @/}ﬁ\i CH(M\i) and 2 ;CH ;) = gﬁ\lCiH(M\z)
Remark 3.6. Assuming Poincaré duality for all of our Chow rings, Propositions 2.23, 2.27, and 3.4
imply that

2pLiCHy) = CH(Mpy;) ® CHM)[-1] and zpyCH ;) = CH(Mp ;) @ CHM")[-1],
and therefore

dimazp o, CHf; ! = dimzpo;CH{; ¥ and dimapo;CHfj) ' = dimapoCHE*

Proof of Proposition 3.5. We prove the first statement. The proof of the second statement is essen-
tially identical. The third statement is a straightforward consequence of the fact that gpﬁ\z o 6; and

fﬁ\i o §; are the identity maps when i is a coloop.
Let F' be a flat in §;. It is enough to show that
ef” (CH(;)) = CH(Mpy;) ® 0F VICH(MF),

since the result will then follow by applying v£;-*. The projection 7; maps the ray pp_; to the ray
pr, and hence ; defines morphisms of fans

LFui
star,.,IIn «—— Ly, , % e

/ " n
WiJ/ 7"¢ J ™ J

starpFHM\i - H(M\i)p X H(M\i)F H(M\i)F x Hyr,

B E(M/Z)F X HMFui

where ¢t ; and ¢ are the isomorphisms in Proposition 2.7. The main point is that the matroid
(M/i)F is a quotient of (M\i) . In other words, we have the inclusion of Bergman fans

Oovyiye € Doy p-

n
)

Therefore, the morphism 7} admits the factorization

H(M/Z)F X HMFui E— H(M/’L)F X HMF — H(M\’L)F X HMF7
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where the second map induces a surjective pullback map g between the Chow rings. By the equal-
ity (M/i)r = Mpy;, we have the commutative diagram of pullback maps between the Chow rings

CH(M\7) O CH(M)

= )
WM\zi Lﬁf\v/{w

CH((M\i)r) ® CH((M\i)F) —%» CH(Mp_:) ® CHMF) "2 CH(M ;) @ CHOMP V).

The conclusion follows from the surjectivity of the pullback maps 501\F/1\@' and gq. O

Remark 3.7. Since i is a coloop in MV when F € §; or F € §;, Proposition 3.5 implies that

l’FUZ‘CH?I.;l =0for F'e§; and mpuiCj?i;2 =0for F e§,.

Proposition 3.8. The Poincaré pairing on the summands appearing in Theorems 1.2 and 1.5 can
be described as follows.

(1) If F € §;, then for any p1, u2 € CHMp i) ® CH(MF) of complementary degrees,
degyr (a1 (1@ 6 (1)) - ar (1@ 0] (p2))) = —deg,, ~ ® degyr(H1p2).
(2) If F € §;, then for any vq,v2 € CHMp ;) ® CH(MF) of complementary degrees,
deg, (Vi (1@0] 7 (1)) - L (1®0]V (1)) = —deg), ~ ®@deg, p(112).
It follows, assuming Poincaré duality for the Chow rings, that the restriction of the Poincaré

pairing of CH(M) to the subspace zr; CHy;) is nondegenerate, and the restriction of the Poincaré
pairing of CH(M) to the subspace = puiCj(i) is nondegenerate.

Proof. We prove the first equality. The second equality can be proved in the same way.

Since the pushforward {;“¢ is a CH(M)-module homomorphism (Proposition 2.21), the left-
hand side is

degnt (V5 (5 i (1@ 6F Vi () - (1® 65V (12)))).-

The pushforward commutes with the degree maps (Remark 2.22), so the above is equal to
deg,,  ®degyror (i el (1@ 6] (1)) - (1@ 6 (12)))-
Using that the composition pf~if~ is multiplication by 1" (zr ;) (Proposition 2.21), we get
—deg,, ~ ®degyru (1 ® apgroi + By, @ 1) - (1®6FY (1)) - (1@ 6 (u2))).
Since i is a coloop of MFVi and 9% is a graded ring homomorphism, the product

(1®6]Y" (1)) - (1®6] 7 (2)) = 1@ O] V(11 - p2) € CH(Mp;) @ CH(MFY)
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does not involve the top degree component of CH(M'“%). Thus,

o, @deggra (8, ®1)- (1©07% ) - (1067 (1)) = 0.
and the left-hand side of the desired equality further simplifies to

—deg,  ®@degyrui (1@ ayru) - (1@ 67V (1)) - (1@ 6] (12))).

