
1 Stationary distributions and the limit

theorem

Definition 1.1. The vector π is called a stationary distribution of a

Markov chain with matrix of transition probabilities P if π has entries

(πj : j ∈ S) such that:

(a) πj ≥ 0 for all j,
∑
j πj = 1, and

(b) π = πP, which is to say that πj =
∑
i πipij for all j (the balance

equations).

Note: This implies that

πPn = π for all n ≥ 0,

e.g. if X0 has distribution π then Xn has distribution π for all n.
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Proposition 1.2. An irreducible chain has a stationary distribution π

if and only if all the states are non-null persistent; in this case, π is the

unique stationary distribution and is given by πi = 1
µi

for each i ∈ S,

where µi is the mean recurrence time of i.

We will carry out the proof of this in several steps.
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Fix a state k and let ρi(k) be the mean number of visits of the chain

to the state i between two successive visits to state k:

ρi(k) = E [Ni|X0 = k] ,

where

Ni =
∞∑
n=1

11{Xn = i} ∩ {Tk ≥ n}

and Tk is the time of the first return to state k. We write ρ(k) for the

vector (ρi(k) : i ∈ S). Clearly Tk =
∑
i∈S Ni, and hence

µk =
∑
i∈S

ρi(k)
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Lemma 1.3. For any state k of an irreducible persistent chain, the

vector ρ(k) satisfies ρi(k) <∞ for all i, and furthermore

ρ(k) = ρ(k)P.
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Proof. We show first that ρi(k) <∞ when i 6= k. Observe that

ρk(k) = 1. We write

lki(n) = P {Xn = i, Tk ≥ n|X0 = k} .

Clearly fkk(m+ n) ≥ lki(m)fik(n). By irreducibility of the chain,

there exists n such that fik(n) > 0. So for such a n ≥ 2

ρi(k) =
∞∑
m=1

lki(m) ≤ 1
fik(n)

∞∑
m=1

fkk(m+ n) ≤ 1
fik(n)

<∞

as required.
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Next observe that lki(1) = pki, and

lki(n) =
∑
j:j 6=k

P (Xn = i,Xn−1 = j, Tk ≥ n|X0 = k) =
∑
j:j 6=k

lkj(n−1)pji.

Summing over n ≥ 2, we obtain

ρi(k) = pki +
∑
j:j 6=k

∑
n≥2

lkj(n− 1)pji

 = ρk(k)pki +
∑
j:j 6=k

ρj(k)pji,

since ρk(k) = 1.
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We have shown that for any irreducible chain, the vector ρ(k) satisfies

ρ(k) = ρ(k)P, and furthermore that the components of ρ(k) are

non-negative with sum µk. Hence, if µk <∞, the vector π with

entries πi = ρi(k)/µk is a distribution satisfying π = πP.

Therefore, every non-null persistent irreducible chain has a stationary

distribution.
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Proposition 1.4. For any irreducible, persistent Markov chain with

matrix of transition probabilities P, there exists a positive solution x
to the equation

x = xP,

which is unique up to a multiplicative constant. The chain is non-null

if
∑
i xi <∞ and null if

∑
i xi =∞.

We’ve seen all of this except for the uniqueness claim, which we

won’t establish – although it isn’t difficult.
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Proof of Proposition (1.2) Suppose the π is a stationary distribution of

the chain. If all states are transient then pij(n)→ 0 as n→∞, for all

i and j. So

πj =
∑
i

πipij(n)→ 0 as n→∞ for all i and j,

which contradicts
∑
j πj = 1.
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We show next that the existence of π implies that all states are

non-null and that πi = 1
µi

for each i. Suppose that X0 has

distribution π, so that P {X0 = i} = πi for each i. Then

πjµj = P {X0 = j}
∞∑
n=1

P {Tj ≥ n|X0 = j} =
∞∑
n=1

P {Tj ≥ n,X0 = j} .
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However, P {Tj ≥ 1, X0 = j} = P {X0 = j}, and for n ≥ 2,

