CHARACTER SHEAVES

LAURA RIDER

0

Goal: study a representation using some category of sheaves.

Let X be a reasonable space. Local systems on X are the same as $\pi_1(X)$. In particular, if X is simply-connected, then the only irreducible local system is the constant sheaf.

We will be dealing with $D_c^b(X)$, $D^b(D_X$ -mod) and $D_c^b(X/\overline{F_q})$.

0.1. **Motivation for character sheaves.** We have many finite groups of Lie type.

Lusztig writes down their character using the following steps:

(1) Find representatives $SS(G^{\vee})$ of semisimple conjugacy classes in G^{\vee} .

$$Irr(G) = \sqcup_{s \in SS(G^{\vee})} \mathcal{E}(G, s).$$

(2) Fix $s \in SS(G^{\vee})$. There is a 1-1 correspondence between $\mathcal{E}(G, S)$ and $\mathcal{E}(C_{G^{\vee}}(s), 1)$.

For example, for $G = SL_n$ we want to look at $\mathcal{E}(SL_n, 1)$, which is in bijection with irreducible character of the Weyl group S_n , i.e. partitions of n. The representations appearing on the right correspond to principal series. But we may have other unipotent characters, which correspond to cuspidal representations.

1. Character sheaves

Lusztig's definition: character sheaves are certain G-equivariant perverse sheaves on G.

Irreducible B-equivariant local systems on BwB are in bijection with irreducible local systems \mathcal{L} on T, such that $w^*\mathcal{L} \cong \mathcal{L}$.

Let $j_w: BwB \hookrightarrow G$.

Given a (tame) local system on T, think of it as living over BwB (with $w^*\mathcal{L} \cong \mathcal{L}$).

Define $K_w^{\mathcal{L}} := \Gamma_B^G(j_{w!}) \mathcal{L}[\dim G/B]$. This is not a perverse sheaf. Can take irreducible perverse constituents are the character sheaves.

To get all character sheaves let \mathcal{L} and w vary.

Data: \mathcal{L} on T is the same as a central character. Unipotent means \mathcal{L} is constant.

1.1. Mirkovic-Vilonen characterization. Consider a group G over \mathbb{C} , so that we can consider \mathcal{D} -modules and their characteristic varieties. In particular, there isn't a notion of characteristic variety for ℓ -adic sheaves $(G/\overline{\mathbb{F}}_q)$.

Let $\mathcal{D}_G(G)$ be the category of G-equivariant \mathcal{D} -modules on G. When is an irreducible perverse sheave $\mathcal{F} \in \mathcal{D}_G(G)$ a character sheaf?

Look at $Ch(\mathcal{F}) \subseteq T^*G \cong G \times \mathfrak{g}^* \cong G \times \mathfrak{g}$. Then \mathcal{F} is a character sheaf iff $Ch(\mathcal{F}) \subseteq G \times \mathcal{N}$, where \mathcal{N} is the nilpotent cone.

In particular, one can look at the Harish-Chandra system on g;

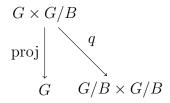
$$N: \begin{cases} \langle [A,x], \partial_x \rangle \widetilde{u} = 0, & A \in \mathfrak{g} \\ (P(x) - P(t)) \widetilde{u} = 0, & P \in \mathbf{C}[\mathfrak{g}]^G \\ (Q(\partial_x) - Q(\partial_t)) \widetilde{u} = 0, & Q \in S(\mathfrak{g})^G. \end{cases}$$

Consider the Grothendieck-Springer resolution

$$\widetilde{\mathfrak{g}}=\{(g,B)\in\mathfrak{g}\in\mathcal{B}|g\in\operatorname{Lie}B\}$$

given by $\mu: \widetilde{\mathfrak{g}} \to \mathfrak{g}$. The Grothendieck-Springer sheaf is $\mu^* \mathbf{C}_{\widetilde{\mathfrak{g}}}$. One can similarly define it for $\widetilde{G} \to G$. This is a character sheaf.

Another version is given by the horocycle correspondence.



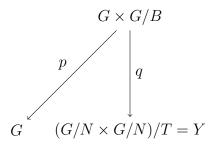
Here q is the action map of G on the flag variety. Define

$$p_*q^!: D_G(G/B \times G/B) \to D_G(G).$$

Define the unipotent character sheaves to be exactly the irreducible perverse constituents of $p_*q^!(\mathcal{F})$ for any \mathcal{F} .

Observe, that $D_G(G/B \times G/B) \cong D_B(G/B)$.

More general horocycle correspondence (twisted Hecke category):



Here Y is known as the horocycle space.

We get the map

$$p_*q^!: D_G((G/N \times G/N)/T) \to D_G(G).$$

To get all character sheaves, take irreducible perverse constituents of $p_*q^!(\mathcal{F})$.

For \mathcal{L} a local system on the torus, then $D_G^{\mathcal{L}}((G/N \times G/N)/T)$ produces character sheaves with \mathcal{L} -central character.

Let us restrict our attention to the unipotent case. If we start with $D_B(G/B)$, consider its Grothendieck group and take its center. This doesn't work. (One only gets principal series characters.)

Key idea: taking the center and Grothendieck group is not interchangeable. Exercise: come up with the right procedure.