Now the third part of Lemma 3.3 shows that the above quantity is the right-hand side of the
desired equality. O

Lemma 3.9. If flats Fj, F; are in §; and F is a proper subset of F», then
TR i TR € TR uiCHy).
Similarly, if Fi, F; are in 8, and F7 is a proper subset of I, then
TR i TFui € TR uiCH ).
Proof. Since F; v i is not comparable to F;, we have
TR Ui TR = TRui(TR + TRui) = TR uili(TR).

The second part follows from the same argument. O

Proof of Theorem 1.2, Theorem 1.5, and parts (1) and (4) of Theorem 1.6. All the summands in the pro-
posed decompositions are cyclic, and therefore indecomposable in the category of graded mod-
ules."* We prove the decompositions by induction on the cardinality of the ground set E. If E is
empty, then Theorem 1.2, Theorem 1.5, and part (1) of Theorem 1.6 are vacuous, while part (4) of
Theorem 1.6 is trivial. Furthermore, all of these results are trivial when E is a singleton. Thus,
we may assume that i is an element of F, that F\i is nonempty, and that all the results hold for
loopless matroids whose ground set is a proper subset of E.

First we assume that i is not a coloop. Let us show that the terms in the right-hand side of
the decomposition (D) are orthogonal. Multiplying CH ;) and zr;CH;) lands in z;CH;), and
this ideal vanishes in degree d by Remark 3.7, so they are orthogonal. On the other hand, the
product of z, ,iCH(;) and z g, ;CH;) vanishes if Fy, F> € 8; are not comparable, while if F; < F»
or Fy < Fy, the product is contained in xr, ,;CH(;) or xp,;CH(;) respectively, by Lemma 3.9. So
these terms are also orthogonal.

It follows from the induction hypothesis and Lemma 3.3 that the restriction of the Poincaré
pairing of CH(M) to CH;) is nondegenerate. By Proposition 3.5, Proposition 3.8, and the induction
hypothesis, the restriction of the Poincaré pairing of CH(M) to any other summand zr_;CH;) is

14By [CE82, Corollary 2] or [GG82, Theorem 3.2], the indecomposability of the summands in the category of graded
modules implies the indecomposability of the summands in the category of modules.
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also nondegenerate. Therefore, we can conclude that the sum on the right-hand side of (D) is a
direct sum with a nondegenerate Poincaré pairing.

To complete the proof of the decomposition (D) and the Poincaré duality theorem for CH(M),
we must show that the direct sum

CH(;) ® @ zruiCH
FESZ'

is equal to all of CH(M). This is obvious in degree 0. To see that it holds in degree 1, it is enough
to check that z¢ is contained in the direct sum for any proper flat G of M. If G\i ¢ §;, then
rg = 0i(xg\;) is in CHy,). If G\i € §;, then either i € G or i ¢ G. In the first case, ¢ = 7(g\j)u; is an
element of the summand indexed by F' = G\i. In the second case, we have z¢ = 0;(z¢) — Ui,
which lies in CH;) + zgoiCHy).

Since our direct sum is a sum of CH(M\7)-modules and it includes the degree 0 and 1 parts of
CH(M), it will suffice to show that CH(M) is generated in degrees 0 and 1 as a graded CH(M\i)-
module. In other words, we need to show that

CH{;, - CH*(M) = CH**'(M) forany k > 1.

We first prove the equality when £ = 1. Since we have proved that the decomposition (D)
holds in degree 1, we know that

CH?*(M) = CHY(M) - CH'(M) = (CHb) ® P @xFU,) : (CH%Z-) ®P chpui) :

FESZ' FGSZ

Using Lemma 3.9, we may reduce the problem to showing that
T3, € CH%Z-) -CH'(M) forany F € ;.
We can rewrite the relation 0 = zry; in the augmented Chow ring of M as

0= (0i(zr) — zrui) Z e

i#G
= Qi(xF)(MZG:zG> — xFui<G§F wG),
= Hi(xp)(i%:cc) — (Oi(zp) — J?F)<G§F 960) — TRUITF
= QZ(SCF)(Z TG — Z mc) + ﬂSF( Z l‘G) —xruifi(zF) + x%xm
itG G<F G<F

thus reducing the problem to showing that

Tpxa € CH%I.) . CHl(M) forany G < F € §,;.