P {Tj ≥ n,X0 = j}

= P {X0 = j,Xm 6= j for 1 ≤ m ≤ n− 1}

= P {Xm 6= j for 1 ≤ m ≤ n− 1} − P {Xm 6= j for 0 ≤ m ≤ n− 1}

= P {Xm 6= j for 0 ≤ m ≤ n− 2} − P {Xm 6= j for 0 ≤ m ≤ n− 1}

by stationarity

= an−2 − an−1

where an = P {Xm 6= j for 0 ≤ m ≤ n}.
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Sum over n to obtain

πjµj = P {X0 = j}+ P {X0 6= j} − lim
n→∞

an = 1− lim
n→∞

an.

However, an → P {Xm 6= j for all m} = 0 as n→∞, by the

persistence of j. We have shown that

πjµj = 1,

so that µj = 1
πj
<∞ if πj > 0. To see that πj > 0 for all j, suppose

on the contrary that πj = 0 for some j.
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Then

0 = πj =
∑
i

πipij(n) ≥ πipij(n) for all i and n,

yielding that πi = 0 whenever i→ j. The chain is assumed irreducible,

so that πi = 0 for all i in contradiction of the fact that πi’s sum to 1.

Hence µj <∞ and all states of the chain are non-null. Furthermore,

we see that πj are specified uniquely as 1
µj

.
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Thus, if π exists then it is unique and all the states of the chain are

non-null persistent. Conversely, if the states of the chain are non-null

persistent then the chain has a stationary distribution given by

Lemma (1.3).
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Proposition 1.5. If i↔ j then i is null persistent if and only if j is

null persistent.

Proof. Let C(i) be the irreducible closed equivalence class of states

which contains the non-null persistent state i. Suppose that

X0 ∈ C(i). Then Xn ∈ C(i) for all n, and Lemma (1.3) and

Proposition (1.2) combine to tell us that all the states in C(i) are

non-null.
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Proposition 1.6. Let s ∈ S be any state of an irreducible chain. The

chain is transient if and only if there exists a non-zero solution

{yi : i 6= s}, satisfying |yi| ≤ 1 for all i, to the equations

yi =
∑
j:j 6=s

pijyj , i 6= s.
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1.0.1 Example: Random walk with retaining barrier

A particle performs a random walk on the non-negative integers with a

retaining barrier at 0. The transition probabilities are

p0,0 = q, pi,i+1 = p for i ≥ 0 pi,i−1 = q for i ≥ 1,

Let ρ = p/q.

(a) If q < p, take s = 0 to see that yi = 1− 1
ρi satisfies the equation

in Proposition (1.6), and so the chain is transient.
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(b) Solve the equation π = πP to find that there exists a stationary

distribution, with πj = ρj(1− ρ), if and only if q > p. Thus the

chain is non-null persistent if and only if q > p.

(c) If q = p = 1
2 the chain is persistent since symmetric random walk

is persistent (just reflect negative excursions of a symmetric

random walk into the positive half-line). Solve the equation

x = xP to find that xi = 1 for all i is the solution, unique up to a

multiplicative constant. However,
∑
i xi =∞ so that the chain is

null by Proposition (1.4).
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Theorem 1.7. For an irreducible aperiodic chain, we have that

pij(n)→ 1
µj

as n→∞, for all i and j.

Proof. If the chain is transient the the result is trivial.

