(1) Consider a Yule process with $X(0)=i$. Given that $X(t)=i+k$, what is the conditional distribution of the birth times of the k individuals born in $(0, t)$?
(2) Consider a Yule process starting with a single individual and suppose that the individuals born are either male or female. Suppose that an individual born at time s will be female with probability $P(s)$, independently of the rest of the process, and male otherwise. Compute the distribution of the number of female individuals born in $(0, t)$.
(3) Suppose that the local weather system can be either in a "hot" pattern or a "cold" pattern, that it switches back and forth between the patterns according to a continuous-time Markov chain, and that rain events occur with different rates depending on the weather pattern. We model this as follows:

Let the "state" of the system be a two-state continuous-time Markov chain with transition rates $\nu_{0}=q_{0,1}=\lambda$ and $\nu_{1}=q_{1,0}=\mu$. Suppose that when the system is in state 0 , "events" occur at the times of a Poisson process with rate α_{0}, and when the system is in state 1 , "events" occur at the times of a Poisson process with rate α_{1}. Let $N(t)$ denote the number of events in $(0, t)$. You may use the results on two-state Markov chains proved in class.
(a) Find $\lim _{t \rightarrow \infty} N(t) / t$.
(b) If the initial state is state 0 , find $\mathbb{E}[N(t)]$.
(4) Consider a reversible continuous-time Markov chain on the nonnegative integers with transition parameters ν_{i} and $p_{i j}$ and with limiting probabilities p_{j} for $j \geq 0$. Define the absorbed chain to be the Markov chain with the same parameters, except $\nu_{0}=0$, so that state 0 is an absorbing state. Suppose now at the time points of a Poisson process with rate λ, independent copies of the absorbed chain are started, and that each begins at state j with probability $p_{0, j}$ for $j>0$. Let $N_{j}(t)$ denote the number of chains in state j, at time t, for $j>0$.
(a) Show that if there are no chains "alive" at time 0 , then for any t, the random variables $\left\{N_{j}(t): j>0\right\}$, are independent and Poisson distributed.
(b) Show that the vector process $\left(\left(N_{1}(t), N_{2}(t), \cdots\right)\right)_{t \geq 0}$ is time reversible in steady state with stationary probabilities

$$
p_{\underline{n}}=\prod_{j=1}^{\infty} e^{-\alpha_{j}} \frac{\alpha_{j}^{n_{j}}}{n_{j}!}, \text { for } \underline{n}=\left(n_{1}, n_{2}, \cdots\right) \text {, }
$$

where $\alpha_{j}=\lambda p_{j} / p_{0} \nu_{0}$.