A SEMI-SMALL DECOMPOSITION OF THE CHOW RING OF A MATROID 35
The collection §; is downward closed, meaning that if G < F' € §;, then G € §;; therefore,
rrrg = (0i(zr) — xrui) (Bi(ra) — vaui)-
Lemma 3.9 tells us that zp_;zqui € CH%Z.) -CHY(M), thus so is zpzg.

We next prove the equality when k£ > 2. In this case, we use the result for £ = 1 along with the
fact that the algebra CH(M) is generated in degree 1 to conclude that

CH{, - CH"(M) = CH{,) - CH'(M) - CH*"(M) = CH*(M) - CH*~'(M) = CH"**!(M).

This completes the proof of the decomposition (D) and the Poincaré duality theorem for CH(M)
when there is an element 7 that is not a coloop of M.

The proof when i is a coloop is almost the same; we explain the places where something differ-
ent must be said. The orthogonality of xg\;CH(;) and zp_;CH;) for F' € §; follows because E\i
and F' v i are incomparable. To show that the right-hand side of (D) spans CH(M), one extra
statement we need to check is that

v} € CHy,) - CH'(M).
Since i is a coloop, §; is the set of all flats properly contained in E\i, and we have
0=apy = Z TETE\; = JJ%E\Z- + Z LTETF = $2E\i + Z fEE\z‘ez‘(JUF)a
Z¢F FESZ‘ FESZ‘
where the last equality follows because E\i and F' U i are not comparable. Thus
FGSZ'

By the induction hypothesis, we know CH(M\i) satisfies the Poincaré duality theorem. By the
coloop case of Lemma 3.3, the Poincaré pairing on CH(M) restricts to a perfect pairing between
CH(;) and zp\;CH(;. Since CHy;) is a subring of CH(M) and is zero in degree d, the restriction
of the Poincaré pairing on CH(M) to CHy;) is zero. Therefore, the subspaces CH;) and z\;CH;

intersect trivially, and the restriction of the Poincaré pairing on CH(M) to CH;) @ v ;CHy;) is
nondegenerate. This completes the proof of the theorems about CH(M) when ¢ is a coloop.

Now, we show the statements about the decomposition (D;). By an argument identical to the
one used for (D), we know that the sum on the right-hand side of (D,) is a direct sum with a
nondegenerate Poincaré pairing. Next, we observe that the surjectivity of the pullback ¢ gives
the equality

CHy;) - CHF(M) = CH**'(M) for any k > 1.
Thus, the direct sum decomposition (D) and the Poincaré duality theorem for CH(M) follow
when 7 is not a coloop. When i is a coloop, we can prove (D,) and the Poincaré duality theorem
by making the same adjustments as the ones in the proof about CH(M). O
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4. PROOFS OF THE HARD LEFSCHETZ THEOREMS AND THE HODGE—-RIEMANN RELATIONS

In this section, we prove Theorem 1.6. Parts (1) and (4) have already been proved in the previous
section. We will first prove parts (2) and (3) by induction on the cardinality of E. The proof of parts
(5) and (6) is nearly identical to the proof of parts (2) and (3), with the added nuance that we use
parts (2) and (3) for the matroid M in the proof of parts (5) and (6) for the matroid M.

Proof of Theorem 1.6, parts (2) and (3). The statements are trivial when the cardinality of Fis 0 or 1,
so we will assume throughout the proof that the cardinality of E is at least 2.

Let B be the Boolean matroid on E. By the induction hypothesis, we know that for every
nonempty proper flat F' of M, the fans II,;,. and II,;r satisfy the hard Lefschetz theorem and the
Hodge-Riemann relations with respect to any strictly convex piecewise linear functions on Il
and Ilzr, respectively. By [AHK18, Proposition 7.7], this implies that for every nonempty proper
flat I of M, the product I, x IIy;r satisfies the hard Lefschetz theorem and the Hodge-Riemann
relations with respect to any strictly convex piecewise linear function on Il » X Hpr. In other
words, Il satisfies the local Hodge—Riemann relations [AHK18, Definition 7.14]:

The star of any ray in II,; satisfies the Hodge—Riemann relations.