Suppose X is an irreducible, aperiodic, non-null, persistent Markov

chain. Construct the “coupled chain” Z = (X,Y ), as an ordered pair

X = {Xn : n ≥ 0}, Y = {Yn : n ≥ 0} of independent Markov chains,

each having state space S and transition matrix P. Then

Z = {Zn = (Xn, Yn) : n ≥ 0} takes values in S × S, and it is easy to

check that Z is a Markov chain with transition probabilities

pij,kl = P (Zn+1 = (k, l)|Zn = (i, j))

= P (Xn+1 = k|Xn = i) P (Yn+1 = l|Yn = j) by independence

= pikpjl
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Since X is irreducible and aperiodic then Z is also irreducible. Since X

is non-null persistent it has a unique stationary distribution π, and it is

easy to see that Z has a stationary distribution ν = (νij : i, j ∈ S)
given by νij = πiπj ; thus Z is also non-null persistent.
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Now suppose that X0 = i and Y0 = j, so that Z0 = (i, j). Choose any

state s ∈ S and let

T = min {n ≥ 1 : Zn = (s, s)}

denote the time that Z first hits (s, s). Note that P {T <∞} = 1.

Starting from Z0 = (X0, Y0) = (i, j)

pik(n) = P {Xn = k}

= P {Xn = k, T ≤ n}+ P {Xn = k, T > n}

= P {Yn = k, T ≤ n}+ P {Xn = k, T > n} ,

since given T ≤ n, Xn and Yn are identically distributed. Also,

≤ P {Yn = k}+ P {T > n}

= pjk(n) + P {T > n} .
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This, and the related inequality with i and j interchanged, yields

|pik(n)− pjk(n)| ≤ P {T > n} → 0 as n→∞;

therefore,

pik(n)− pjk(n)→ 0 as n→∞ for all i,j and k.

Thus, if limn→∞ pik(n) exists, then it does not depend on i. To show

that it exists, write

πk − pjk(n) =
∑
i

πi (pik(n)− pjk(n))→ 0 as n→∞.
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1.1 Examples

1.1.1 Example: The age of a renewal process

Initially an item is put into use, and when it fails it is replaced at the

beginning of the next time period by a new item. Suppose that the

lives of the items are independent and each will fail in its ith period of

use with probability Pi, i ≥ 1, where the distribution {Pi} is aperiodic

and
∑
i iPi <∞. Let Xn denote the age of the item in use at time n

— that is, the number of periods (including the nth) it has been in

use.
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Then if we let

λi =
Pi∑∞
j=i Pj

denote the probability that a unit that has lived for i− 1 time units

fails on the ith time unit, then {Xn, n ≥ 0} is a Markov chain with

transition probabilities given by

Pi,1 = λi = 1− Pi,i+1, i ≥ 1.

Hence the limiting probabilities are such that

π1 =
∑
i

πiλ(i),

πi+1 = πi(1− λi), i ≥ 1.
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Since

(1− λi) =

∑∞
j=i+1 Pj∑∞
j=i Pj

,

iterating yields

πi+1 = πi(1− λi)

= πi−1(1− λi)(1− λi−1)

= π1(1− λ1)(1− λ2) · · · (1− λi)

= π1

∞∑
j=i+1

Pj

= π1P {X ≥ i+ 1} ,

where X is the life of an item.
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Using
∑∞
i=1 πi = 1 yields

1 = π1

∞∑
i=1

P {X ≥ i}

or

π1 =
1

E [X]

and hence

πi =
P {X ≥ i}

E [X]
, i ≥ 1.

This is an example of a size-biased distribution.
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1.1.2 Example: Poisson births

Suppose that during each time period, each member of a population

dies independently of the others with probability p, and that a

Poisson(λ) number of new members join the population each time

period. If we let Xn denote the number of members of the population

at the beginning of period n, then it is easy to see that

{Xn, n = 1, . . .} is a Markov chain.

To find the stationary distribution of this chain, suppose that X0 has a

Poisson distribution with mean α. Since each of these X0 individuals

will independently be alive at the beginning of the next period with

probability 1− p, by the Poisson marking theorem, the number of

them that are still in the population at time 1 is a Poisson random

variable with mean α(1− p).
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As the number of new members that join the population at time 1 is an

independent Poisson random variable with mean λ, it thus follows that

X1 is a Poisson random variable with mean α(1− p) + λ. Hence, if

α = α(1− p) + λ

then the chain is stationary. By uniqueness of the stationary

distribution, we can conclude that the stationary distribution is

Poisson with mean λ/p. That is,

πj = e−λ/p(λ/p)j/j!, j = 0, 1, . . .
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1.1.3 Example: the Gibbs sampler

Let p(x1, . . . , xn) be the joint probability mass function of the random

vector (X1, . . . , Xn). In some cases, it may be difficult to directly

sample from such a distribution, but relatively easy to sample from the

conditional distributions of each coordinate Xi given the values of all

of the other coordinates Xj , j 6= i.

