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1 Limiting Probabilities

If the discrete-time Markov chain with transition probabilities pij is

irreducible and positive recurrent; then the limiting probabilities

pj = limt→∞ Pij(t) are given by

pj =
πj/νj∑
i πi/νi

where the πj are the unique nonnegative solution of

πj =
∑

i

πipij ,
∑

i

πi = 1.
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We see that the pj are unique nonnegative solution of

νjpj =
∑

i

νipipij ,
∑

j

pj = 1,

or, equivalently, using qij = νipij ,

νjpj =
∑

i

piqij ,
∑

j

pj = 1.
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Another way of obtaining the equations for the pi, is by way of the

forward equations

P ′
ij(t) =

∑
k 6=j

qkjPik(t)− νjPij(t).

If we assume that the limiting probabilities pj = limt→∞ Pij(t) exists,

then P ′
ij(t) would necessarily converge to 0 as t →∞. Hence,

assuming that we can interchange limit and summation in the above,

we obtain upon letting t →∞,

0 =
∑
k 6=j

pkqkj − νjpj .
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Let us now determine the limiting probabilities for a birth and death

process. The relevant equations are

λ0p0 = µ1p1,

λnpn = µn+1pn+1 + (λn−1pn−1 − µnpn), n ≥ 1.

or, equivalently,

λ0p0 = µ1p1,

λ1p1 = µ2p2 + (λ0p0 − µ1p1) = µ2p2,

λ2p2 = µ3p3 + (λ1p1 − µ2p2) = µ3p3,

λnpn = µn+1pn+1 + (λn−1pn−1 − µnpn) = µn+1pn+1.

4



Solving in terms of p0 yields

p1 =
λ0

µ1
p0,

p2 =
λ1

µ2
p1 =

λ1λ0

µ2µ1
p0,

p3 =
λ2

µ3
p2 =

λ2λ1λ0

µ3µ2µ1
p0,

pn =
λn−1

µn
pn−1 =

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1
p0.
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Using
∑∞

n=0 pn = 1 we obtain

1 = p0 + p0

∞∑
n=1

λn−1 · · ·λ1λ0

µn · · ·µ2µ1

or

p0 = [1 +
∞∑

n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
]−1,

and hence

pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn(1 +
∑∞

n=1
λ0λ1···λn−1
µ1µ2···µn

)
, n ≥ 1.

The above equations also show us what condition is needed for the

limiting probabilities to exist. Namely,

∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
< ∞.
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Example 1.1. The M/M/1 Queue

In the M/M/1 queue λn = λ, µn = µ, and thus

pn =
(λ/µ)n

1 +
∑∞

n=1(
λ
µ )n

= (
λ

µ
)n(1− λ

µ
), n ≥ 0

provided that λ/µ < 1. Customers arrive at rate λ and are served at

rate µ, and thus if λ > µ, they will arrive at a faster rate than they

can be served and the queue size will go to infinity. The case λ = µ is

null recurrent and thus has no limiting probabilities.
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2 Time Reversibility

Consider an ergodic continuous-time Markov chain and suppose that it

has been in operation an infinitely long time; that is, suppose that it

started at time −∞. Such a process will be stationary, and we say

that it is in steady state.
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Let us consider this process going backwards in time. Now, since the

forward process is a continuous-time Markov chain it follows that given

the present state, call it X(t), the past state X(t− s) and the future

states X(y), y > t are independent.
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Therefore,

P{X(t− s) = j|X(t) = i,X(y), y > t} = P{X(t− s) = j|X(t) = i}

and so we can conclude that the reverse process is also a

continuous-time Markov chain. Also, since the amount of time spent in

a state is the same whether one is going forward or backward in time it

follows that the amount of time the reverse chain spends in state i on

a visit is exponential with the same rate νi as in the forward process.
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The sequence of states visited by the reverse process constitutes a

discrete-time Markov chain with transition probabilities p∗ij given by

p∗ij =
πjpji

πi

where {πj , j ≥ 0} are the stationary probabilities of the embedded

discrete-time Markov chain with transition probabilities pij . Let

q∗ij = νip
∗
ij

denote the infinitesimal rates of the reverse chain. We see that

q∗ij =
νiπjpji

πi
.
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Recalling that

pk =
πk/νk

C
, where C =

∑
i

πi/νi,

we see that
πj

πi
=

νjpj

νipi

and so,

q∗ij =
νjpjpji

pi
=

pjqji

pi
.

That is,

piq
∗
ij = pjqji.
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Definition 2.1 (Reversibility). A stationary continuous-time Markov

chain is said to be time reversible if the reverse process follows the

same probabilistic law as the original process. That is, it is time

reversible if for all i and j

q∗ij = qij

which is equivalent to

piqij = pjqji, for all i, j.

Proposition 2.2. Any ergodic birth and death process in steady state

is time reversible.
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Corollary 2.3. Consider an M/M/s queue in which customers arrive

in accordance with a Poisson process having rate λ and are served by

any one of s servers–each having exponentially distributed service time

with rate µ. If λ < sµ, then the output process of customers departing

is, in steady state, a Poisson process with rate λ.
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Proof: Let X(t) denote the number of customers in the system at

time t. Since the M/M/s process is a birth and death process, it

follows that {X(t), t ≥ 0} is time reversible. Now going forward in

time, the time points at which X(t) increases by 1 constitute a

Poisson process since these are just the arrival times of customers.

hence, by time reversibility, the time points at which the X(t)
increases by 1 when we go backwards in time also constitute a Poisson

process. But these latter points are exactly the points of time when

customers depart. Hence, the departure times constitute a Poisson

process with rate λ. �
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3 Exercises

1) Suppose that the “state” of the system can be modeled as a

two-state continuous-time Markov chain with transition rates

ν0 = λ, ν1 = µ. When the state of the system is i, “events” occur in

accordance with a Poisson process with rate αi, i = 0, 1. Let N(t)
denote the number of events in (0, t).

(a) Find limt→∞ N(t)/t.

(b) If the initial state is state 0, find E[N(t)].
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2) Consider a continuous-time Markov chain with stationary

probabilities {pi, i ≥ 0}, and let T denote the first time the chain has

been in state 0 for t consecutive time unites. Find E[T |X(0) = 0].
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3) Find the limiting probabilities for the M/M/s system and

determine the condition needed for these to exist.
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4) Consider a time-reversible continuous-time Markov chain having

parameters νi, pij and having limiting probabilities pj , j ≥ 0. Choose

some state – say state 0 – and consider the new Markov chain, which

makes state 0 an absorbing state. That is, reset ν0 to equal 0.

Suppose now at time points chosen according to a Poisson process

with rate λ, Markov chains – all of the above type (having 0 as an

absorbing state) – are started with the initial states chosen to be j

with probabilities p0j . All the existing chains are assumed to be

independent. Let Nj(t) denote the number of chains in state j, j > 0,

at time t.
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(a) Argue that if there are no chains “alive” at time 0, then Nj(t),
j > 0, are independent Poisson random variables.

(b) Argue that the vector process {(N1(t), N2(t), · · · )} is time

reversible in steady state with stationary probabilities

pn =
∞∏

j=1

e−αj
α

nj

j

nj !
, for n = (n1, n2, · · · ),

where αj = λpj/p0ν0.
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