This in turn implies that II; satisfies the hard Lefschetz theorem with respect to any strictly convex
piecewise linear function on Il [AHKI18, Proposition 7.15]. It remains to prove only that IIy;
satisfies the Hodge-Riemann relations with respect to any strictly convex piecewise linear function
on Il.

Let ¢ be a piecewise linear function on IIy, and let @’g (M) be the Hodge—Riemann form
HRj(M) : CH*(M) x CH*(M) — Q, (1, m2) — (—1)*deg, (¢4 iimp).

By [AHK18, Proposition 7.6], the fan II,; satisfies the Hodge-Riemann relations with respect to
¢ if and only if, for all & < %’, the Hodge—-Riemann form @f(M) is nondegenerate and has the

signature
k

M 1)k ( dim CHY (M) — dimCiijl(M))

j=0
Since II,; satisfies the hard Lefschetz theorem with respect to any strictly convex piecewise linear
function on Il and signature is a locally constant function on the space of nonsingular forms, the
following statements are equivalent:

(i) The fan II; satisfies the Hodge-Riemann relations with respect to any strictly convex piece-
wise linear function on Ilp.

(ii) The fan II,; satisfies the Hodge—-Riemann relations with respect to some strictly convex piece-
wise linear function on II.
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Furthermore, since satisfying the Hodge-Riemann relations with respect to a given piecewise lin-
ear function is an open condition on the function, statement (ii) is equivalent to the following:

iii) The fan II,; satisfies the Hodge—Riemann relations with respect to some convex piecewise
M g P p
linear function on II.

We show that statement (iii) holds using the semi-small decomposition in Theorem 1.2.

If M is the Boolean matroid B, then CH(M) can be identified with the cohomology ring of the
smooth complex projective toric variety Xy . Therefore, in this case, Theorem 1.6 is a special
case of the usual hard Lefschetz theorem and the Hodge-Riemann relations for smooth complex

projective varieties.'®

If M is not the Boolean matroid B, then it has some element i € E that is not a coloop. Consider
the morphism of fans
m; Iy — Iy
By induction, we know that II;; satisfies the Hodge-Riemann relations with respect to any
strictly convex piecewise linear function ¢ on Ilp,;. We will show that II; satisfies the Hodge-

Riemann relations with respect to the pullback ¢; = ¢ o m;, which is a piecewise linear function on
I that is convex but not necessarily strictly convex.

By Theorem 1.2, we have the orthogonal decomposition of CH(M) into CH(M\i)-modules
CHM) = Cj(i) (&) (‘B mFuiCj(i)-
Fes;
By orthogonality, it is enough to show that each summand of CH(M) satisfies the Hodge—-Riemann

relations with respect to /;:

(iv) For every nonnegative integer k < 2, the bilinear form

CHy x CHfyy — @, (m1,m2) — (=1)"*deg, (£~ 'mumo)

is positive definite on the kernel of multiplication by ¢¢2".

(v) For every nonnegative integer k < %, the bilinear form
k—1 k—1 k d—2k—1
rroiCHG " x zpoiCHG " — Q, (m1,m2) — (—1)"deg, , (¢; mnz)
is positive definite on the kernel of multiplication by ¢ ~2*.

15This inductive paradigm of [AHK18] goes back to [McM93], where it was used to prove the hard Lefschetz theorem
for simple polytopes.

161t is not difficult to directly prove the hard Lefschetz theorem and the Hodge-Riemann relations for CH(B) using
the coloop case of Theorem 1.2. Alternatively, we may apply McMullen’s hard Lefschetz theorem and Hodge-Riemann
relations for polytope algebras [McM93] to the standard permutohedron in R”.
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By Proposition 3.4, the homomorphism §; restricts to an isomorphism of CH(M\i)-modules
CH(M\7) = CH,.

Thus, statement (iv) follows from Lemma 3.3 and the induction hypothesis applied to M\i. By
Propositions 2.27, 3.4, and 3.5, the homomorphisms QZF Vi and QRF/IUZ give a CH(M\i)-module iso-
morphism

CH(Mp;) ® CH(M") = CH(Mp;) ® 0F "CH(M") = piCHy[1]
Note that the pullback of a strictly convex piecewise linear function on Ilg,; to the star
gy, % Mipyr = gy, x e

is the class of a strictly convex piecewise linear function. Therefore, statement (v) follows from
Proposition 3.8 and the induction applied to Mp_; and MF. O

Proof of Theorem 1.6, parts (5) and (6). This proof is nearly identical to the proof of parts (2) and (3).
In that argument, we used the fact that rays of II,; are indexed by nonempty proper flats of M and
the star of the ray p » is isomorphic to IIy; . x I\;», which we can show satisfies the hard Lefschetz
theorem and the Hodge-Riemann relations using the induction hypothesis. When dealing instead
with the augmented Bergman fan IIy;, we have rays indexed by elements of £ and rays indexed
by proper flats of M, with

star,, Iy = Ty, and star,, Iy = Iy, x Hyr.

