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Abstract. We prove that the ith graded pieces of the Orlik–Solomon algebras or Cordovil algebras

of resonance arrangements form a finitely generated FSop-module, thus obtaining information

about the growth of their dimensions and restrictions on the irreducible representations of

symmetric groups that they contain.

1 Introduction

Let A(n) be the collection of all hyperplanes in Rn that are perpendicular to some nonzero vector

with entries in the set {0, 1}. This hyperplane arrangement is called the resonance arrangement

of rank n. The resonance arrangement has connections to algebraic geometry, representation theory,

geometric topology, mathematical physics, and economics; for a survey of these connections, see

[Küh, Section 1]. Of particular interest is the set of chambers of A(n). Amazingly, despite the

simplicity of the definition, no formula for the number of chambers as a function of n is known.

A more refined invariant of A(n) is its characteristic polynomial, whose coefficients (after taking

absolute values) have sum equal to the number of chambers. Kühne has made some progress

toward understanding the coefficient of tn−i in the characteristic polynomial as a function of n with

i fixed. Our purpose is to shed a new light on Kühne’s result, to generalize it to a wider class of

arrangements, and to study the action of the symmetric group Σn on various algebraic invariants

of these arrangements.

Let S ⊂ R be any finite set, and letAS(n) be the collection of hyperplanes that are perpendicular

to a nonzero vector with entries in S. If S = {0, 1}, AS(n) is the resonance arrangement. If

S = {±1}, it is the threshold arrangement, which is studied in [GMP]. For each positive integer

d, let MS(n, d) denote the set of n-tuples of vectors in Rd such that no nontrivial3 linear combination

of all n vectors with coefficients in S is equal to zero. The cohomology ring of MS(n, d) is generated

in degree d− 1 [dS01, Corollary 5.6]. If d is even, the presentation of this ring in [dS01] coincides

with that of the Orlik–Solomon algebra of AS(n) (with all degrees multiplied by d− 1) [OS80].

If d is odd and greater than 1, then it coincides with that of the Cordovil algebra of AS(n) (with

all degrees multiplied by d − 1) [Cor02]; see also [Mos17, Example 5.8].4 In particular, for any

n ≥ 1, d ≥ 2, and i ≥ 0, the dimension biS(n) = dimH(d−1)i
(
MS(n, d);Q

)
is equal to (−1)i times

the coefficient of tn−i in the characteristic polynomial of AS(n).

These vector spaces carry more information than just their dimension; they also carry actions

of the symmetric group Σn, which acts by permuting the n vectors. These representations are

1Supported by NSF grants DMS-1565036 and DMS-1954050.
2Supported by NSF grant DMS-1704811.
3Nontrivial means that, if 0 ∈ S, we do not allow all coefficients to be 0.
4For d odd, the presentation in [dS01] incorrectly omits the relations that each of the generators squares to zero.
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isomorphic for all even d ≥ 2 and for all odd d ≥ 3, but the d = 2 and d = 3 cases are genuinely

different. The total cohomology H∗
(
MS(n, 3);Q

)
with all degrees combined is isomorphic as a rep-

resentation of Σn to H0
(
MS(n, 1);Q

)
, which is the permutation representation with basis indexed

by the chambers of AS(n) [Mos17, Theorem 1.4(b)].

For fixed S ⊂ R, d ≥ 2, and i ≥ 0, we will define in the next section a contravariant module

Bi,d
S over the category of finite sets with surjections that takes the set [n] to H(d−1)i

(
MS(n, d);Q

)
.

Theorem 1.1. The module Bi,d
S is finitely generated in degrees ≤ |S|i.

Combining Theorem 1.1 with [PY17, Theorem 4.1], we obtain the following numerical results:5

Corollary 1.2. Fix a finite set S ⊂ R and a pair of integers d ≥ 2 and i ≥ 0.

1. The generating function

GiS(t) :=

∞∑
n=1

biS(n)tn

is a rational function with poles contained in the set {1/j | 1 ≤ j ≤ |S|i}, with at worst a

simple pole at |S|−i. Equivalently, there exist polynomials {ci,jS (n) | 1 ≤ j ≤ |S|i} such that,

for n sufficiently large,

biS(n) =

|S|i∑
j=1

ci,jS (n)jn,

and the last polynomial c
i,|S|i
S (n) is a constant polynomial.

2. For any partition λ of n, let Vλ denote the irreducible representation of Σn indexed by λ. If

HomΣn

(
Vλ, H

(d−1)i
(
MS(n, d);Q

))
6= 0, then λ has at most |S|i rows.

3. For any partition λ with n ≥ |λ|+ λ1, let λ(n) be the padded partition of n obtained from

λ by adding a row of length n− |λ|. For any λ, the function

n 7→ dim HomΣn

(
Vλ(n), H

(d−1)i
(
MS(n, d);Q

))
is bounded above by a polynomial in n. In particular, if λ is the empty partition, this says

that the multiplicity of the trivial representation in H(d−1)i
(
MS(n, d);Q

)
is bounded above by

a polynomial in n.

Remark 1.3. A stronger version of item (1) above for the resonance arrangement appears in [Küh,

Theorem 1.4]. Kühne proves that the polynomials ci,j{0,1}(n) are all constant (i.e. that all poles of

Gi{0,1}(t) are simple), obtains bounds on their sizes, and shows that the equality holds for all n, not

just sufficiently large n (i.e. that the limit as t goes to∞ of Gi{0,1}(t) is zero). It should be possible

to categorify Kühne’s theorem by proving that the restriction of Bi,d
{0,1} to the category of ordered

surjections [SS17] is isomorphic to a direct sum of shifts of principal projectives, with summands

5The deepest of these statements, namely the fact that the dimension generating function for a finitely generated
FSop-module is rational with prescribed poles, is due to Sam and Snowden [SS17, Corollary 8.1.4].
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indexed by Kühne’s functional prototypes. The cost of working with ordered surjections would

be that we would lose all information about the action of the symmetric group.