In this case, we can generate a random vector whose probability mass

function is approximately p(x1, . . . , xn) by constructing a Markov

chain whose stationary distribution is p as follows.
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Let X0 = (X0
1 , . . . , X

0
1 ) be any vector for which p(X0

1 , . . . , X
0
n) > 0.

First we generate a random variable whose distribution is the

conditional distribution of the first coordinate X1 given that

Xj = X0
j , j = 2, . . . , n, and call its value X1

1 .

Next, generate a random variable whose distribution is the conditional

distribution of X2 given that X1 = X1
1 , and Xj = X0

j , j = 3, . . . , n,
and call its value X1

2 .

Continue in this fashion until we have a whole new vector

X1 = (X1
1 , . . . , X

1
n). Then, repeat the process, this time starting with

X1 in place of X0, to obtain the new vector X2, and so on. It is easy

to see that the sequence of vectors Xj , j ≥ 0 is a Markov chain. We

claim that its stationary distribution is p(x1, . . . , xn).
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To verify the claim, suppose that X0 has probability mass function

p(x1, . . . , xn). Then it is easy to see that at any point in this

algorithm the vector Xj
1 , . . . , X

j
i−1, X

j−1
i , . . . , Xj−1

n will be the value

of a random variable with mass function p(x1, . . . , xn). For instance,

letting Xj
i be the random variable that takes on the value denoted by

xji then

P
{
X1

1 = x1, X
0
j = xj , j = 2, . . . , n

}
= P

{
X1

1 = x1|X0
j = xj , j = 2, . . . , n

}
× P

{
X0
j = xj , j = 2, . . . , n

}
= P {X1 = x1|Xj = xj , j = 2, . . . , n}

× P {Xj = xj , j = 2, . . . , n}

= p(x1, . . . , xn).
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Therefore, p(x1, . . . , xn) is a stationary probability distribution, so

provided that the Markov chain is irreducible and aperiodic, we can

conclude that it is the limiting probability vector for the Gibbs sampler.

It also follows from the proceeding that p(x1, . . . , xn) would be the

limiting probability vector even if the Gibbs sampler were not

systematic in first changing the value of X1, then X2, and so on.,

Indeed, even if the component whose value was to be changed was

always randomly determined, then p(x1, . . . , xn) would remain a

stationary distribution, and would thus be the limiting probability mass

function provided that the resulting chain is aperiodic and irreducible.
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2 Exercises

1) Each day one of n possible elements is requested; it is the ith one

with probability Pi, i ≥ 1,
∑n
i=1 Pi = 1. These elements are at all

times arranged in an ordered list that is revised as follows: the element

selected is moved to the front of the list, and the relative positions of

all other elements remain unchanged. Define the state at any time to

be the ordering of the list at that time.

(a) Argue that the above is Markov chain.

(b) For any state (i1, . . . , in) (which is a permutation of (1, 2, . . . , n))

let π(i1, . . . , in) denote the limiting probability. Argue that

π(i1, . . . , in) = Pi1
Pi2

1− Pi1
· · ·

Pin−1

1− Pi1 − · · · − Pin−2

.
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2) Let {Xn, n ≥ 0} be a Markov chain with stationary probabilities πj ,

j ≥ 0. Suppose that X0 = 0 and define

T = min{n > 0 : Xn = 0}.