Thus the stars of p; and pr for nonempty F' can be shown to satisfy the hard Lefschetz theorem
and the Hodge-Riemann relations using the induction hypothesis. However, the star of pg is
isomorphic to IIy;, so we need to use parts (2) and (3) of Theorem 1.6 for M itself. O

Remark 4.1. It is possible to deduce Poincaré duality, the hard Lefschetz theorem, and the Hodge—
Riemann relations for CH(M) using [AHK18, Theorem 6.19 and Theorem 8.8], where the three
properties are proved for generalized Bergman fans Yy » in [AHK18, Definition 3.2]. We sketch
the argument here, leaving details to the interested readers. Consider the direct sum M @ 0 of M
and the rank 1 matroid on the singleton {0} and the order filter P(M) of all proper flats of M & 0
that contain 0. The symbols B @ 0 and P(B) are defined in the same way for the Boolean matroid
B on E. It is straightforward to check that the linear isomorphism

RE ]REUO/<eE +ep), e€j—€j

identifies the complete fan IIg with the complete fan YXg g »(B), and the augmented Bergman fan
Iy with a subfan of Xy;q0 par)- The third identity in Lemma 2.11 shows that the inclusion of
the augmented Bergman fan Iy into the generalized Bergman fan Xy p\) induces an isomor-
phism between their Chow rings.
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5. PROOF OF THEOREM 1.8

In this section, we prove the decomposition (D) by induction on the cardinality of E. The
decomposition (D3) can be proved using the same argument. The results are trivial when E has at
most one element. Thus, we may assume that i is an element of E, that £\i is nonempty, and that
all the results hold for loopless matroids whose ground set is a proper subset of E.

We first prove that the summands appearing in the right-hand side of (D3) are orthogonal to
each other.

Lemma 5.1. Let " and G be distinct nonempty proper flats of M.
(1) The spaces QI\F/[ CH(Mp) ®QQ(MF) and H, (M) are orthogonal in CH(M).
(2) The spaces %\F/ICiH(MF) ®JQ(MF) and %\GACiH(M(;) ®JQ(MG) are orthogonal in CH(M).

Proof. The fifth bullet point in Proposition 2.24, together with the fact that QI\F/[ is a CH(M)-module
homomorphism via gﬁ (Proposition 2.25), implies that both %{1 CH(Mp) ® J,(M¥) and H, (M)
are H, (M)-submodules of CH(M). Thus, the product of y € % CH(Mp)®J,(MF)and v € H, (M)
of complimentary degree lands in the degree d — 1 component of gf/[ CH(Mp) ®J,(MF), which is
zero. The first orthogonality follows.

For the second orthogonality, we may suppose that F' is a proper subset of G. Since %\GA is
a CH(M)-module homomorphism commuting with the degree maps (Proposition 2.29 and Re-
mark 2.30), it is enough to show that

gﬁgﬁ@(Mp) ® JQ(MF) and CH(M¢g) ® JQ(MG) are orthogonal in CH(M¢) ® CH(M®).
For this, we use the commutative diagram of pullback and pushforward maps

F
gIVI

CH(Mp) ® CH(M") CH(M)

G\F
JWM\F ®1 J{‘Pl?l
1QyF

QM G

CH(M¢) ® CHM%) @ CH(M) ————— CH(M¢g) ® CH(MY),

which further reduces to the assertion that
@ﬂGCiH(Mg) ®JQ(MF) and JQ(MG) are orthogonal in CH(M®).

Since QQ(MG) c ﬂg(MG), the above follows from the first orthogonality for ME. O

We next show that the restriction of the Poincaré pairing of CH(M) to each summand appearing
in the right-hand side of (D) is nondegenerate.

Lemma 5.2. Let F' be a nonempty proper flat of M, and let & = rky;(F).
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(1) The restriction of the Poincaré pairing of CH(M) to H,, (M) is nondegenerate.