Acknowledgments: The authors are grateful to Lou Billera for telling them about the arrangement

A(n) and about Kühne’s work.

2 The proof

Let FS denote the category whose objects are nonempty finite sets and whose morphisms are

surjective maps. An FSop-module over Q is a contravariant functor from FS to the category of

rational vector spaces. For each finite set F , we have the principal projective module PF , which

sends a finite set E to the vector space with basis HomFS(E,F ), with morphisms defined on basis

elements by composition. An FSop-module N is said to be finitely generated if it is a quotient

of a finite sum ⊕iPFi of principal projectives, and it is said to be finitely generated in degrees

≤ m if the sets Fi can all be taken to have cardinality less than or equal to m. This is equivalent

to saying that, for all E, the vector space N(E) finite dimensional and is spanned by the images of

the pullbacks along various maps ϕ : E → F , where F has cardinality less than or equal to m.

Lemma 2.1. Suppose that N1 is finitely generated in degrees ≤ m1 and N2 is finitely generated in

degrees ≤ m2. Then the pointwise tensor product N1⊗N2 is finitely generated in degrees ≤ m1m2.

Proof. We immediately reduce to the case where N1 = P[m1] and N2 = P[m2]. For any ϕ : E → [m],

let eϕ denote the corresponding basis element of P[m](E). Then N1 ⊗N2 has basis

{eϕ1 ⊗ eϕ2 | ϕ1 : E → [m1], ϕ2 : E → [m2]} .

Given the pair of surjections (ϕ1, ϕ2), let F ⊂ [m1] × [m2] denote the image of ϕ1 × ϕ2, let

ϕ = ϕ1 × ϕ2 ∈ HomFS(E,F ), and let ψ1 : F → [m1] and ψ2 : F → [m2] denote the coordinate

projections. It is clear that we have eϕ1 ⊗ eϕ2 = ϕ∗(eψ1 ⊗ eψ2). Since the cardinality of F is at

most m1m2, this completes the proof.

Fix a positive integer d and a finite set S ⊂ R. To any finite set E, we associated the space

MS(E, d) of E-tuples of vectors in Rd such that any nontrivial linear combination of the vectors

with coefficients in S is nonzero. Given a surjection ϕ : E → F , we obtain a map

ϕ∗ : MS(E, d)→MS(F, d)

by adding the vectors in each fiber of ϕ. These maps define a functor from FS to the category of

topological spaces. By taking rational cohomology in degree (d − 1)i, we obtain an FSop-module

Bi,d
S . We prove the following theorem, which implies the three statements in the introduction.

Proof of Theorem 1.1. As noted above, the cohomology of MS(E, d) is generated as an algebra in

degree d− 1, hence Bi,d
S is a quotient of (B1,d

S )⊗i. By Lemma 2.1, this means that it is sufficient to
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prove that B1,d
S is finitely generated in degrees ≤ |S|. For any finite set F , the vector space B1,d

S (F )

has a generating set indexed by nonzero elements of SF [dS01, Corollary 5.6] (these generators

form a basis unless two nonzero elements of SF are proportional, in which case the corresponding

generators are equal). For any nonzero v ∈ SF , let xv ∈ B1,d
S (F ) be the corresponding generator.

Concretely, if we take x ∈ Hd−1(Rdr {0};Q) to be the standard generator, then xv is equal to the

pullback of x along the map

fv : MS(F, d)→ Rd r {0}

that sends an F -tuple of vectors to its linear combination with coefficients determined by v. Given

a surjection ϕ : E → F , we have fv ◦ ϕ∗ = fϕ∗v, and therefore

ϕ∗(xv) = ϕ∗ ◦ f∗v (x) = f∗ϕ∗v(x) = xϕ∗v ∈ B1,d
S (E).

Since every element of SE may be pulled back from a subset of cardinality at most |S|, B1,d
S is

generated in degrees ≤ |S|.

Remark 2.2. Our construction also works if we replace R with an arbitrary field k and we take S to

be a finite subset of k. We define the arrangement Ak,S(n) in kn as above, we denote its complement

by Mk,S(E, 1), and we take Bi,1
k,S(E) to be the étale cohomology group H i

ét

(
Mk,S(E, 1)⊗k k̄;Ql

)
for

some prime l not equal to the characteristic of k, which is isomorphic to the degree i part of the

Orlik–Solomon algebra of Ak,S(n). This is an FSop-module over Ql, and the same argument shows

that it is finitely generated in degrees ≤ |S|i.
An interesting special case is where k = Fq is a finite field and S = k, so that our arrangement

AFq ,Fq(n) is the collection of all hyperplanes in Fnq . This arrangement has characteristic polynomial

(t− 1)(t− q) · · · (t− qn−1), and therefore the ith Betti number is equal to the evaluation of the ith

elementary symmetric polynomial at the values 1, q, . . . , qn−1. This implies that the Hilbert series

of our module is

q(
i
2)ti

i∏
j=0

1

1− qjt
,

which has simple poles at q−j for j = 0, 1, . . . , i. The projectivization of MFq ,Fq(n, 1) ⊗Fq F̄q is a

Deligne–Lusztig variety for the group GLn(Fq).
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