Let Yj = XT−j , j = 0, 1, . . . , T . Show that {Yj , j = 0, . . . , T} is

distributed as the states visited by a Markov chain (the “reversed”

Markov chain) with transition probabilities P ∗ij = πjPji/πi started in

state 0 and watched until it returns to 0.
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3) Consider a finite Markov chain on the state space {0, 1, 2, . . . , N}
with transition probability matrix P = (Pij)Ni,j=0, and divide the state

space into the three classes {0}, {1, 2, . . . , N − 1} and {N}. Let 0
and N be absorbing states, both accessible from all states in

1, . . . , N − 1, and let {1, 2, . . . , N − 1} be a transient class.

Let k be a transient state. Define an auxiliary process (the “return

process”) with transition matrix P̃ by altering the first and last row of

P so that P̃0k = P̃Nk = 1 and leave the other rows unchanged.

The return process is clearly irreducible. Prove that the expected time

until absorption µk with initial state k in the original process equals

1/(π0 + πN )− 1 where π0 + πN is the stationary probability of being

in state 0 or N for the return process.

Hint: use the relation between stationary probabilities and expected

recurrence times to states.
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3 Reversibility

Suppose that {Xn : 0 ≤ n ≤ N} is an irreducible, non-null, persistent

Markov chain, with transition matrix P and stationary distribution π.

Suppose further that Xn has distribution π for every n. Define the

’reversed chain’ Y by Yn = XN−n for 0 ≤ n ≤ N .
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Proposition 3.1. The sequence Y is a Markov chain with

P{Y0 = i} = πi and

P {Yn+1 = j|Yn = i} =
πj
πi
pji.

We call the chain Y the time reversal of chain X, and we say that X

is reversible if X and Y have the same transition probabilities.
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Proof. The crucial step is the stationarity of X:

P {Yn+1 = in+1|Yn = in, Yn−1 = in−1, . . . , Y0 = i0}

=
P {Yk = ik, 0 ≤ k ≤ n+ 1}

P {Yk = ik, 0 ≤ k ≤ n}

=
P {XN−n−1 = in+1, XN−n = in, . . . , XN = i0}

P {XN−n = in, . . . , XN = i0}

=
πin+1pin+1,inpin,in−1 . . . pi1,i0

πinpin,in−1 . . . pi1,i0

=
πin+1pin+1,in

πin
.

38



Let X = {Xn : 0 ≤ n ≤ N} be an irreducible Markov chain such that

Xn has the stationary distribution π for all n. The chain is called

reversible if the transition matrices of X and its time-reversal Y are

the same, which is to say that

πipij = πjpji for all i,j.

These equations are called the detailed balance equations.
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Proposition 3.2. Let P be the transition matrix of an irreducible

chain X, and suppose that there exists a distribution π such that

πipij = πjpji for all i,j ∈ S. Then π is a stationary distribution of the

chain.
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Proof. Suppose that π satisfies the conditions above. Then∑
i

πipij =
∑
i

πjpji = πj
∑
i

pji = πj

and so π = πP, whence π is stationary.
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3.1 Reversible Examples

3.1.1 Example: Ehrenfest model of diffusion

Two containers A and B are placed adjacent to each other and gas is

allowed to pass through a small aperture joining them. A total of m

gas molecules is distributed between the containers. We assume that

at each epoch of time one molecule, picked uniformly at random from

the m available, passes through this aperture. Let Xn be the number

of molecules in container A after n units of time has passed. Clearly

{Xn} is a Markov chain with transition matrix

pi,i+1 = 1− i

m
, pi,i−1 =

i

m
if 0 ≤ i ≤ m.
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Rather than solve the equation π = πP to find the stationary

distribution, we look for solutions of the detailed balance equations

πipij = πjpji

.

This is solved by πi =
(
m
i

)
( 1
2 )m, which is therefore the stationary

distribution.
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3.1.2 Example: the Metropolis algorithm

Let aj ,j = 1, . . . ,m be positive numbers and let A =
∑m
j=1 aj .

Suppose that m is large and that A is difficult to compute, and

suppose we ideally want to simulate the values of a sequence of

independent random variables whose probabilities are pj = aj/A, for

j = 1, . . . ,m.