(2) The restriction of the Poincaré pairing of CH(M) to %\F/[CiH(M F)® JQ(MF ) is nondegenerate.
Proof. The first statement follows from Proposition 2.32. We prove the second statement.

Let N = CH(Mp) ® J,(M”) and N; = CH(Mp) ® J.,(M*). Notice that

. , 0<i<k—2
sy = 9 '

lIe

0, otherwise.

Therefore, the total dimensions of N; are the same for 0 < ¢ < k — 2. For the second statement, we
need to show the nondegeneracy of the bilinear form on N = CH(Mp) ® QQ(MF ) defined by

1 @i, pe Qo) = @M@f/{(m ®u1) '%\F/[(Mz R a)).

Since the pushfoward %{j{ is a CH(M)-module homomorphism (Proposition 2.24) and commutes
with the degree maps (Remark 2.26), we have

deg, (¥3; (11 @ 1) - 1y (12 @ ) = degy (U, (o383, (11 @ 1) - (12 @ 12)))
= deg,, ®@deg, . (o4 (11 ®11) - (12 @ 1))
Since the composition fl\F/[yl\F/[ is multiplication by gl\F/[(x r) (Proposition 2.25), the above becomes
—degy; ®deg, - (1@ ayr + By ®1) (1 ®@w) - (12 ®@12)).

Assuming that v, € J. ’j} (MF yand v, € J ’;2 (MF ), the above expression vanishes unless ki +ky = k—1
or k — 2. In other wo;ds, the subspace; N; and Nj,_,_; are orthogonal with respect to the bilinear
form on N, unless i = j or ¢ = j 4+ 1. So the bilinear form can be represented by a block lower-
triangular matrix, and its nondegeneracy is equivalent to the nondegeneracy of each diagonal
block. Thus, it suffices to show that the induced pairing between NV; and Nj_s_; is nondegenerate.

For this, assume that 11 € J;(MF )and v, € J. Z_Q_i(MF ). By the above arguments, we have
(1 @1, po @ va) = —deg,, ®deg, (1®aypr + By, ® 1) (pipe @ viva)).
Since v1vy € CHF2(MF), we have %MF ® deg, @MF/“”? ®vi17) = 0, and hence
(@1, p2 @v2) = —degy | ®deg, - (112 ® ayrrivn) = —deg | (p1pz)deg, - (ayrrave).

Notice that for any nonzero v € J;,(M*) and nonzero v, € J;, >~/ (MF), we have deg, . (anrvive) #
0. The nondegeneracy of the pairing between N; and Nj_2_; follows from the nondegeneracy of
the Poincaré pairing of CH(Mp). O

To complete the proof, we only need to show that the graded vector spaces on both sides of (D)
have the same dimension, which is the next proposition.
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Proposition 5.3. There exists an isomorphism of graded vector spaces

CHM)=H,M)® @ CHMp)®J,M")[-1], (D5)
FeQ(M)

where the sum is over the set (M) of proper flats of M with rank at least two.

Proof. We prove the proposition using induction on the cardinality of E. Suppose the proposition
holds for any matroid whose ground set is a proper subset of E. Suppose that there exists an
element ¢ € E that is not a coloop.

By Remark 3.6, for any G in §;, we have xguiCj(i) ~ CH(Mgui) ® Cj(MG)[—l] as graded
vector spaces. Thus, the decomposition (D) implies

CH(M) = CHM\))® @ CH(Mgui) ® CH(ME)[-1].
Ges, (M)

By applying the induction hypothesis to the matroids M\i and M, we see that the left-hand side
of (D}) is isomorphic to the graded vector space

H,0M)® @ CH((M)c)® I, ((M\i)F)[-1]
Gea(M)

® @ CHMgu)®@H,(MY)[-1]
Ges; (M)

& @ @ CHMeu)®CHME)®J,M)[-2].
Ge8,; (M) FeQ(MG)

Since i is not a coloop, we may replace H, (M\i) by H,, (M).
Now, we further decompose the right-hand side of (D) to match the displayed expression. For
this, we split the index set Q(M) into three groups:
(1) Fe Q(M)7Z € F? F\Z € §Z(M)/
(2) FeQM),ie F,F\i¢ 8;(M), and
B) FeQM),i¢ F.
Suppose F belongs to the first group. In this case, we have J (M¥) =~ H_ (M) as graded

vector spaces, because they both have one-dimensional component from degree 0 to rk(F") — 2 by
Proposition 2.32. Therefore, we have

@ CHMp)®J,M)[-1]= @ CHMgu)®H,(M%)[-1].
FeQ(M) Ges, (M)
i€F,F\ie8;(M)
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Suppose F belongs to the second group. In this case, Mp = (M\i);, and the matroids M*" and
(M\i)F\" have the same rank. Therefore, we have

P  CHMp)®J,(M")[-1] = P CH((M\i)g) ® I, (M\i)¥)[~1].
FeQ(M) GeQ(M\i)\Q(M)
ieF,F\ig8, (M)

Suppose F' belongs to the third group. In this case, we apply (D;) to My and get

@ CHMr)®J,(M")[-1]
FeQ(M),i¢gF

@ (cHMPA)® @ CHMow) ® CHME)[-1]) @ I, (M)[-1]
FeQ(M),i¢F Ge8;(Mr)

>~ @ CHMp)@JM)-1]e @ CHMe,)®CHME) ®J,(M")[-2]

lle

FeQ(M),i¢F Ges, (M)
FeQ(M%)
= @ CH(Mi)g)®L(Mi)Y)[-1]@ @ CHMau)®CHME) @ J,(M7)[-2].
GeQ(M\i)nQ(M) Ges,; (M)

FeQ(M%)
The decomposition (D5) follows.

Suppose now that every element of E is a coloop of M, that is, M is a Boolean matroid. We fix
an element i € E. The decomposition (D,) and Remark 3.6 imply

CH(M) = CH(M\i) ® CHM\i)[-1]® P CH(Mgy;) ® CHMY)[-1].
Ges, (M)

The assumption that i is a coloop implies that 8,(M) n Q(M) = Q(M\7). The induction hypothesis
applies to the matroids M\i and M%, and hence the left-hand side of (D) is isomorphic to

HMO)® @ CH(M\i)e)®J,((M\i)%)[-1]
GeQ(M\7)

@H,M\)[-1]e @ CH((M\)g)®I,((Mi))[-2]
GeQ(M\i)

®© @ CHMa)® (HMYe @ CHME)®I,M")[-1])[-1]
Ge§,; (M) FeQ(ME)

Now, we further decompose the right-hand side of (D) to match the displayed expression. For
this, we split the index set Q(M) into three groups:

(1) FeQ(M),ie F,
(2) FeQ(M),F = E\i, and
(3) F e QM), F e 8;(M).
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If F belongs to the first group, then J,(M¥) ~ H,(M*\), and hence

@ CHMp)®J,(M")[-1]= @ CHMgu:) ®@Hy(M)[-1].
FeQ(M),ieF Ge§,; (M)

If F is the flat E\i, H,(M) has one-dimensional component from degree 0 to d — 1; H,(M\i) has

one-dimensional component from degree 0 to d—2; and JQ(ME\Z') has one-dimensional component
from degree 0 to d — 3. Thus, we have

Hy (M) ® CH(M ) © 0 (MP)[-1] = Hy (M\i) @ Hy (M\Q)[ 1],
If ' belongs to the third group, we apply (D,) to My and get

@ CHMp)®J,(M")[-1]
FeQ(M)
Fes, (M)
> @ (CHMA)OCHMAN-1]® @ CHMgo:) ® CHME)[-1]) 1, (MF)[-1]
555% Ges, (Mp)

~ @ CHM)®J,(MY[-1]® @ CHM:\)®I,M%)[-2]®
GeQ(M) GeQ(M)
Ge$,; (M) Ge$,; (M)
@ CHMgu:) ® CHME) ® I, (M5)[-2].
Ges,; (M)
FeQ(M%)

The decomposition (D%) follows. O

Remark 5.4. The decomposition of graded vector spaces appearing in [AHK18, Theorem 6.18] spe-
cializes to decompositions of CH(M) and of CH(M), where the latter goes through Remark 4.1.
At the level of Poincaré polynomials, these decompositions coincide with those of Theorem 1.8.
However, the subspaces appearing in the decompositions are not the same. In particular, the de-
compositions in [AHK18, Theorem 6.18] are not orthogonal, and they are not compatible with the
H_,(M)-module structure on CH(M) or the H,, (M)-module structure on CH(M).

3
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