Similar to the Gibbs sampler, one way of simulating a sequence of

random variables whose distributions converge to {pj , j = 1, . . . ,m} is

to find a Markov chain that is both easy to simulate and whose

limiting probabilities are the pj . The Metropolis algorithm provides an

approach for accomplishing this task.
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Let Q be any irreducible transition probability matrix on the integers

1, 2, . . . , n such that qij = qji for all i and j. Now define a Markov

chain {Xn, n ≥ 0} as follows. If Xn = i, then generate a random

variable that is equal to j with probability qij , i, j = 1, . . . ,m. If this

random variable takes on the value j, then set Xn+1 equal to j with

probability min{1, aj/ai}, and set it equal to i otherwise.

That is, the transition probabilities of {Xn, n ≥ 0} are

Pij =

qij min(1, aj/ai) if j 6= i,

qii +
∑
j 6=i qij{1−min(1, aj/ai)} if j = i.
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We will now show that the stationary distribution of this Markov chain

is given by the pj .

We will first show that the chain is reversible with stationary

probabilities pj , j = 1, . . . ,m by showing that

piPij = pjPji.

To show this, we must show that

piqij min(1, ai/aj) = pjqji min(1, aj/ai).

Now, qij = qji and aj/ai = pj/pi and so we must verify that

pi min(1, pj/pi) = pj min(1, pi/pj).

This is immediate since both sides of the equation are equal to

min(pi, pj).
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That these stationary probabilities are also limiting probabilities follows

from the fact that since Q is an irreducible transition probability

matrix, {Xn} will also be irreducible, and as Pii > 0 for some i

(except in the trivial case where pi ≡ 1/n), it is also aperiodic.

By choosing a transition probability matrix Q that is easy to simulate

– that is, for each i it is easy to generate the value of a random

variable that is equal to j with probability qij – we can use the

preceding to generate a Markov chain whose limiting probabilities are

aj/A, without computing A.

47



3.1.3 Example: Random walk on a graph

Consider a graph having a positive number wij associated with each

edge (i, j), and suppose that a particle moves from vertex to vertex in

the following manner:

If the particle is at vertex i then it will move to vertex j with

probability proportional to the outgoing edge weights:

Pij = wij/
∑
j

wij

where wij is 0 if (i, j) is not an edge of the graph. The Markov chain

describing the sequence of vertices visited by the particle is called a

random walk on an edge weighted graph.
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Proposition 3.3. Consider a random walk on an edge weighted graph

with a finite number of vertices. If this Markov chain is irreducible,

then in steady state it is time reversible with stationary probabilities

given by

πi =
∑
i wij∑

j

∑
i wij

.

Proof. The time reversible equations

πiPij = πjPji

reduce to

πiwij∑
k wik

=
πjwji∑
k wjk

49



or, equivalently, since wij = wji

πi∑
k wik

=
πj∑
k wjk

implying that

πi = c
∑
k

wik.

Since
∑
πi = 1, we are done.
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4 Exercises

1) Consider a time-reversible Markov chain on the state space

{0, 1, 2, . . .} with transition probabilities Pij and limiting probabilities

πi. Suppose we truncate the chain to the states {0, 1, . . . ,M} by

defining the transition probabilities

P ij =


Pij +

∑
k>M Pik, 0 ≤ i ≤M, j = i

Pij , 0 ≤ i 6= j ≤M
0, otherwise.

Show that the truncated chain is also time reversible and has limiting

probabilities given by

πi =
πi∑M
i=0 πi

.

51



2) Suppose M balls are initially distributed among m urns. At each

stage one of the balls is selected at random, taken from whichever urn

it is in, and placed, again at random, in one of the other m− 1 urns.

Consider the Markov chain whose state at any time is the vector

(n1, . . . , nm), where ni denotes the number of balls in urn i. Guess at

the limiting probabilities for this Markov chain and verify your guess,

showing at the same time that the Markov chain is time reversible.
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